You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* bugfix
* update refs partial OT
* fixes small typos in plot_partial_wass_and_gromov
* fix small bugs in partial.py
* update README
* pep8 bugfix
* modif doctest
* fix bugtests
* update on test_partial and test on the numerical precision on ot/partial
* resolve merge pb
* Delete partial.py
* update unbalanced: mm algo+plot
* update unbalanced: mm algo+plot
* update unbalanced: mm algo+plot
* update unbalanced: mm algo+plot
* update unbalanced: mm algo+plot
* add test mm algo unbalanced OT
* add test mm algo unbalanced OT
* add test mm algo unbalanced OT
* add test mm algo unbalanced OT
* add test mm algo unbalanced OT
* add test mm algo unbalanced OT
* add test mm algo unbalanced OT
* add test mm algo unbalanced OT
* update unbalanced: mm algo+plot
* update unbalanced: mm algo+plot
* update releases.md with new MM UOT algorithms
Co-authored-by: Rémi Flamary <[email protected]>
Copy file name to clipboardExpand all lines: README.md
+4-2Lines changed: 4 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -35,7 +35,7 @@ POT provides the following generic OT solvers (links to examples):
35
35
Large-scale Optimal Transport (semi-dual problem [18] and dual problem [19])
36
36
*[Sampled solver of Gromov Wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) for large-scale problem with any loss functions [33]
37
37
* Non regularized [free support Wasserstein barycenters](https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html)[20].
38
-
*[Unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_1D.html) with KL relaxation and [barycenter](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html)[10, 25].
38
+
*[One dimensional Unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_1D.html) with KL relaxation and [barycenter](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html)[10, 25]. Also [exact unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_unbalanced_ot.html) with KL and quadratic regularization and the [regularization path of UOT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_regpath.html)[41]
39
39
*[Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) (exact [29] and entropic [3]
40
40
formulations).
41
41
*[Sliced Wasserstein](https://pythonot.github.io/auto_examples/sliced-wasserstein/plot_variance.html)[31, 32] and Max-sliced Wasserstein [35] that can be used for gradient flows [36].
@@ -309,4 +309,6 @@ Dictionary Learning](https://arxiv.org/pdf/2102.06555.pdf), International Confer
309
309
310
310
[39] Gozlan, N., Roberto, C., Samson, P. M., & Tetali, P. (2017). [Kantorovich duality for general transport costs and applications](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.1825&rep=rep1&type=pdf). Journal of Functional Analysis, 273(11), 3327-3405.
311
311
312
-
[40] Forrow, A., Hütter, J. C., Nitzan, M., Rigollet, P., Schiebinger, G., & Weed, J. (2019, April). [Statistical optimal transport via factored couplings](http://proceedings.mlr.press/v89/forrow19a/forrow19a.pdf). In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2454-2465). PMLR.
312
+
[40] Forrow, A., Hütter, J. C., Nitzan, M., Rigollet, P., Schiebinger, G., & Weed, J. (2019, April). [Statistical optimal transport via factored couplings](http://proceedings.mlr.press/v89/forrow19a/forrow19a.pdf). In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2454-2465). PMLR.
313
+
314
+
[41] Chapel*, L., Flamary*, R., Wu, H., Févotte, C., Gasso, G. (2021). [Unbalanced Optimal Transport through Non-negative Penalized Linear Regression](https://proceedings.neurips.cc/paper/2021/file/c3c617a9b80b3ae1ebd868b0017cc349-Paper.pdf) Advances in Neural Information Processing Systems (NeurIPS), 2020. (Two first co-authors)
The formulation of the GW problem has been proposed in :ref:`[12] <references-entropic-partial-gromov-wassertein>` and the partial GW in :ref:`[29] <references-entropic-partial-gromov-wassertein>`
916
+
The formulation of the GW problem has been proposed in
917
+
:ref:`[12] <references-entropic-partial-gromov-wassertein>` and the
918
+
partial GW in :ref:`[29] <references-entropic-partial-gromov-wassertein>`
The formulation of the GW problem has been proposed in :ref:`[12] <references-entropic-partial-gromov-wassertein2>` and the partial GW in :ref:`[29] <references-entropic-partial-gromov-wassertein2>`
1065
+
The formulation of the GW problem has been proposed in
1066
+
:ref:`[12] <references-entropic-partial-gromov-wassertein2>` and the
1067
+
partial GW in :ref:`[29] <references-entropic-partial-gromov-wassertein2>`
0 commit comments