Skip to content

tags #22

@pjfalbe

Description

@pjfalbe

I have successfully written a command line script based on your notebook and matched the results. Now I am trying to use a save container model created on GCP. I see several difference from your saved model. If I do this on your model I get the following results

saved_model_cli show --dir $PWD --tag_set serve --signature_def serving_default --list_ops

The MetaGraph with tag set ['serve'] contains the following ops: {'Pack', 'VarHandleOp', 'Identity', 'NoOp', 'Mul', 'BiasAdd', 'AssignVariableOp', 'ReadVariableOp', 'AddV2', 'StatefulPartitionedCall', 'Select', 'Shape', 'Softmax', 'StringJoin', 'DepthwiseConv2dNative', 'Reshape', 'Const', 'AvgPool', 'Relu6', 'MergeV2Checkpoints', 'Placeholder', 'Sub', 'Conv2D', 'ShardedFilename', 'RestoreV2', 'StaticRegexFullMatch', 'SaveV2', 'Squeeze', 'FusedBatchNormV3'}
The given SavedModel SignatureDef contains the following input(s):
  inputs['inputs'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 224, 224, 3)
      name: serving_default_inputs:0
The given SavedModel SignatureDef contains the following output(s):
  outputs['logits'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 1001)
      name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict

If I do on the GCP container saved model I get

The MetaGraph with tag set ['serve'] contains the following ops: {'Placeholder', 'Tile', 'Enter', 'LogicalAnd', 'Relu', 'Cast', 'TensorArrayReadV3', 'DepthwiseConv2dNative', 'TensorArrayWriteV3', 'Conv2D', 'NoOp', 'TensorArrayV3', 'LoopCond', 'ExpandDims', 'Slice', 'Const', 'Softmax', 'Shape', 'Rsqrt', 'FakeQuantWithMinMaxVars', 'ResizeBilinear', 'TensorArrayScatterV3', 'MatMul', 'Switch', 'Squeeze', 'Reshape', 'AddV2', 'Range', 'Merge', 'Mean', 'Exit', 'Identity', 'Mul', 'BiasAdd', 'Sub', 'Less', 'Pack', 'TensorArrayGatherV3', 'DecodeJpeg', 'NextIteration', 'RealDiv', 'StridedSlice'}
The given SavedModel SignatureDef contains the following input(s):
  inputs['image_bytes'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: Placeholder:0
  inputs['key'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: Placeholder_1:0
The given SavedModel SignatureDef contains the following output(s):
  outputs['key'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: Identity:0
  outputs['labels'] tensor_info:
      dtype: DT_STRING
      shape: (-1, 2)
      name: Tile:0
  outputs['scores'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 2)
      name: scores:0
Method name is: tensorflow/serving/predict

I don't get a preferred size and I don't see a tag StatefulPartitionedCall which I think is making these calls die

my %ops = (
    in  => $graph->OperationByName('serving_default_inputs'),
    out => $graph->OperationByName('StatefulPartitionedCall'),
);

Any ideas?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions