|
3 | 3 |  [](https://scalable-cytometry-image-processing.readthedocs.io/en/latest/?badge=latest) [](https://codecov.io/gh/ScalableCytometryImageProcessing/SCIP)
|
4 | 4 |
|
5 | 5 | Check the docs for installation and usage instructions.
|
6 |
| - |
7 |
| -## Installation |
8 |
| - |
9 |
| -We recommend using [mamba](https://github.com/mamba-org/mamba) and pip to install SCIP. |
10 |
| - |
11 |
| -1. Create a new python environment: |
12 |
| - - Python 3.8: `mamba create -n scip python=3.8` |
13 |
| - - Python 3.9: `mamba create -n scip python=3.9` |
14 |
| -1. Activate environment: `conda activate scip` |
15 |
| -1. Install mpi4py: `mamba install -c conda-forge mpi4py` |
16 |
| -1. Install SCIP: `pip install .` or `pip install -e .` for development |
17 |
| -1. (Optional) Install development dependencies: `pip install -r requirements.txt` |
18 |
| - |
19 |
| -## Usage |
20 |
| - |
21 |
| -SCIP is called from the command line using the `scip` command. The help output is shown below. |
22 |
| - |
23 |
| -``` |
24 |
| -Usage: scip [OPTIONS] OUTPUT CONFIG [PATHS]... |
25 |
| -
|
26 |
| - Intro documentation |
27 |
| -
|
28 |
| -Options: |
29 |
| - -d, --port INTEGER dask dashboard port |
30 |
| - --debug sets logging level to debug |
31 |
| - --mode [local|jobqueue|mpi] In which mode to run Dask |
32 |
| - -j, --n-workers INTEGER Number of workers in the LocalCluster or per |
33 |
| - node |
34 |
| - -n, --n-nodes INTEGER Number of nodes started |
35 |
| - -c, --n-cores INTEGER RANGE Number of cores available per node in the |
36 |
| - cluster [x>=1] |
37 |
| - -t, --n-threads INTEGER RANGE Number of threads per worker process [x>=1] |
38 |
| - -m, --memory INTEGER RANGE Amount of memory available per node in the |
39 |
| - cluster [x>=1] |
40 |
| - -w, --walltime TEXT Expected required walltime for the job to |
41 |
| - finish |
42 |
| - -p, --project TEXT Project name for HPC cluster |
43 |
| - -e, --job-extra TEXT Extra arguments for job submission |
44 |
| - --headless If set, the program will never ask for user |
45 |
| - input |
46 |
| - -s, --partition-size INTEGER RANGE |
47 |
| - Set partition size [x>=1] |
48 |
| - --limit INTEGER Limit the number of events to load from each |
49 |
| - file or directory |
50 |
| - --timing FILE |
51 |
| - --report / --no-report |
52 |
| - --reach-limit If set the dataset will be repeated until |
53 |
| - the limit is reached. |
54 |
| - --gpu INTEGER RANGE Specify the amount of available GPUs [x>=0] |
55 |
| - -l, --local-directory DIRECTORY |
56 |
| - -V, --version Display version information |
57 |
| - --help Show this message and exit. |
58 |
| -
|
59 |
| -``` |
60 |
| - |
61 |
| -### mode |
62 |
| - |
63 |
| -SCIP can run in three different modes: local, mpi or jobqueue. |
64 |
| - - In local mode, SCIP spins up a Dask `LocalCluster`. This mode can be used for execution on a laptop or desktop, for example. |
65 |
| - - In mpi mode, Dask workers and the scheduler are setup using the `dask-mpi` package. This is the ideal mode for use on high performance clusters. Note that for this mode SCIP should be run using `mpirun` or `mpiexec`. |
66 |
| - - Finally, in jobqueue mode, a PBSCluster is set up using the `dask-jobqueue` package. This mode can also be used for execution on a high performance cluster if MPI is not available, for instance. |
67 |
| - |
68 |
| -### OUTPUT, CONFIG and PATHS |
69 |
| - |
70 |
| -`OUTPUT` should be passed as a path to a directory where SCIP can write its output. `CONFIG` should be passed as the path to a YAML-file containing the configuration for the execution of SCIP. The files [scip_czi.yml](scip_czi.yml), [scip_multi_tiff.yml](scip_multi_tiff.yml) and [scip_tiff.yml](scip_tiff.yml) contain example configurations. `PATHS` should point to one or more images or paths containing images. |
0 commit comments