-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
I have successfully written a command line script based on your notebook and matched the results. Now I am trying to use a save container model created on GCP. I see several difference from your saved model. If I do this on your model I get the following results
saved_model_cli show --dir $PWD --tag_set serve --signature_def serving_default --list_ops
The MetaGraph with tag set ['serve'] contains the following ops: {'Pack', 'VarHandleOp', 'Identity', 'NoOp', 'Mul', 'BiasAdd', 'AssignVariableOp', 'ReadVariableOp', 'AddV2', 'StatefulPartitionedCall', 'Select', 'Shape', 'Softmax', 'StringJoin', 'DepthwiseConv2dNative', 'Reshape', 'Const', 'AvgPool', 'Relu6', 'MergeV2Checkpoints', 'Placeholder', 'Sub', 'Conv2D', 'ShardedFilename', 'RestoreV2', 'StaticRegexFullMatch', 'SaveV2', 'Squeeze', 'FusedBatchNormV3'}
The given SavedModel SignatureDef contains the following input(s):
inputs['inputs'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 224, 224, 3)
name: serving_default_inputs:0
The given SavedModel SignatureDef contains the following output(s):
outputs['logits'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1001)
name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict
If I do on the GCP container saved model I get
The MetaGraph with tag set ['serve'] contains the following ops: {'Placeholder', 'Tile', 'Enter', 'LogicalAnd', 'Relu', 'Cast', 'TensorArrayReadV3', 'DepthwiseConv2dNative', 'TensorArrayWriteV3', 'Conv2D', 'NoOp', 'TensorArrayV3', 'LoopCond', 'ExpandDims', 'Slice', 'Const', 'Softmax', 'Shape', 'Rsqrt', 'FakeQuantWithMinMaxVars', 'ResizeBilinear', 'TensorArrayScatterV3', 'MatMul', 'Switch', 'Squeeze', 'Reshape', 'AddV2', 'Range', 'Merge', 'Mean', 'Exit', 'Identity', 'Mul', 'BiasAdd', 'Sub', 'Less', 'Pack', 'TensorArrayGatherV3', 'DecodeJpeg', 'NextIteration', 'RealDiv', 'StridedSlice'}
The given SavedModel SignatureDef contains the following input(s):
inputs['image_bytes'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: Placeholder:0
inputs['key'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: Placeholder_1:0
The given SavedModel SignatureDef contains the following output(s):
outputs['key'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: Identity:0
outputs['labels'] tensor_info:
dtype: DT_STRING
shape: (-1, 2)
name: Tile:0
outputs['scores'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 2)
name: scores:0
Method name is: tensorflow/serving/predict
I don't get a preferred size and I don't see a tag StatefulPartitionedCall which I think is making these calls die
my %ops = (
in => $graph->OperationByName('serving_default_inputs'),
out => $graph->OperationByName('StatefulPartitionedCall'),
);
Any ideas?
Metadata
Metadata
Assignees
Labels
No labels