2525from typing_extensions import Literal
2626
2727import edsnlp .data
28- from edsnlp .utils .batching import BatchBy , BatchFn , BatchSizeArg , batchify_fns
28+ from edsnlp .utils .batching import BatchBy , BatchFn , BatchSizeArg , batchify , batchify_fns
2929from edsnlp .utils .collections import flatten , flatten_once , shuffle
3030from edsnlp .utils .stream_sentinels import StreamSentinel
3131
@@ -47,25 +47,6 @@ def deep_isgeneratorfunction(x):
4747 raise ValueError (f"{ x } does not have a __call__ or batch_process method." )
4848
4949
50- class _InferType :
51- # Singleton is important since the INFER object may be passed to
52- # other processes, i.e. pickled, depickled, while it should
53- # always be the same object.
54- instance = None
55-
56- def __repr__ (self ):
57- return "INFER"
58-
59- def __new__ (cls , * args , ** kwargs ):
60- if cls .instance is None :
61- cls .instance = super ().__new__ (cls )
62- return cls .instance
63-
64- def __bool__ (self ):
65- return False
66-
67-
68- INFER = _InferType ()
6950CONTEXT = [{}]
7051
7152T = TypeVar ("T" )
@@ -125,8 +106,8 @@ def __init__(
125106 ):
126107 if batch_fn is None :
127108 if size is None :
128- size = INFER
129- batch_fn = INFER
109+ size = None
110+ batch_fn = None
130111 else :
131112 batch_fn = batchify_fns ["docs" ]
132113 self .size = size
@@ -287,12 +268,12 @@ def __init__(
287268 reader : Optional [BaseReader ] = None ,
288269 writer : Optional [Union [BaseWriter , BatchWriter ]] = None ,
289270 ops : List [Any ] = [],
290- config : Dict = {} ,
271+ config : Optional [ Dict ] = None ,
291272 ):
292273 self .reader = reader
293274 self .writer = writer
294275 self .ops : List [Op ] = ops
295- self .config = config
276+ self .config = config or {}
296277
297278 @classmethod
298279 def validate_batching (cls , batch_size , batch_by ):
@@ -302,17 +283,12 @@ def validate_batching(cls, batch_size, batch_by):
302283 "Cannot use both a batch_size expression and a batch_by function"
303284 )
304285 batch_size , batch_by = BatchSizeArg .validate (batch_size )
305- if (
306- batch_size is not None
307- and batch_size is not INFER
308- and not isinstance (batch_size , int )
309- ):
286+ if batch_size is not None and not isinstance (batch_size , int ):
310287 raise ValueError (
311288 f"Invalid batch_size (must be an integer or None): { batch_size } "
312289 )
313290 if (
314291 batch_by is not None
315- and batch_by is not INFER
316292 and batch_by not in batchify_fns
317293 and not callable (batch_by )
318294 ):
@@ -321,11 +297,11 @@ def validate_batching(cls, batch_size, batch_by):
321297
322298 @property
323299 def batch_size (self ):
324- return self .config .get ("batch_size" , 1 )
300+ return self .config .get ("batch_size" , None )
325301
326302 @property
327303 def batch_by (self ):
328- return self .config .get ("batch_by" , "docs" )
304+ return self .config .get ("batch_by" , None )
329305
330306 @property
331307 def disable_implicit_parallelism (self ):
@@ -372,39 +348,36 @@ def deterministic(self):
372348 @with_non_default_args
373349 def set_processing (
374350 self ,
375- batch_size : int = INFER ,
376- batch_by : BatchBy = "docs" ,
377- split_into_batches_after : str = INFER ,
378- num_cpu_workers : Optional [int ] = INFER ,
379- num_gpu_workers : Optional [int ] = INFER ,
351+ batch_size : Optional [ Union [ int , str ]] = None ,
352+ batch_by : BatchBy = None ,
353+ split_into_batches_after : str = None ,
354+ num_cpu_workers : Optional [int ] = None ,
355+ num_gpu_workers : Optional [int ] = None ,
380356 disable_implicit_parallelism : bool = True ,
381- backend : Optional [Literal ["simple" , "multiprocessing" , "mp" , "spark" ]] = INFER ,
382- autocast : Union [bool , Any ] = INFER ,
357+ backend : Optional [Literal ["simple" , "multiprocessing" , "mp" , "spark" ]] = None ,
358+ autocast : Union [bool , Any ] = None ,
383359 show_progress : bool = False ,
384- gpu_pipe_names : Optional [List [str ]] = INFER ,
385- process_start_method : Optional [Literal ["fork" , "spawn" ]] = INFER ,
386- gpu_worker_devices : Optional [List [str ]] = INFER ,
387- cpu_worker_devices : Optional [List [str ]] = INFER ,
360+ gpu_pipe_names : Optional [List [str ]] = None ,
361+ process_start_method : Optional [Literal ["fork" , "spawn" ]] = None ,
362+ gpu_worker_devices : Optional [List [str ]] = None ,
363+ cpu_worker_devices : Optional [List [str ]] = None ,
388364 deterministic : bool = True ,
389365 work_unit : Literal ["record" , "fragment" ] = "record" ,
390- chunk_size : int = INFER ,
366+ chunk_size : int = None ,
391367 sort_chunks : bool = False ,
392368 _non_default_args : Iterable [str ] = (),
393369 ) -> "Stream" :
394370 """
395371 Parameters
396372 ----------
397- batch_size: int
398- Number of documents to process at a time in a GPU worker (or in the
399- main process if no workers are used). This is the global batch size
400- that is used for batching methods that do not provide their own
401- batching arguments.
373+ batch_size: Optional[Union[int, str]]
374+ The batch size. Can also be a batching expression like
375+ "32 docs", "1024 words", "dataset", "fragment", etc.
402376 batch_by: BatchBy
403377 Function to compute the batches. If set, it should take an iterable of
404378 documents and return an iterable of batches. You can also set it to
405379 "docs", "words" or "padded_words" to use predefined batching functions.
406- Defaults to "docs". Only used for operations that do not provide their
407- own batching arguments.
380+ Defaults to "docs".
408381 num_cpu_workers: int
409382 Number of CPU workers. A CPU worker handles the non deep-learning components
410383 and the preprocessing, collating and postprocessing of deep-learning
@@ -468,15 +441,15 @@ def set_processing(
468441 """
469442 kwargs = {k : v for k , v in locals ().items () if k in _non_default_args }
470443 if (
471- kwargs .pop ("chunk_size" , INFER ) is not INFER
472- or kwargs .pop ("sort_chunks" , INFER ) is not INFER
444+ kwargs .pop ("chunk_size" , None ) is not None
445+ or kwargs .pop ("sort_chunks" , None ) is not None
473446 ):
474447 warnings .warn (
475448 "chunk_size and sort_chunks are deprecated, use "
476449 "map_batched(sort_fn, batch_size=chunk_size) instead." ,
477450 VisibleDeprecationWarning ,
478451 )
479- if kwargs .pop ("split_into_batches_after" , INFER ) is not INFER :
452+ if kwargs .pop ("split_into_batches_after" , None ) is not None :
480453 warnings .warn (
481454 "split_into_batches_after is deprecated." , VisibleDeprecationWarning
482455 )
@@ -486,7 +459,7 @@ def set_processing(
486459 ops = self .ops ,
487460 config = {
488461 ** self .config ,
489- ** {k : v for k , v in kwargs .items () if v is not INFER },
462+ ** {k : v for k , v in kwargs .items () if v is not None },
490463 },
491464 )
492465
@@ -690,8 +663,8 @@ def map_gpu(
690663 def map_pipeline (
691664 self ,
692665 model : Pipeline ,
693- batch_size : Optional [int ] = INFER ,
694- batch_by : BatchBy = INFER ,
666+ batch_size : Optional [Union [ int , str ]] = None ,
667+ batch_by : BatchBy = None ,
695668 ) -> "Stream" :
696669 """
697670 Maps a pipeline to the documents, i.e. adds each component of the pipeline to
@@ -974,16 +947,10 @@ def __getattr__(self, item):
974947 def _make_stages (self , split_torch_pipes : bool ) -> List [Stage ]:
975948 current_ops = []
976949 stages = []
977- self_batch_fn = batchify_fns .get (self .batch_by , self .batch_by )
978- self_batch_size = self .batch_size
979- assert self_batch_size is not None
980950
981951 ops = [copy (op ) for op in self .ops ]
982952
983953 for op in ops :
984- if isinstance (op , BatchifyOp ):
985- op .batch_fn = self_batch_fn if op .batch_fn is INFER else op .batch_fn
986- op .size = self_batch_size if op .size is INFER else op .size
987954 if (
988955 isinstance (op , MapBatchesOp )
989956 and hasattr (op .pipe , "forward" )
@@ -1005,23 +972,39 @@ def validate_ops(self, ops, update: bool = False):
1005972 # Check batchify requirements
1006973 requires_sentinels = set ()
1007974
975+ self_batch_size , self_batch_by = self .validate_batching (
976+ self .batch_size , self .batch_by
977+ )
978+ if self_batch_by is None :
979+ self_batch_by = "docs"
980+ if self_batch_size is None :
981+ self_batch_size = 1
982+ self_batch_fn = batchify_fns .get (self_batch_by , self_batch_by )
983+
1008984 if hasattr (self .writer , "batch_fn" ) and hasattr (
1009985 self .writer .batch_fn , "requires_sentinel"
1010986 ):
1011987 requires_sentinels .add (self .writer .batch_fn .requires_sentinel )
1012988
1013- self_batch_fn = batchify_fns .get (self .batch_by , self .batch_by )
1014989 for op in reversed (ops ):
1015990 if isinstance (op , BatchifyOp ):
1016- batch_fn = op .batch_fn or self_batch_fn
991+ if op .batch_fn is None and op .size is None :
992+ batch_size = self_batch_size
993+ batch_fn = self_batch_fn
994+ elif op .batch_fn is None :
995+ batch_size = op .size
996+ batch_fn = batchify
997+ else :
998+ batch_size = op .size
999+ batch_fn = op .batch_fn
10171000 sentinel_mode = op .sentinel_mode or (
10181001 "auto"
10191002 if "sentinel_mode" in signature (batch_fn ).parameters
10201003 else None
10211004 )
10221005 if sentinel_mode == "auto" :
10231006 sentinel_mode = "split" if requires_sentinels else "drop"
1024- if requires_sentinels and op . sentinel_mode == "drop" :
1007+ if requires_sentinels and sentinel_mode == "drop" :
10251008 raise ValueError (
10261009 f"Operation { op } drops the stream sentinel values "
10271010 f"(markers for the end of a dataset or a dataset "
@@ -1031,10 +1014,12 @@ def validate_ops(self, ops, update: bool = False):
10311014 f"any upstream batching operation."
10321015 )
10331016 if update :
1017+ op .size = batch_size
1018+ op .batch_fn = batch_fn
10341019 op .sentinel_mode = sentinel_mode
10351020
1036- if hasattr (batch_fn , "requires_sentinel" ):
1037- requires_sentinels .add (batch_fn .requires_sentinel )
1021+ if hasattr (op . batch_fn , "requires_sentinel" ):
1022+ requires_sentinels .add (op . batch_fn .requires_sentinel )
10381023
10391024 sentinel_str = ", " .join (requires_sentinels )
10401025 if requires_sentinels and self .backend == "spark" :
0 commit comments