diff --git a/docs/StardustDocs/d.tree b/docs/StardustDocs/d.tree
index b5188a5693..e23c9b7d11 100644
--- a/docs/StardustDocs/d.tree
+++ b/docs/StardustDocs/d.tree
@@ -9,6 +9,7 @@
+
diff --git a/docs/StardustDocs/topics/guides/migratingFromPandas.md b/docs/StardustDocs/topics/guides/migratingFromPandas.md
new file mode 100644
index 0000000000..564ad21613
--- /dev/null
+++ b/docs/StardustDocs/topics/guides/migratingFromPandas.md
@@ -0,0 +1,238 @@
+# Migration Guide: Pandas to Kotlin DataFrame
+
+
+Quickly transition from Pandas to Kotlin DataFrame: load your datasets, perform essential transformations, and visualize your results — directly within a Kotlin Notebook.
+
+
+
+Switching from Pandas? Kotlin DataFrame makes it easy to load, process, analyze, and visualize your data — fully interactive and type-safe!
+
+
+
+Explore Kotlin DataFrame as a Pandas user: read your data, transform columns, group or join tables, and build insightful visualizations with Kotlin Notebook.
+
+
+This guide helps Pandas users easily transition to **Kotlin DataFrame**, translating common tasks from Python/Pandas into Kotlin DataFrame operations.
+
+We recommend [starting with **Kotlin Notebook**](gettingStartedKotlinNotebook.md) for the best beginner experience.
+It's similar to Jupyter Notebook, but built directly into your IDE.
+You can use IDE features, include it in your Gradle or Maven project, and work comfortably within the JVM ecosystem.
+It also provides interactive data exploration, DataFrame rendering, and plotting out of the box.
+
+
+
+## Quick Setup
+
+To start working with Kotlin DataFrame in a Kotlin Notebook, run the cell with the next code:
+
+```kotlin
+%useLatestDescriptors
+%use dataframe
+```
+
+This will load all necessary DataFrame dependencies (of the latest stable version) and all imports, as well as DataFrame
+rendering. Learn more [here](gettingStartedKotlinNotebook.md#integrate-kotlin-dataframe).
+
+---
+
+## Essential Kotlin Basics
+
+### Variables
+- Use `val` to define variables that cannot change after initialization.
+- Use `var` for variables that can be reassigned.
+
+### Lambdas
+- Lambdas (`{ it.column > 0 }`) are compact functions used extensively for filtering and transformations.
+- `it` refers to the current row or element in a DataFrame context.
+
+### Nullability
+- Kotlin uses explicit nullability (`String?` means the value can be null).
+- Kotlin DataFrame safely handles missing data by clearly marking nullable types.
+
+### Method Chaining
+- Kotlin DataFrame methods return new dataframes, not modifying the original.
+- This functional approach encourages cleaner, safer pipelines.
+
+---
+
+## Loading Data
+
+| Task | Pandas | Kotlin DataFrame |
+|------------------|---------------------------------------------|------------------------------------------------|
+| Load CSV | `pd.read_csv("data.csv")` | `DataFrame.readCSV("data.csv")` |
+| Load JSON | `pd.read_json("data.json")` | `DataFrame.readJSON("data.json")` |
+| Load from SQL | `pd.read_sql("SELECT * FROM table", conn)` | `DataFrame.readSqlTable("table", jdbcUrl)` |
+| Load from Arrow | `pd.read_feather("data.arrow")` | `DataFrame.readArrow("data.arrow")` |
+
+---
+
+## Inspecting Data
+
+| Task | Pandas | Kotlin DataFrame |
+|-------------------|------------------------|---------------------|
+| Preview rows | `df.head()` | `df.head()` |
+| Get shape | `df.shape` | `df.nrow`, `df.ncol`|
+| Column types | `df.dtypes` | `df.schema()` |
+| Count missing | `df.isnull().sum()` | `df.na.count()` |
+
+---
+
+## Selecting Data
+
+| Task | Pandas | Kotlin DataFrame |
+|---------------------|-----------------------|---------------------------------|
+| Select single col | `df["col"]` | `df["col"]` or `df.col` |
+| Multiple columns | `df[["a", "b"]]` | `df.select { a and b }` |
+| Filter rows | `df[df.a > 10]` | `df.filter { a > 10 }` |
+
+---
+
+## Transforming Data
+
+| Task | Pandas | Kotlin DataFrame |
+|--------------------|-------------------------------------|--------------------------------------|
+| Add column | `df["c"] = df.a + df.b` | `df.add("c") { a + b }` |
+| Modify column | `df["a"] = df["a"] * 100` | `df.update { a from { it * 100 } }` |
+| Rename column | `df.rename(columns={"old":"new"})` | `df.rename { "old" to "new" }` |
+| Drop column | `df.drop("col", axis=1)` | `df.remove("col")` |
+
+---
+
+## Grouping and Aggregation
+
+| Task | Pandas | Kotlin DataFrame |
+|--------------------------|---------------------------------------|------------------------------------------|
+| Group & sum | `df.groupby("col").sum()` | `df.groupBy { col }.aggregate { sum() }` |
+| Multiple aggregations | `agg({"a":"mean","b":"sum"})` | `aggregate { mean(a) and sum(b) }` |
+
+---
+
+## Joining DataFrames
+
+| Task | Pandas | Kotlin DataFrame |
+|-------------------|-----------------------------------|-------------------------------------|
+| Inner join | `df1.merge(df2, on="id")` | `df1.join(df2, by = "id")` |
+| Left join | `df1.merge(df2, how="left")` | `df1.join(df2, type = JoinType.Left)`|
+
+---
+
+## Exporting/Saving Data
+
+| Task | Pandas | Kotlin DataFrame |
+|----------------|----------------------------------------|----------------------------------------------|
+| Save to CSV | `df.to_csv("file.csv", index=False)` | `df.writeCSV("file.csv")` |
+| Save to JSON | `df.to_json("file.json")` | `df.writeJSON("file.json")` |
+| Save to Arrow | `df.to_feather("file.arrow")` | `df.writeArrow("file.arrow")` |
+
+---
+
+## Example Data Pipeline A: Filtering & Aggregation
+
+### Pandas (Matplotlib)
+
+```python
+
+df = pd.read_csv("sales.csv")
+df = df[df.amount > 0]
+summary = df.groupby("region").amount.sum().reset_index()
+
+
+```
+
+### Kotlin DataFrame (Kandy)
+
+```kotlin
+val df = DataFrame.readCSV("sales.csv")
+val summary = df
+ .filter { amount > 0 }
+ .groupBy { region }
+ .aggregate { sum(amount).into("total") }
+```
+
+---
+
+## Example Data Pipeline B: Add Column & Pivoting
+
+### Pandas (Matplotlib)
+
+```python
+df["profit"] = df.revenue - df.cost
+pivot = df.pivot_table(values="profit", index="product", columns="year")
+```
+
+### Kotlin DataFrame (Kandy)
+
+```kotlin
+val pivot = df
+ .add("profit") { revenue - cost }
+ .pivot(product, year) { mean(profit) }
+```
+
+---
+
+## Visualization Example
+
+### Pandas (Matplotlib)
+
+```python
+import pandas as pd
+import matplotlib.pyplot as plt
+
+df = pd.read_csv("sales.csv")
+df.groupby('region')['amount'].sum().plot(kind='bar')
+plt.title("Sales by Region")
+plt.xlabel("Region")
+plt.ylabel("Amount")
+plt.show()
+```
+
+### Kotlin DataFrame (Kandy)
+
+```kotlin
+import org.jetbrains.kotlinx.kandy.dsl.plot
+import org.jetbrains.kotlinx.kandy.letsplot.export.save
+
+val df = DataFrame.readCSV("sales.csv")
+val summary = df.groupBy { region }.aggregate { sum(amount).into("total") }
+
+summary.plot {
+ bar {
+ x(region)
+ y("total")
+ }
+ layout.title = "Sales by Region"
+ xAxisLabel = "Region"
+ yAxisLabel = "Amount"
+}.save("sales_by_region.png")
+```
+
+---
+
+## In conclusion
+
+- Kotlin DataFrame prioritizes type safety and readability.
+- Some Pandas features (like advanced time indexing, resample()) aren’t available yet.
+- Use Kotlin’s typed DSL for error-free refactoring and improved IDE support.
+
+
+## What's Next?
+If you're ready to go through a complete example, we recommend our [Quickstart Guide](quickstart.md)
+— you'll learn the basics of reading data, transforming it, and creating visualization step-by-step.
+
+Ready to go deeper? Check out what’s next:
+
+- 📘 **[Explore in-depth guides and various examples](Guides-And-Examples.md)** with different datasets,
+ API usage examples, and practical scenarios that help you understand the main features of Kotlin DataFrame.
+
+- 🛠️ **[Browse the operations overview](operations.md)** to learn what Kotlin DataFrame can do.
+
+- 🧠 **Understand the design** and core concepts in the [library overview](concepts.md).
+
+- 🔤 **[Learn more about Extension Properties](extensionPropertiesApi.md)**
+ and make working with your data both convenient and type-safe.
+
+- 💡 **[Use Kotlin DataFrame Compiler Plugin](Compiler-Plugin.md)**
+ for auto-generated column access in your IntelliJ IDEA projects.
+
+- 📊 **Master Kandy** for stunning and expressive DataFrame visualizations learning
+ [Kandy Documentation](https://kotlin.github.io/kandy).
diff --git a/docs/StardustDocs/topics/guides/quickstart.md b/docs/StardustDocs/topics/guides/quickstart.md
index 06de611939..5a34457c86 100644
--- a/docs/StardustDocs/topics/guides/quickstart.md
+++ b/docs/StardustDocs/topics/guides/quickstart.md
@@ -16,8 +16,8 @@ This guide shows how to quickly get started with **Kotlin DataFrame**:
you'll learn how to load data, perform basic transformations, and build a simple plot using Kandy.
We recommend [starting with **Kotlin Notebook**](gettingStartedKotlinNotebook.md) for the best beginner experience —
-everything works out of the box,
-including interactivity and rich DataFrame and plots rendering.
+everything works out of the box, including interactivity and rich DataFrame and plots rendering.
+
You can instantly see the results of each operation: view the contents of your DataFrames after every transformation,
inspect individual rows and columns, and explore data step-by-step in a live and interactive way.