diff --git a/circle.tex b/circle.tex index 3668bc8..f99b6d7 100644 --- a/circle.tex +++ b/circle.tex @@ -706,7 +706,7 @@ \section{\Coverings} \bigl(\Sc\to\UU \ar[r,equivr,"g"]\bigr) & \sum_{X:\UU}(X\equivto X) \ar[u,hookrightarrow] \\ - \SetBundle \ar[r,equivl,"f"'] \ar[u,hookrightarrow] & + \SetBundle(\Sc) \ar[r,equivl,"f"'] \ar[u,hookrightarrow] & \bigl(\Sc\to\Set\bigr) \ar[r,equivl,"g"'] \ar[u,hookrightarrow] & \sum_{X:\Set}(X\equivto X) \ar[u,hookrightarrow] \end{tikzcd} @@ -714,9 +714,9 @@ \section{\Coverings} \end{theorem} \begin{proof} We prove first that $\preim$ respects the subtypes. -Let $A:\UU$ and $h: \Sc\to A$ such that $(A,h)$ is a \covering. -This means that $\inv h(a)$ is a set, for any $a:A$. -Since $\preim(A,h)(a) \jdeq \inv h(a)$, we immediately get +Let $A:\UU$ and $h: A \to \Sc$ such that $(A,h)$ is a \covering. +This means that $\inv h(x)$ is a set, for any $x:\Sc$. +Since $\preim(A,h)(x) \jdeq \inv h(x)$, we immediately get that $\preim(A,h) : \Sc\to\Set$. In order to prove that $\inv\preim$ also respects the subtypes one simply reverses this argument.