Skip to content

Commit 3b41733

Browse files
Merge pull request #500 from DataverseLabs/499-inconsistency-of-api-with-the-ecosystem
499 inconsistency of api with the ecosystem
2 parents 1547294 + f9f1d6b commit 3b41733

File tree

277 files changed

+18768
-9590
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

277 files changed

+18768
-9590
lines changed

CHANGELOG.rst

Lines changed: 39 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,45 @@
11
Changes - from version >= 1.x
22
=============================
33

4+
2025-11-0
5+
----------
6+
7+
**version 1.2.0**
8+
9+
* [enhancement] `Blocks` has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
10+
* [enhancement] `calculate_semivariance()` function has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
11+
* [enhancement] `interpolate_points()` function has the new parameters `known_values` and `known_geometries`, that might be provided instead of the `known_locations` parameter
12+
* [enhancement] `validate_kriging()` function has the new parameters `known_values` and `known_geometries`, that might be provided instead of the `known_locations` parameter
13+
* [enhancement] `validate_kriging()` has new parameter: `progress_bar` that controls `tqdm` progress bar
14+
* [enhancement] `inverse_distance_weighting()` function has the new parameters `known_values` and `known_geometries`, that might be provided instead of the `known_locations` parameter
15+
* [enhancement] `IndicatorKriging` class has the new parameters `known_values` and `known_geometries`, that might be provided instead of the `known_locations` parameter
16+
* [enhancement] `ordinary_kriging()` function has the new parameters `known_values` and `known_geometries`, that might be provided instead of the `known_locations` parameter
17+
* [enhancement] `simple_kriging()` function has the new parameters `known_values` and `known_geometries`, that might be provided instead of the `known_locations` parameter
18+
* [enhancement] `UniversalKriging` class has the new parameters `known_values` and `known_geometries`, that might be provided instead of the `known_locations` parameter
19+
* [api change] `inblock_semivariance()` function is now private: `_inblock_semivariance()`
20+
* [enhancement] `DirectionalVariogram()` class has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
21+
* [tests] Added basic tests for `DirectionalVariogram()` class
22+
* [enhancement] `ExperimentalVariogram()` class has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
23+
* [tests] Added basic tests for `ExperimentalVariogram()` class
24+
* [enhancement] `build_experimental_variogram()` function has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
25+
* [tests] Added basic tests for `build_experimental_variogram()` function
26+
* [enhancement] `VariogramCloud()` class has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
27+
* [api change] `directional_weighted_semivariance()` function is now private: `_directional_weighted_semivariance()`
28+
* [api change] `omnidirectional_variogram()` function is now private: `_omnidirectional_variogram()`
29+
* [api change] `omnidirectional_semivariogram_cloud()` function is now private: `_omnidirectional_semivariogram_cloud()`
30+
* [enhancement] `calculate_covariance()` function has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
31+
* [api change] `directional_covariance()` function is now private: `_directional_covariance()`
32+
* [api change] `omnidirectional_covariance()` function is now private: `_omnidirectional_covariance()`
33+
* [api change] `directional_semivariance()` function is now private: `_directional_semivariance()`
34+
* [api change] `directional_semivariance_cloud()` function is now private: `_directional_semivariance_cloud()`
35+
* [api change] `omnidirectional_semivariance()` function is now private: `_omnidirectional_semivariance()`
36+
* [enhancement] `point_cloud_semivariance()` function has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
37+
* [enhancement] `code_indicator()` function has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
38+
* [enhancement] `ExperimentalIndicatorVariogram` and `IndicatorVariogramData` classes have the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
39+
* [enhancement] `PointSupport` has the new parameters `values` and `geometries`, that might be provided instead of `ds` parameter
40+
* [docs] updated tutorials - new parameters are used in kriging operations, and when experimental variogram is computed
41+
* # todo [docs] docstring examples - all user-facing API endpoints has examples in docstrings, using new input types (values | geometries)
42+
443
2025-10-11
544
----------
645

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
![JOSS](https://joss.theoj.org/papers/3f87f562264c4e5174d9e6ed6d8812aa/status.svg) [![License](https://img.shields.io/badge/License-BSD_2--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause) ![Documentation Status](https://readthedocs.org/projects/pyinterpolate/badge/?version=latest) [![CodeFactor](https://www.codefactor.io/repository/github/dataverselabs/pyinterpolate/badge)](https://www.codefactor.io/repository/github/dataverselabs/pyinterpolate)
22

3-
[![Run Unit Test via Pytest](https://github.com/DataverseLabs/pyinterpolate/actions/workflows/python-install-and-test-on-linux-always.yml/badge.svg)](https://github.com/DataverseLabs/pyinterpolate/actions/workflows/python-install-and-test-on-linux-always.yml) [![CodeQL](https://github.com/DataverseLabs/pyinterpolate/actions/workflows/github-code-scanning/codeql/badge.svg)](https://github.com/DataverseLabs/pyinterpolate/actions/workflows/github-code-scanning/codeql) ![Tests Coverage](https://github.com/DataverseLabs/pyinterpolate/blob/main/coverage.svg)
3+
[![Run Unit Test via Pytest](https://github.com/DataverseLabs/pyinterpolate/actions/workflows/python-install-and-test-on-linux-always.yml/badge.svg)](https://github.com/DataverseLabs/pyinterpolate/actions/workflows/python-install-and-test-on-linux-always.yml) [![CodeQL](https://github.com/DataverseLabs/pyinterpolate/actions/workflows/github-code-scanning/codeql/badge.svg)](https://github.com/DataverseLabs/pyinterpolate/actions/workflows/github-code-scanning/codeql) ![Tests Coverage](https://raw.githubusercontent.com/DataverseLabs/pyinterpolate/6a18f86ab3927e48009107e7eda7d6c833a4a610/coverage.svg)
44

55

66

@@ -10,7 +10,7 @@
1010

1111
**version 1.1.0**
1212

13-
![Logo](pyinterpolate-banner.png)
13+
![Logo](https://raw.githubusercontent.com/DataverseLabs/pyinterpolate/refs/heads/main/pyinterpolate-banner.png)
1414

1515
## Important notice
1616

@@ -113,7 +113,7 @@ print(prediction) # [predicted, variance error, lon, lat]
113113

114114
With Pyinterpolate you can analyze and transform aggregated data. Here is the example of spatial disaggregation of areal data into point support using Poisson Kriging:
115115

116-
![Example use case](fig1_example.png)
116+
![Example use case](https://raw.githubusercontent.com/DataverseLabs/pyinterpolate/refs/heads/main/fig1_example.png)
117117

118118
## Status
119119

dev/profile/semivariogram/experimental/profile_from_ellipse_weighted.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
import numpy as np
22
from pyinterpolate.semivariogram.experimental.functions.directional import \
3-
directional_weighted_semivariance
3+
_directional_weighted_semivariance
44

55

66
def profile_select_in_ellipse():
@@ -9,7 +9,7 @@ def profile_select_in_ellipse():
99
step_size = 0.05
1010
max_range = 0.6
1111

12-
_ = directional_weighted_semivariance(
12+
_ = _directional_weighted_semivariance(
1313
points=points,
1414
lags=np.linspace(step_size, max_range, 10),
1515
custom_weights=weights,
52.6 KB
Binary file not shown.
89.7 KB
Binary file not shown.
36.6 KB
Binary file not shown.
43.3 KB
Binary file not shown.
129 KB
Binary file not shown.
228 KB
Binary file not shown.
33.9 KB
Binary file not shown.

0 commit comments

Comments
 (0)