|  | 
| 102 | 102 |     "    ax.set_xlim((-25, 25))\n", | 
| 103 | 103 |     "    ax.set_ylim((-35, 35))\n", | 
| 104 | 104 |     "    ax.set_zlim((5, 55))\n", | 
| 105 |  | -    "    \n", | 
|  | 105 | +    "\n", | 
| 106 | 106 |     "    def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho):\n", | 
| 107 | 107 |     "        \"\"\"Compute the time-derivative of a Lorenz system.\"\"\"\n", | 
| 108 | 108 |     "        x, y, z = x_y_z\n", | 
|  | 
| 116 | 116 |     "    t = np.linspace(0, max_time, int(250*max_time))\n", | 
| 117 | 117 |     "    x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t)\n", | 
| 118 | 118 |     "                      for x0i in x0])\n", | 
| 119 |  | -    "    \n", | 
|  | 119 | +    "\n", | 
| 120 | 120 |     "    # choose a different color for each trajectory\n", | 
| 121 | 121 |     "    colors = plt.cm.viridis(np.linspace(0, 1, N))\n", | 
| 122 | 122 |     "\n", | 
|  | 
| 160 | 160 |    "metadata": {}, | 
| 161 | 161 |    "outputs": [], | 
| 162 | 162 |    "source": [ | 
| 163 |  | -    "w = interactive(solve_lorenz, angle=(0.,360.), max_time=(0.1, 4.0), \n", | 
|  | 163 | +    "w = interactive(solve_lorenz, angle=(0.,360.), max_time=(0.1, 4.0),\n", | 
| 164 | 164 |     "                N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0))\n", | 
| 165 | 165 |     "display(w)" | 
| 166 | 166 |    ] | 
|  | 
0 commit comments