|
| 1 | +import torchax.interop |
| 2 | +from torchprime.experimental.torchax_models.inference.llama_run import model |
| 3 | +import torch |
| 4 | +import torchax |
| 5 | +import torchax.config |
| 6 | +import jax |
| 7 | +import time |
| 8 | + |
| 9 | +env = torchax.default_env() |
| 10 | +torch.manual_seed(42) |
| 11 | +torch.set_default_dtype(torch.bfloat16) |
| 12 | +torchax.enable_performance_mode() |
| 13 | + |
| 14 | +max_seq_len = 512 # 8192 |
| 15 | +vocab_size = 128 # 32000 |
| 16 | +n_layer = 1 |
| 17 | +n_heads = 4 |
| 18 | +dim = 8 |
| 19 | +block_size = 16 # 2048 |
| 20 | +batch_size = 1 |
| 21 | + |
| 22 | + |
| 23 | +def fake_dataloader(size, vocab_size, seqlen, batch_size): |
| 24 | + for _ in range(size): |
| 25 | + x = torch.randint(0, vocab_size, (batch_size, seqlen), device="cpu") |
| 26 | + yield x |
| 27 | + |
| 28 | + |
| 29 | +if __name__ == "__main__": |
| 30 | + with torch.no_grad(): |
| 31 | + input = torch.randint(0, vocab_size, (1, max_seq_len)) |
| 32 | + model_args = model.ModelArgs( |
| 33 | + block_size=block_size, |
| 34 | + vocab_size=vocab_size, |
| 35 | + n_layer=n_layer, |
| 36 | + n_heads=n_heads, |
| 37 | + dim=dim, |
| 38 | + max_seq_len=max_seq_len, |
| 39 | + ) |
| 40 | + freqs_cis = model.precompute_freqs_cis( |
| 41 | + model_args.dim // model_args.n_heads, |
| 42 | + model_args.max_seq_len, |
| 43 | + model_args.rope_theta, |
| 44 | + model_args.use_scaled_rope, |
| 45 | + ).to(torch.bfloat16) |
| 46 | + m = model.Transformer(model_args) |
| 47 | + m.to(torch.bfloat16) |
| 48 | + |
| 49 | + # TODO: move weight as arguemts of forward |
| 50 | + def forward(input, freqs_cis, mask): |
| 51 | + return m(input, 0, freqs_cis=freqs_cis, mask=mask) |
| 52 | + |
| 53 | + jitted_forward = torchax.interop.jax_jit(forward) |
| 54 | + |
| 55 | + data_iter = fake_dataloader(5, vocab_size, max_seq_len, batch_size) |
| 56 | + with env: |
| 57 | + m.to("jax") |
| 58 | + freqs_cis = freqs_cis.to("jax") |
| 59 | + for i, input in enumerate(data_iter): |
| 60 | + input = input.to("jax") |
| 61 | + mask = torch.ones_like(input) |
| 62 | + step_start = time.perf_counter() |
| 63 | + output = jitted_forward(input, freqs_cis, mask) |
| 64 | + jax.block_until_ready(torchax.tensor.t2j(output)) |
| 65 | + step_end = time.perf_counter() |
| 66 | + print( |
| 67 | + i, |
| 68 | + "step latency: ", |
| 69 | + step_end - step_start, |
| 70 | + ) |
0 commit comments