-
Notifications
You must be signed in to change notification settings - Fork 394
Description
Overview
Create a comprehensive MCP Server for IBM Granite Speech Models supporting speech recognition, translation, synthesis, and audio processing with multi-language capabilities and enterprise-grade features.
Server Specifications
Server Details
- Name:
granite-speech-server - Language: Python 3.11+
- Location:
mcp-servers/python/granite_speech_server/ - Purpose: Provide access to IBM Granite speech models via MCP
Supported Models
From IBM Granite Speech on Hugging Face:
- Speech Recognition: granite-speech-asr-en, granite-whisper-multilingual
- Translation: granite-speech-translate-en-es, granite-speech-translate-en-fr
- Synthesis: granite-speech-tts-v1, granite-voice-cloning
- Processing: granite-speech-enhancement, granite-audio-classification
Language Support
English to 7+ languages: Spanish, French, German, Italian, Portuguese, Japanese, Chinese
Provider Support
- Ollama: Local inference with speech models
- watsonx.ai: IBM's enterprise speech services
- Hugging Face: Direct access to speech transformers
- Custom Endpoints: Flexible audio API integration
Tools Provided
1. transcribe_audio
Speech-to-text transcription with language detection
@dataclass
class TranscriptionRequest:
audio_data: str # base64, file path, or URL
model: str = "granite-speech-asr-en"
provider: str = "ollama"
language: str = "auto" # auto-detect or specify
enable_timestamps: bool = True
speaker_diarization: bool = False
noise_reduction: bool = True
output_format: str = "text" # text, srt, vtt, json2. translate_speech
Real-time speech translation between languages
@dataclass
class SpeechTranslationRequest:
audio_data: str
model: str = "granite-speech-translate-en-es"
provider: str = "watsonx"
source_language: str = "en"
target_language: str = "es"
preserve_speaker_style: bool = True
include_confidence: bool = True
streaming: bool = False3. synthesize_speech
Text-to-speech synthesis with voice customization
@dataclass
class SpeechSynthesisRequest:
text: str
model: str = "granite-speech-tts-v1"
provider: str = "huggingface"
voice: str = "default" # voice profile
language: str = "en"
speed: float = 1.0
pitch: float = 1.0
emotion: str = "neutral" # neutral, happy, sad, excited
output_format: str = "wav" # wav, mp3, ogg4. enhance_audio
Audio enhancement and noise reduction
@dataclass
class AudioEnhancementRequest:
audio_data: str
model: str = "granite-speech-enhancement"
provider: str = "ollama"
enhancement_type: str = "denoise" # denoise, enhance, normalize, amplify
preserve_speech: bool = True
aggressive_filtering: bool = False
output_quality: str = "high" # low, medium, high5. detect_language
Audio language identification and classification
@dataclass
class LanguageDetectionRequest:
audio_data: str
model: str = "granite-audio-classification"
provider: str = "watsonx"
confidence_threshold: float = 0.8
return_all_probabilities: bool = False
segment_analysis: bool = False # Analyze segments for language switching6. analyze_speaker
Speaker identification and voice characteristics
@dataclass
class SpeakerAnalysisRequest:
audio_data: str
model: str = "granite-audio-classification"
provider: str = "huggingface"
analysis_type: str = "speaker_id" # speaker_id, emotion, gender, age
reference_speakers: Optional[List[str]] = None
include_embeddings: bool = False7. real_time_transcription
Streaming audio transcription and processing
@dataclass
class StreamingTranscriptionRequest:
audio_stream: str # streaming audio source
model: str = "granite-speech-asr-en"
provider: str = "ollama"
chunk_duration: float = 2.0 # seconds
overlap_duration: float = 0.5
language: str = "auto"
live_translation: Optional[str] = None # target language8. batch_audio_processing
Efficient batch processing of multiple audio files
@dataclass
class BatchAudioRequest:
audio_files: List[str]
model: str = "granite-speech-asr-en"
provider: str = "watsonx"
processing_type: str = "transcribe" # transcribe, translate, enhance, analyze
parallel_processing: bool = True
max_concurrent: int = 4
output_format: str = "json"Implementation Requirements
Directory Structure
mcp-servers/python/granite_speech_server/
├── src/
│ └── granite_speech_server/
│ ├── __init__.py
│ ├── server.py
│ ├── providers/
│ │ ├── __init__.py
│ │ ├── ollama_speech.py
│ │ ├── watsonx_speech.py
│ │ ├── huggingface_speech.py
│ │ └── streaming_client.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── granite_speech_models.py
│ │ └── language_models.py
│ ├── processing/
│ │ ├── __init__.py
│ │ ├── audio_processor.py
│ │ ├── transcription.py
│ │ ├── translation.py
│ │ ├── synthesis.py
│ │ └── enhancement.py
│ ├── tools/
│ │ ├── __init__.py
│ │ ├── speech_recognition.py
│ │ ├── speech_translation.py
│ │ ├── text_to_speech.py
│ │ └── audio_analysis.py
│ └── utils/
│ ├── __init__.py
│ ├── audio_utils.py
│ ├── format_converters.py
│ └── streaming_utils.py
├── tests/
├── requirements.txt
├── README.md
└── examples/
├── transcription_example.py
├── translation_example.py
└── real_time_processing.py
Dependencies
# requirements.txt
mcp>=1.0.0
transformers>=4.35.0
torch>=2.1.0
torchaudio>=2.1.0
librosa>=0.10.0
soundfile>=0.12.1
pyaudio>=0.2.11
speechrecognition>=3.10.0
pydub>=0.25.1
webrtcvad>=2.0.10
requests>=2.31.0
pydantic>=2.5.0
ollama>=0.1.7
ibm-watson>=7.0.0
numpy>=1.24.0
scipy>=1.11.0Configuration
# config.yaml
providers:
ollama:
base_url: "http://localhost:11434"
speech_models_enabled: true
timeout: 300
watsonx:
url: "https://api.us-south.speech-to-text.watson.cloud.ibm.com"
apikey: "${WATSONX_SPEECH_API_KEY}"
region: "us-south"
huggingface:
api_key: "${HF_API_KEY}"
cache_dir: "./hf_speech_cache"
device: "auto"
models:
default_asr: "granite-speech-asr-en"
default_translation: "granite-speech-translate-en-es"
default_tts: "granite-speech-tts-v1"
default_enhancement: "granite-speech-enhancement"
audio:
sample_rate: 16000
channels: 1
max_file_size: "100MB"
supported_formats: ["wav", "mp3", "ogg", "flac", "m4a"]
temp_dir: "./temp_audio"
chunk_size: 1024
processing:
enable_gpu: true
max_concurrent_requests: 6
streaming_buffer_size: 4096
silence_threshold: 0.01
languages:
supported: ["en", "es", "fr", "de", "it", "pt", "ja", "zh"]
auto_detection: true
confidence_threshold: 0.7Usage Examples
Audio Transcription
# Transcribe audio file to text
result = await mcp_client.call_tool("transcribe_audio", {
"audio_data": "./meeting_recording.wav",
"model": "granite-speech-asr-en",
"provider": "ollama",
"language": "auto",
"enable_timestamps": True,
"speaker_diarization": True,
"output_format": "srt"
})Speech Translation
# Translate speech from English to Spanish
result = await mcp_client.call_tool("translate_speech", {
"audio_data": "data:audio/wav;base64,UklGRnoGAABXQVZFZm10IBAAAAABAAEA...",
"model": "granite-speech-translate-en-es",
"provider": "watsonx",
"source_language": "en",
"target_language": "es",
"include_confidence": True
})Text-to-Speech Synthesis
# Convert text to natural speech
result = await mcp_client.call_tool("synthesize_speech", {
"text": "Welcome to our multilingual customer service. How may I help you today?",
"model": "granite-speech-tts-v1",
"provider": "huggingface",
"voice": "professional_female",
"language": "en",
"emotion": "friendly",
"output_format": "mp3"
})Real-time Processing
# Real-time speech transcription
result = await mcp_client.call_tool("real_time_transcription", {
"audio_stream": "rtmp://live.example.com/stream",
"model": "granite-speech-asr-en",
"provider": "ollama",
"chunk_duration": 2.0,
"language": "auto",
"live_translation": "es"
})Audio Enhancement
# Enhance audio quality
result = await mcp_client.call_tool("enhance_audio", {
"audio_data": "./noisy_recording.wav",
"model": "granite-speech-enhancement",
"provider": "watsonx",
"enhancement_type": "denoise",
"preserve_speech": True,
"output_quality": "high"
})Batch Processing
# Process multiple audio files
result = await mcp_client.call_tool("batch_audio_processing", {
"audio_files": [
"./audio1.wav",
"./audio2.mp3",
"./audio3.flac"
],
"model": "granite-speech-asr-en",
"provider": "ollama",
"processing_type": "transcribe",
"parallel_processing": True,
"output_format": "json"
})Advanced Features
- Real-time Streaming: Live audio processing and transcription
- Speaker Diarization: Multi-speaker identification and separation
- Emotion Recognition: Detect emotional states in speech
- Voice Cloning: Custom voice synthesis from samples
- Audio Fingerprinting: Content identification and matching
- Noise Cancellation: Advanced audio enhancement
Enterprise Features
- High Accuracy Models: Enterprise-optimized speech recognition
- Custom Vocabulary: Domain-specific terminology support
- Compliance: SOX, GDPR compliance for audio data
- Scalability: Handle high-volume audio processing
- Integration: APIs for call center and meeting platforms
- Security: Encrypted audio processing and storage
Performance Optimizations
- GPU Acceleration: CUDA support for faster processing
- Streaming Architecture: Minimize latency for real-time applications
- Model Quantization: Optimized models for deployment
- Caching: Intelligent caching of processed audio segments
- Batch Processing: Efficient multi-file processing
Acceptance Criteria
- Python MCP server with 8+ Granite speech model tools
- Support for all major Granite speech models
- Multi-provider integration (Ollama, watsonx.ai, Hugging Face)
- Speech recognition with multi-language support
- Speech translation capabilities (English to 7+ languages)
- Text-to-speech synthesis with voice customization
- Real-time streaming audio processing
- Audio enhancement and noise reduction
- Batch processing for efficiency
- Multi-format audio support
- Comprehensive test suite with sample audio (>90% coverage)
- Complete documentation with speech processing examples
Priority
High - Demonstrates IBM's advanced speech AI capabilities via MCP
Use Cases
- Multilingual customer service and support
- Real-time meeting transcription and translation
- Voice-enabled applications and assistants
- Audio content accessibility and processing
- Call center analytics and quality monitoring
- Language learning and pronunciation tools
- Audio content localization and dubbing
- Voice biometrics and speaker verification