Skip to content

Commit 1b5c35b

Browse files
HexuanLiurflamary
andauthored
[MRG] add normalization of distances for WDA (#172)
* edit dr.py * Correct normalization + optional parameter * pep8? * final! Co-authored-by: Rémi Flamary <[email protected]>
1 parent 79a7a29 commit 1b5c35b

File tree

1 file changed

+16
-2
lines changed

1 file changed

+16
-2
lines changed

ot/dr.py

Lines changed: 16 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -109,7 +109,7 @@ def proj(X):
109109
return Popt, proj
110110

111111

112-
def wda(X, y, p=2, reg=1, k=10, solver=None, maxiter=100, verbose=0, P0=None):
112+
def wda(X, y, p=2, reg=1, k=10, solver=None, maxiter=100, verbose=0, P0=None, normalize=False):
113113
r"""
114114
Wasserstein Discriminant Analysis [11]_
115115
@@ -139,6 +139,8 @@ def wda(X, y, p=2, reg=1, k=10, solver=None, maxiter=100, verbose=0, P0=None):
139139
else should be a pymanopt.solvers
140140
P0 : ndarray, shape (d, p)
141141
Initial starting point for projection.
142+
normalize : bool, optional
143+
Normalise the Wasserstaiun distane by the average distance on P0 (default : False)
142144
verbose : int, optional
143145
Print information along iterations.
144146
@@ -164,6 +166,18 @@ def wda(X, y, p=2, reg=1, k=10, solver=None, maxiter=100, verbose=0, P0=None):
164166
# compute uniform weighs
165167
wc = [np.ones((x.shape[0]), dtype=np.float32) / x.shape[0] for x in xc]
166168

169+
# pre-compute reg_c,c'
170+
if P0 is not None and normalize:
171+
regmean = np.zeros((len(xc), len(xc)))
172+
for i, xi in enumerate(xc):
173+
xi = np.dot(xi, P0)
174+
for j, xj in enumerate(xc[i:]):
175+
xj = np.dot(xj, P0)
176+
M = dist(xi, xj)
177+
regmean[i, j] = np.sum(M) / (len(xi) * len(xj))
178+
else:
179+
regmean = np.ones((len(xc), len(xc)))
180+
167181
def cost(P):
168182
# wda loss
169183
loss_b = 0
@@ -174,7 +188,7 @@ def cost(P):
174188
for j, xj in enumerate(xc[i:]):
175189
xj = np.dot(xj, P)
176190
M = dist(xi, xj)
177-
G = sinkhorn(wc[i], wc[j + i], M, reg, k)
191+
G = sinkhorn(wc[i], wc[j + i], M, reg * regmean[i, j], k)
178192
if j == 0:
179193
loss_w += np.sum(G * M)
180194
else:

0 commit comments

Comments
 (0)