|
| 1 | +import numpy as np |
| 2 | +import time |
| 3 | +from datetime import datetime, timedelta |
| 4 | +from timeit import Timer |
| 5 | + |
| 6 | +import csp |
| 7 | + |
| 8 | + |
| 9 | +class StatsBenchmarkSuite: |
| 10 | + def setup(self): |
| 11 | + self.start_date = datetime(2020, 1, 1) |
| 12 | + self.num_rows = 1_000 |
| 13 | + self.array_size = 100 |
| 14 | + self.test_times = [self.st + timedelta(seconds=i) for i in range(self.num_rows)] |
| 15 | + self.random_values = [ |
| 16 | + np.random.normal(size=(self.array_size,)) for i in range(self.num_rows) |
| 17 | + ] # 100 element np array |
| 18 | + self.data = list(zip(self.test_times, self.random_values)) |
| 19 | + self.interval = 500 |
| 20 | + self.num_samples = 100 |
| 21 | + |
| 22 | + def time_stats_qtl(self): |
| 23 | + def g_qtl(): |
| 24 | + data = csp.curve(typ=np.ndarray, data=self.data) |
| 25 | + median = csp.stats.median(data, interval=self.interval) |
| 26 | + csp.add_graph_output("final_median", median, tick_count=1) |
| 27 | + |
| 28 | + timer = Timer( |
| 29 | + lambda: csp.run(g_qtl, realtime=False, starttime=self.st, endtime=timedelta(seconds=self.num_rows)) |
| 30 | + ) |
| 31 | + elapsed = timer.timeit(self.num_samples) |
| 32 | + avg_med = elapsed / self.num_samples |
| 33 | + print( |
| 34 | + f"Average time in {self.num_samples} tests for median with {self.num_rows=}, {self.array_size=}, {self.interval=}: {round(avg_med, 2)} s" |
| 35 | + ) |
| 36 | + return avg_med |
| 37 | + |
| 38 | + def time_stats_rank(self): |
| 39 | + def g_rank(): |
| 40 | + data = csp.curve(typ=np.ndarray, data=self.DATA) |
| 41 | + rank = csp.stats.rank(data, interval=self.interval) |
| 42 | + csp.add_graph_output("final_rank", rank, tick_count=1) |
| 43 | + |
| 44 | + timer = Timer( |
| 45 | + lambda: csp.run(g_rank, realtime=False, starttime=self.st, endtime=timedelta(seconds=self.num_rows)) |
| 46 | + ) |
| 47 | + elapsed = timer.timeit(self.num_samples) |
| 48 | + avg_rank = elapsed / self.num_samples |
| 49 | + print( |
| 50 | + f"Average time in {self.num_samples} tests for rank with {self.num_rows=}, {self.array_size=}, {self.interval=}: {round(avg_rank, 2)} s" |
| 51 | + ) |
| 52 | + return avg_rank |
| 53 | + |
| 54 | + |
| 55 | +if __name__ == "__main__": |
| 56 | + sbs = StatsBenchmarkSuite() |
| 57 | + sbs.setup() |
| 58 | + sbs.time_stats_qtl() |
| 59 | + sbs.time_stats_rank() |
0 commit comments