diff --git a/.gitignore b/.gitignore index 03fc1690..8d193625 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,2 @@ - - -# Checkpoints will not be pushed. -.ipynb_checkpoints +.venv +.env diff --git a/notebook/problems.ipynb b/notebook/problems.ipynb index a253f320..4ab23a3b 100644 --- a/notebook/problems.ipynb +++ b/notebook/problems.ipynb @@ -24,12 +24,55 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "34720ab6", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribucion Normal\n", + "Media: -0.0633\n", + "Mediana: -0.0275\n", + "Desviación estándar: 0.9305\n", + "Varianza: 0.8659\n", + "Mínimo: -2.9169\n", + "Máximo: 2.0706\n", + "None\n", + "\n", + "Distribucion Chi-Cuadrado\n", + "Media: 2.8621\n", + "Mediana: 2.0939\n", + "Desviación estándar: 2.4748\n", + "Varianza: 6.1247\n", + "Mínimo: 0.0704\n", + "Máximo: 13.2238\n", + "None\n" + ] + } + ], "source": [ - "# TODO" + "import numpy as np\n", + "\n", + "# Generación de datos con distribuciones\n", + "distribucion_normal = np.random.normal(size=100)\n", + "distribucion_chi_square = np.random.chisquare(df=3, size=100)\n", + "\n", + "# Cálculo de Medidas de tendencia \n", + "def medidas_estadisticas(datos):\n", + " #print(f\"\\nEstadísticas para {name}:\")\n", + " print(f\"Media: {np.mean(datos):.4f}\")\n", + " print(f\"Mediana: {np.median(datos):.4f}\")\n", + " print(f\"Desviación estándar: {np.std(datos):.4f}\")\n", + " print(f\"Varianza: {np.var(datos):.4f}\")\n", + " print(f\"Mínimo: {np.min(datos):.4f}\")\n", + " print(f\"Máximo: {np.max(datos):.4f}\")\n", + "\n", + "print(\"Distribucion Normal\")\n", + "print(medidas_estadisticas(distribucion_normal))\n", + "print(\"\\nDistribucion Chi-Cuadrado\")\n", + "print(medidas_estadisticas(distribucion_chi_square))" ] }, { @@ -48,21 +91,52 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "id": "d590308e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Desviación estándar con funcion: 2.00\n", + "Desviación estándar con metodo np.std: 2.00\n" + ] + } + ], "source": [ - "# TODO" + "datos = [4, 2, 5, 8, 6]\n", + "\n", + "#Calculo de la media\n", + "def media(data):\n", + " n = len(data)\n", + " return sum(data)/n\n", + "\n", + "#Funcion para calcular Desviacion Estandar\n", + "def desviacion_std(data):\n", + " promedio = media(data)\n", + "\n", + " #Calculo de varianza\n", + " resta_al_cuadrado = [(x - promedio) ** 2 for x in datos]\n", + " varianza = sum(resta_al_cuadrado)/len(data)\n", + " \n", + " #Cálculo de la desviación estándar\n", + " desviacion = np.sqrt(varianza)\n", + "\n", + " return desviacion\n", + "\n", + "print(f\"Desviación estándar con funcion: {desviacion_std(datos):.2f}\") \n", + "\n", + "def desviacion_estándar(datos):\n", + " return np.std(datos, ddof=0) \n", + "\n", + "print(f\"Desviación estándar con metodo np.std: {desviacion_estándar(datos):.2f}\") " ] } ], "metadata": { - "interpreter": { - "hash": "9248718ffe6ce6938b217e69dbcc175ea21f4c6b28a317e96c05334edae734bb" - }, "kernelspec": { - "display_name": "Python 3.9.12 ('ML-BOOTCAMP')", + "display_name": ".venv", "language": "python", "name": "python3" },