From eca2a725c73398969d4a5a7758a5aafc9cda6fb8 Mon Sep 17 00:00:00 2001 From: Fernando <63268682+shorki@users.noreply.github.com> Date: Wed, 10 Jul 2024 21:33:44 +0000 Subject: [PATCH] Main --- notebook/problems.ipynb | 91 +++++++++++++++++++++++++++++++++++++++-- 1 file changed, 87 insertions(+), 4 deletions(-) diff --git a/notebook/problems.ipynb b/notebook/problems.ipynb index a253f320..f87be166 100644 --- a/notebook/problems.ipynb +++ b/notebook/problems.ipynb @@ -27,9 +27,75 @@ "execution_count": 1, "id": "34720ab6", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mediana de array normal: -0.022391902780748874\n", + "Mediana de array chi: 3.0567587959236855\n", + "Media de array normal: -0.05237194748456798\n", + "Media de array chi: 3.6209611389375183\n", + "Moda de array normal: 1.1151385022266151\n", + "Moda de array chi: 0.9395751268334924\n", + "El rango del array normal es: 4.091773130272832\n", + "El rango del array chi es: 11.410794704327408\n", + "la variacion normal del array normal es: 0.9221713598811796\n", + "la variacion normal del array chi es: 7.97710446769979\n", + "el desvio estandar del array normal es: 0.9602975371629251\n", + "el desvio estandar del array chi es: 2.824376828204726\n" + ] + } + ], "source": [ - "# TODO" + "import numpy as np\n", + "import statistics as stats\n", + "from scipy.stats import skew\n", + "from scipy.stats import kurtosis\n", + "\n", + "\n", + "array_normal = np.random.normal(size=100)\n", + "#print(array_normal)\n", + "\n", + "array_chi = np.random.chisquare(df=3, size = 100)\n", + "#print(array_chi)\n", + "\n", + "\n", + "#Mediana\n", + "\n", + "print (f\"Mediana de array normal: {stats.median(array_normal)}\")\n", + "print (f\"Mediana de array chi: {stats.median(array_chi)}\")\n", + "\n", + "#Media \n", + "\n", + "print (f\"Media de array normal: {stats.mean(array_normal)}\")\n", + "print (f\"Media de array chi: {stats.mean(array_chi)}\")\n", + "\n", + "#Moda\n", + "\n", + "print (f\"Moda de array normal: {stats.mode(array_normal)}\")\n", + "print (f\"Moda de array chi: {stats.mode(array_chi)}\")\n", + "\n", + "#Rango\n", + "\n", + "rango_normal = max(array_normal) - min (array_normal)\n", + "rango_chi = max(array_chi) - min (array_chi)\n", + "\n", + "print(f\"El rango del array normal es: {rango_normal}\")\n", + "print(f\"El rango del array chi es: {rango_chi}\")\n", + "\n", + "#Variance \n", + "\n", + "var_normal = stats.variance(array_normal)\n", + "std_variance_normal = stats.stdev(array_normal)\n", + "\n", + "var_chi = stats.variance(array_chi)\n", + "std_variance_chi = stats.stdev(array_chi)\n", + "\n", + "print(f\"la variacion normal del array normal es: {var_normal}\")\n", + "print(f\"la variacion normal del array chi es: {var_chi}\")\n", + "print(f\"el desvio estandar del array normal es: {std_variance_normal}\")\n", + "print(f\"el desvio estandar del array chi es: {std_variance_chi}\")" ] }, { @@ -51,9 +117,26 @@ "execution_count": 2, "id": "d590308e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.23606797749979\n" + ] + } + ], "source": [ - "# TODO" + "def desv_std (data):\n", + " n=len(data)\n", + " mean = sum(data)/n\n", + " variance = sum((x - mean) ** 2 for x in data) / (n - 1)\n", + " std_dev = variance ** 0.5\n", + " return std_dev\n", + "\n", + "data = [4,2,5,8,6]\n", + "\n", + "print(desv_std(data))" ] } ],