|
1 |
| -# Incremental Learning |
| 1 | +# Incremental Learners for Continual Learning |
2 | 2 |
|
3 |
| -*Also called lifelong learning, or continual learning.* |
| 3 | +Repository storing all my public works done during my PhD thesis (2019-). |
4 | 4 |
|
5 |
| -This repository will store all my implementations of Incremental Learning's papers. |
| 5 | +You will find in there both known implementation (iCaRL, etc.) but also all my papers. |
| 6 | +You can find the list of the latter on my [Google Scholar](https://scholar.google.com/citations?user=snwgZBIAAAAJ&hl=en). |
6 | 7 |
|
7 | 8 | ## Structures
|
8 | 9 |
|
9 | 10 | Every model must inherit `inclearn.models.base.IncrementalLearner`.
|
10 | 11 |
|
11 |
| -## Papers implemented: |
| 12 | +## Small Task Incremental Learning |
12 | 13 |
|
| 14 | +Under review, preprint on arXiv [here](https://arxiv.org/abs/2004.13513). |
13 | 15 |
|
| 16 | +If you use this paper/code in your research, please consider citing us: |
14 | 17 |
|
15 |
| -## TODO |
| 18 | +``` |
| 19 | +@inproceedings{douillard2020podnet, |
| 20 | + title={Small-Task Incremental Learning}, |
| 21 | + author={Arthur Douillard and Matthieu Cord and Charles Ollion and Thomas Robert and Eduardo Valle}, |
| 22 | + booktitle={arXiv preprint library}, |
| 23 | + year={2020} |
| 24 | +} |
| 25 | +``` |
16 | 26 |
|
17 |
| -- [ ] Add subparser per paper |
| 27 | +To run experiments on CIFAR100 with three different class orders, with the challenging |
| 28 | +setting of 50 steps: |
| 29 | + |
| 30 | +```bash |
| 31 | +python3 -minclearn --options options/podnet/podnet_cnn_cifar100.yaml options/data/cifar100_3orders.yaml \ |
| 32 | + --initial-increment 50 --increment 1 --fixed-memory \ |
| 33 | + --device <GPU_ID> --label podnet_cnn_cifar100_50steps \ |
| 34 | + --data-path <PATH/TO/DATA> |
| 35 | +``` |
| 36 | + |
| 37 | +Likewise, for ImageNet100: |
| 38 | + |
| 39 | +```bash |
| 40 | +python3 -minclearn --options options/podnet/podnet_cnn_imagenet100.yaml options/data/imagenet100_1order.yaml \ |
| 41 | + --initial-increment 50 --increment 1 --fixed-memory \ |
| 42 | + --device <GPU_ID> --label podnet_cnn_imagenet100_50steps \ |
| 43 | + --data-path <PATH/TO/DATA> |
| 44 | +``` |
| 45 | + |
| 46 | +And ImageNet1000: |
| 47 | + |
| 48 | +Likewise, for ImageNet100: |
| 49 | + |
| 50 | +```bash |
| 51 | +python3 -minclearn --options options/podnet/podnet_cnn_imagenet100.yaml options/data/imagenet1000_1order.yaml \ |
| 52 | + --initial-increment 500 --increment 50 --fixed-memory --memory-size 20000 \ |
| 53 | + --device <GPU_ID> --label podnet_cnn_imagenet1000_10steps \ |
| 54 | + --data-path <PATH/TO/DATA> |
| 55 | +``` |
| 56 | + |
| 57 | +Furthermore several options files are available to reproduce the ablations showcased |
| 58 | +in the paper. Please see the directory `./options/podnet/ablations/`. |
| 59 | + |
| 60 | +## Insight From the Future for Continual Learning |
| 61 | + |
| 62 | +Under review, preprint on arXiv [here](https://arxiv.org/abs/2006.13748). |
| 63 | + |
| 64 | +If you use this paper/code in your research, please consider citing us: |
| 65 | + |
| 66 | +``` |
| 67 | +@inproceedings{douillard2020ghost, |
| 68 | + title={Insight From the Future for Continual Learning}, |
| 69 | + author={Arthur Douillard and Eduardo Valle and Charles Ollion and Thomas Robert and Matthieu Cord}, |
| 70 | + booktitle={arXiv preprint library}, |
| 71 | + year={2020} |
| 72 | +} |
| 73 | +``` |
| 74 | + |
| 75 | +The code is still very dirty, I'll clean it later. Forgive me. |
0 commit comments