|
86 | 86 | getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, K::BlockIndex{1}) = S[SphericalCoordinate(x), K] |
87 | 87 | getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, K::Block{1}) = S[x, axes(S,2)[K]] |
88 | 88 | getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, KR::BlockOneTo) = mortar([S[x, K] for K in KR]) |
89 | | -getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, k::Int) = S[x, findblockindex(axes(S,2), k)] |
90 | 89 | getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, kr::AbstractUnitRange{Int}) = [S[x, k] for k in kr] |
91 | 90 |
|
92 | 91 | # @simplify *(Ac::QuasiAdjoint{<:Any,<:SphericalHarmonic}, B::SphericalHarmonic) = |
@@ -128,9 +127,6 @@ RealSphericalHarmonicTransform{T}(N::Int) where T<:Real = RealSphericalHarmonicT |
128 | 127 | plan_transform(P::SphericalHarmonic{T}, (N,)::Tuple{Block{1}}, dims=1) where T = SphericalHarmonicTransform{T}(Int(N)) |
129 | 128 | plan_transform(P::RealSphericalHarmonic{T}, (N,)::Tuple{Block{1}}, dims=1) where T = RealSphericalHarmonicTransform{T}(Int(N)) |
130 | 129 |
|
131 | | -grid(P::MultivariateOrthogonalPolynomial, n::Int) = grid(P, findblock(axes(P,2),n)) |
132 | | -plan_transform(P::MultivariateOrthogonalPolynomial, Bs::NTuple{N,Int}, dims=ntuple(identity,Val(N))) where N = plan_transform(P, findblock.(Ref(axes(P,2)), Bs), dims) |
133 | | - |
134 | 130 | function _sum(A::AbstractSphericalHarmonic{T}, dims) where T |
135 | 131 | @assert dims == 1 |
136 | 132 | BlockedArray(Hcat(sqrt(4convert(T, π)), Zeros{T}(1,∞)), (Base.OneTo(1),axes(A,2))) |
|
0 commit comments