diff --git a/docs/docs.trychroma.com/markdoc/content/integrations/chroma-integrations.md b/docs/docs.trychroma.com/markdoc/content/integrations/chroma-integrations.md index da4fcf9716b..729f7165a20 100644 --- a/docs/docs.trychroma.com/markdoc/content/integrations/chroma-integrations.md +++ b/docs/docs.trychroma.com/markdoc/content/integrations/chroma-integrations.md @@ -48,6 +48,7 @@ We welcome pull requests to add new Integrations to the community. | [Langchain](./frameworks/langchain) | ✓ | ✓ | | [LlamaIndex](./frameworks/llamaindex) | ✓ | ✓ | | [Braintrust](./frameworks/braintrust) | ✓ | ✓ | +| [Contextual AI](./frameworks/contextual-ai) | ✓ | - | | [OpenLLMetry](./frameworks/openllmetry) | ✓ | Coming Soon! | | [Streamlit](./frameworks/streamlit) | ✓ | - | | [Haystack](./frameworks/haystack) | ✓ | - | diff --git a/docs/docs.trychroma.com/markdoc/content/integrations/frameworks/contextual-ai.md b/docs/docs.trychroma.com/markdoc/content/integrations/frameworks/contextual-ai.md new file mode 100644 index 00000000000..4c5208eee1a --- /dev/null +++ b/docs/docs.trychroma.com/markdoc/content/integrations/frameworks/contextual-ai.md @@ -0,0 +1,395 @@ +--- +id: contextual-ai +name: Contextual AI +--- + +# Contextual AI + +[Contextual AI](https://contextual.ai/?utm_campaign=Standalone-api-integration&utm_source=chroma&utm_medium=github&utm_content=repo) provides enterprise-grade components for building production RAG agents. It offers state-of-the-art document parsing, reranking, generation, and evaluation capabilities that integrate seamlessly with Chroma as the vector database. Contextual AI's tools enable developers to build document intelligence applications with advanced parsing, instruction-following reranking, grounded generation with minimal hallucinations, and natural language testing for response quality. + +![](https://img.shields.io/badge/License-Commercial-blue.svg) + +| [Docs](https://docs.contextual.ai/user-guides/beginner-guide?utm_campaign=Standalone-api-integration&utm_source=chroma&utm_medium=github&utm_content=repo) | [GitHub](https://github.com/ContextualAI?utm_campaign=Standalone-api-integration&utm_source=chroma&utm_medium=github&utm_content=repo) | [Examples](https://github.com/ContextualAI/examples) | [Blog](https://contextual.ai/blog/?utm_campaign=Standalone-api-integration&utm_source=chroma&utm_medium=github&utm_content=repo) | + +You can use Chroma together with Contextual AI's Parse, Rerank, Generate, and LMUnit APIs to build and evaluate comprehensive RAG pipelines. + +## Installation + +```terminal +pip install chromadb contextual-client +``` + +### Complete RAG Pipeline + +#### Parse documents and store in Chroma + +{% Tabs %} +{% Tab label="python" %} + +```python +from contextual import ContextualAI +import chromadb +from chromadb.utils import embedding_functions + +# Initialize clients +contextual_client = ContextualAI(api_key=os.environ["CONTEXTUAL_AI_API_KEY"]) +chroma_client = chromadb.EphemeralClient() + +# Parse document +with open("document.pdf", "rb") as f: + parse_response = contextual_client.parse.create( + raw_file=f, + parse_mode="standard", + enable_document_hierarchy=True + ) + +# Monitor job status (Parse API is asynchronous) +import asyncio + +async def wait_for_job_async(job_id, max_attempts=20, interval=30.0): + """Asynchronously poll until job is ready, exiting early if possible.""" + for attempt in range(max_attempts): + status = await asyncio.to_thread(contextual_client.parse.job_status, job_id) + if status.status == "completed": + return True + elif status.status == "failed": + raise Exception("Parse job failed") + await asyncio.sleep(interval) + return True # give up but don't fail hard + +asyncio.run(wait_for_job_async(parse_response.job_id)) + +# Get results after job completion +results = contextual_client.parse.job_results( + parse_response.job_id, + output_types=['blocks-per-page'] +) + +# Create Chroma collection +openai_ef = embedding_functions.OpenAIEmbeddingFunction( + api_key=os.environ["OPENAI_API_KEY"], + model_name="text-embedding-3-small" +) + +# Create or get existing collection +collection = chroma_client.get_or_create_collection( + name="documents", + embedding_function=openai_ef +) + +# Add parsed content to Chroma +texts, metadatas, ids = [], [], [] + +for page in results.pages: + for block in page.blocks: + if block.type in ['text', 'heading', 'table']: + texts.append(block.markdown) + metadatas.append({ + "page": page.index + 1, + "block_type": block.type + }) + ids.append(f"block_{block.id}") + +collection.add( + documents=texts, + metadatas=metadatas, + ids=ids +) +``` + +{% /Tab %} +{% Tab label="typescript" %} + +```typescript +import ContextualAI, { toFile } from "contextual-client"; +import { ChromaClient, OpenAIEmbeddingFunction } from "chromadb"; +import fs from "node:fs"; + +const contextual = new ContextualAI({ + apiKey: process.env.CONTEXTUAL_AI_API_KEY!, +}); +const chroma = new ChromaClient(); +const embedder = new OpenAIEmbeddingFunction({ + apiKey: process.env.OPENAI_API_KEY!, + model: "text-embedding-3-small", +}); + +const parseRes = await contextual.parse.create({ + raw_file: await toFile(fs.createReadStream("document.pdf"), "document.pdf", { + type: "application/pdf", + }), + parse_mode: "standard", + enable_document_hierarchy: true, +}); + +// Monitor job status (Parse API is asynchronous) +async function waitForJob( + jobId: string, + maxAttempts = 20, + interval = 30000 +): Promise { + for (let attempt = 0; attempt < maxAttempts; attempt++) { + const s = await contextual.parse.jobStatus(jobId); + if (s.status === "completed") return; + if (s.status === "failed") throw new Error("Parse job failed"); + await new Promise((r) => setTimeout(r, interval)); + } +} + +await waitForJob(parseRes.job_id); + +// Get results after job completion +const results = await contextual.parse.jobResults(parseRes.job_id, { + output_types: ["blocks-per-page"], +}); + +// Create or get existing collection +const collection = await chroma.getOrCreateCollection({ + name: "documents", + embeddingFunction: embedder, +}); + +// Add parsed content to Chroma +const texts: string[] = []; +const metadatas: Array> = []; +const ids: string[] = []; + +for (const page of results.pages ?? []) { + for (const block of page.blocks ?? []) { + if (["text", "heading", "table"].includes(block.type)) { + texts.push(block.markdown); + metadatas.push({ page: (page.index ?? 0) + 1, block_type: block.type }); + ids.push(`block_${block.id}`); + } + } +} + +await collection.add({ documents: texts, metadatas, ids }); +``` + +> Note: If your Chroma JS package does not expose `OpenAIEmbeddingFunction`, define a small embedder using the OpenAI SDK instead: + +```typescript +import OpenAI from "openai"; +const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY! }); +const embedder = { + generate: async (texts: string[]) => { + const res = await openai.embeddings.create({ + model: "text-embedding-3-small", + input: texts, + }); + return res.data.map((d) => d.embedding); + }, +} as any; +``` + +{% /Tab %} +{% /Tabs %} + +#### Query Chroma and rerank results with custom instructions + +{% Tabs %} +{% Tab label="python" %} + +```python +# Query Chroma +query = "What are the key findings?" +results = collection.query( + query_texts=[query], + n_results=10 +) + +# Rerank with instruction-following +rerank_response = contextual_client.rerank.create( + query=query, + documents=results['documents'][0], + metadata=[str(m) for m in results['metadatas'][0]], + model="ctxl-rerank-v2-instruct-multilingual", + instruction="Prioritize recent documents. Technical details and specific findings should rank higher than general information." +) + +# Get top documents +top_docs = [ + results['documents'][0][r.index] + for r in rerank_response.results[:5] +] +``` + +{% /Tab %} +{% Tab label="typescript" %} + +```typescript +const query = "What are the key findings?"; +const q = await collection.query({ queryTexts: [query], nResults: 10 }); +const docs: string[] = (q.documents?.[0] ?? []).filter( + (d): d is string => typeof d === "string" +); + +const rerankResponse = await contextual.rerank.create({ + query, + documents: docs, + metadata: (q.metadatas?.[0] ?? []).map((m) => JSON.stringify(m)), + model: "ctxl-rerank-v2-instruct-multilingual", + instruction: + "Prioritize recent documents. Technical details and specific findings should rank higher than general information.", +}); + +const topDocsAll = rerankResponse.results + .slice(0, 5) + .map((r: { index: number }) => (q.documents?.[0] ?? [])[r.index]); +const topDocs: string[] = topDocsAll.filter( + (d): d is string => typeof d === "string" +); +``` + +{% /Tab %} +{% /Tabs %} + +#### Generate grounded response + +{% Tabs %} +{% Tab label="python" %} + +```python +# Generate grounded response +generate_response = contextual_client.generate.create( + messages=[{ + "role": "user", + "content": query + }], + knowledge=top_docs, + model="v1", # Supported models: v1, v2 + avoid_commentary=False, + temperature=0.7 +) + +print("Response:", generate_response.response) +``` + +{% /Tab %} +{% Tab label="typescript" %} + +```typescript +const generateResponse = await contextual.generate.create({ + messages: [{ role: "user", content: query }], + knowledge: topDocs, + model: "v1", // Supported models: v1, v2 + avoid_commentary: false, + temperature: 0.7, +}); + +console.log("Response:", generateResponse.response); +``` + +{% /Tab %} +{% /Tabs %} + +#### Evaluate response quality with LMUnit + +{% Tabs %} +{% Tab label="python" %} + +```python +# Evaluate generated response quality +lmunit_response = contextual_client.lmunit.create( + query=query, + response=generate_response.response, + unit_test="The response should be technically accurate and cite specific findings" +) + +print(f"Quality Score: {lmunit_response.score}") + +# Score interpretation (continuous scale 1-5): +# 5 = Excellent - Fully satisfies criteria +# 4 = Good - Minor issues +# 3 = Acceptable - Some issues +# 2 = Poor - Significant issues +# 1 = Unacceptable - Fails criteria +``` + +{% /Tab %} +{% Tab label="typescript" %} + +```typescript +const lmunitResponse = await contextual.lmUnit.create({ + query, + response: generateResponse.response, + unit_test: + "The response should be technically accurate and cite specific findings", +}); + +console.log("Quality Score:", lmunitResponse.score); +// Score interpretation (continuous scale 1-5): +// 5 = Excellent - Fully satisfies criteria +// 4 = Good - Minor issues +// 3 = Acceptable - Some issues +// 2 = Poor - Significant issues +// 1 = Unacceptable - Fails criteria +``` + +{% /Tab %} +{% /Tabs %} + +## Advanced Usage + +For more advanced usage examples including table extraction, document hierarchy preservation, and multi-document RAG pipelines, please refer to the comprehensive examples in our Jupyter notebooks: + +- [Contextual AI + Chroma Examples](https://github.com/ContextualAI/examples/tree/main/18-contextualai-chroma?utm_campaign=Standalone-api-integration&utm_source=chroma&utm_medium=github&utm_content=repo) + +## Components + +### Parse API + +Advanced document parsing that handles PDFs, DOCX, and PPTX files with: + +- Document hierarchy preservation through parent-child relationships +- Intelligent table extraction with automatic splitting for large tables +- Multiple output formats: markdown-document, markdown-per-page, blocks-per-page +- Figure and caption extraction + +[Parse API Documentation](https://docs.contextual.ai/api-reference/parse/parse-file?utm_campaign=Standalone-api-integration&utm_source=chroma&utm_medium=github&utm_content=repo) + +### Rerank API + +State-of-the-art reranker with instruction-following capabilities: + +- BEIR benchmark-leading accuracy +- Custom reranking instructions for domain-specific requirements +- Handles conflicting retrieval results +- Multi-lingual support + +Models: `ctxl-rerank-v2-instruct-multilingual`, `ctxl-rerank-v2-instruct-multilingual-mini`, `ctxl-rerank-v1-instruct` + +[Rerank API Documentation](https://docs.contextual.ai/api-reference/rerank/rerank?utm_campaign=Standalone-api-integration&utm_source=chroma&utm_medium=github&utm_content=repo) + +### Generate API (GLM) + +Grounded Language Model optimized for minimal hallucinations: + +- Industry-leading groundedness for RAG applications, currently #1 on the [FACTS Grounding benchmark](https://www.kaggle.com/benchmarks/google/facts-grounding) from Google DeepMind +- Knowledge attribution for source transparency +- Conversational context support +- Optimized for enterprise use cases + +**Supported Models:** `v1`, `v2` + +[Generate API Documentation](https://docs.contextual.ai/api-reference/generate/generate?utm_campaign=Standalone-api-integration&utm_source=chroma&utm_medium=github&utm_content=repo) + +### LMUnit API + +Natural language unit testing for LLM response evaluation: + +- State-of-the-art response quality assessment +- Structured testing methodology +- Domain-agnostic evaluation framework +- API-based evaluation at scale + +**Scoring Scale (Continuous 1-5):** + +- **5**: Excellent - Fully satisfies criteria +- **4**: Good - Minor issues +- **3**: Acceptable - Some issues +- **2**: Poor - Significant issues +- **1**: Unacceptable - Fails criteria + +[LMUnit Documentation](https://docs.contextual.ai/api-reference/lmunit/lmunit?utm_campaign=Standalone-api-integration&utm_source=chroma&utm_medium=github&utm_content=repo)