diff --git a/content/model-theory/basics/dlo.tex b/content/model-theory/basics/dlo.tex index 339a1de7..8d26dced 100644 --- a/content/model-theory/basics/dlo.tex +++ b/content/model-theory/basics/dlo.tex @@ -45,7 +45,7 @@ \section{Dense Linear Orders} a_n$. Given $a \in \Domain{M_1}$, find $b \in \Domain{M_2}$ as follows: \begin{enumerate} - \item if $a <_2 a_1$ let $b \in \Domain{M_2}$ be such that $b <_2 + \item if $a <_1 a_1$ let $b \in \Domain{M_2}$ be such that $b <_2 b_1$; \item if $a_n <_1 a$ let $b \in \Domain{M_2}$ be such that $b_n <_2 b$; \item if $a_i <_1 a <_1 a_{i+1}$ for some $i$, then let $b \in diff --git a/content/model-theory/basics/isomorphism.tex b/content/model-theory/basics/isomorphism.tex index 1ba7a901..f90d2e2c 100644 --- a/content/model-theory/basics/isomorphism.tex +++ b/content/model-theory/basics/isomorphism.tex @@ -10,7 +10,7 @@ \olsection{Isomorphic Structures} First-order !!{structure}s can be alike in one of two ways. One way in -which the can be alike is that they make the same !!{sentence}s +which they can be alike is that they make the same !!{sentence}s true. We call such !!{structure}s \emph{elementarily equivalent}. But structures can be very different and still make the same !!{sentence}s true---for instance, one can be !!{enumerable} and the other not. @@ -94,14 +94,14 @@ \begin{align} h(\Value{t}{M}[s]) & = h(\Assign{f}{M}(\Value{t_1}{M}[s], \dots, \Value{t_n}{M}[s]) \notag\\ - & = h(\Assign{f}{M}(\Value{t_1}{M'}[h \circ s], \dots, - \Value{t_n}{M'}[h \circ s]) \ollabel{iso-1}\\ + & = \Assign{f}{M'}(h(\Value{t_1}{M}[s]), \dots, + h(\Value{t_n}{M}[s])) \ollabel{iso-1}\\ & = \Assign{f}{M'}(\Value{t_1}{M'}[h \circ s], \dots, \Value{t_n}{M'}[h \circ s]) \ollabel{iso-2}\\ & = \Value{t}{M'}[h\circ s] \notag \end{align} - Here, \olref{iso-1} follows by induction hypothesis and \olref{iso-2} by - \olref{defn:iso-func} of \olref{defn:isomorphism}. + Here, \olref{iso-1} follows by \olref{defn:iso-func} of + \olref{defn:isomorphism} and \olref{iso-2} by induction hypothesis. \end{enumerate} Part (b) is left as an exercise. @@ -117,8 +117,8 @@ \end{prob} \begin{defn} -An \emph{automorphism} of a structure $\mathfrak{M}$ is an isomorphism -of $\mathfrak{M}$ onto itself. +An \emph{automorphism} of a structure $\Struct{M}$ is an isomorphism +of $\Struct{M}$ onto itself. \end{defn} \begin{prob} diff --git a/content/model-theory/basics/partial-iso.tex b/content/model-theory/basics/partial-iso.tex index 91a174ae..ea0e756e 100644 --- a/content/model-theory/basics/partial-iso.tex +++ b/content/model-theory/basics/partial-iso.tex @@ -152,7 +152,7 @@ \section{Partial Isomorphisms} $x_1$, \dots,~$x_n$, then $\Sat{M}{!A}[s_1]$ if and only if~$\Sat{N}{!A}[s_2]$. \item $I_{n+1} (\mathbf{a},\mathbf{b})$ if and only if for every - $a\in A$ there is a $b\in B$ such that $I_n + $a\in \Domain M$ there is a $b\in \Domain N$ such that $I_n (\mathbf{a}a,\mathbf{b}b)$, and vice-versa. \end{enumerate} \end{defn} @@ -198,7 +198,7 @@ \section{Partial Isomorphisms} Given $a \in \Domain M$, let $!T^a_n$ be set of !!{formula}s $!B(x,\mathbf{y})$ of rank no greater than $n$ satisfied by - $\mathbf{a}a$ in $\Struct{M}$; $\tau^a_n$ is finite, so we can + $\mathbf{a}a$ in $\Struct{M}$; $!T^a_n$ is finite, so we can assume it is a single first-order !!{formula}. It follows that $\mathbf{a}$ satisfies $\lexists[x][!T^a_n(x,\mathbf{y})]$, which has quantifier rank no greater than $n+1$. By hypothesis