Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 15 additions & 3 deletions trainer/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
from PIL import Image
import numpy as np
from torch.utils.data import Dataset, ConcatDataset, Subset
from torch._utils import _accumulate
import torchvision.transforms as transforms

def contrast_grey(img):
Expand All @@ -27,6 +26,19 @@ def adjust_contrast_grey(img, target = 0.4):
img = np.maximum(np.full(img.shape, 0) ,np.minimum(np.full(img.shape, 255), img)).astype(np.uint8)
return img

def _accumulate(iterable, fn=lambda x, y: x + y):
"Return running totals"
# _accumulate([1,2,3,4,5]) --> 1 3 6 10 15
# _accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
it = iter(iterable)
try:
total = next(it)
except StopIteration:
return
yield total
for element in it:
total = fn(total, element)
yield total

class Batch_Balanced_Dataset(object):

Expand Down Expand Up @@ -98,12 +110,12 @@ def get_batch(self):

for i, data_loader_iter in enumerate(self.dataloader_iter_list):
try:
image, text = data_loader_iter.next()
image, text = next(data_loader_iter)
balanced_batch_images.append(image)
balanced_batch_texts += text
except StopIteration:
self.dataloader_iter_list[i] = iter(self.data_loader_list[i])
image, text = self.dataloader_iter_list[i].next()
image, text = next(self.dataloader_iter_list[i])
balanced_batch_images.append(image)
balanced_batch_texts += text
except ValueError:
Expand Down
38 changes: 38 additions & 0 deletions trainer/trainer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
import os

import pandas as pd
import torch.backends.cudnn as cudnn
import yaml
from train import train
from utils import AttrDict

cudnn.benchmark = True
cudnn.deterministic = False


def get_config(file_path):
with open(file_path, 'r', encoding="utf8") as stream:
opt = yaml.safe_load(stream)
opt = AttrDict(opt)
if opt.lang_char == 'None':
characters = ''
for data in opt['select_data'].split('-'):
csv_path = os.path.join(opt['train_data'], data, 'labels.csv')
df = pd.read_csv(csv_path, sep='^([^,]+),', engine='python',
usecols=['filename', 'words'], keep_default_na=False)
all_char = ''.join(df['words'])
characters += ''.join(set(all_char))
characters = sorted(set(characters))
opt.character = ''.join(characters)
else:
opt.character = opt.number + opt.symbol + opt.lang_char
os.makedirs(f'./saved_models/{opt.experiment_name}', exist_ok=True)
return opt


if __name__ == "__main__":
opt = get_config("config_files/en_filtered_config.yaml")
for item in opt.items():
print(item)
print("Training started...")
train(opt, amp=False)