|
| 1 | +# |
| 2 | +# CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP) |
| 3 | +# (C) Cloudera, Inc. 2024 |
| 4 | +# All rights reserved. |
| 5 | +# |
| 6 | +# Applicable Open Source License: Apache 2.0 |
| 7 | +# |
| 8 | +# |
| 9 | +# This code is provided to you pursuant a written agreement with |
| 10 | +# (i) Cloudera, Inc. or (ii) a third-party authorized to distribute |
| 11 | +# this code. If you do not have a written agreement with Cloudera nor |
| 12 | +# with an authorized and properly licensed third party, you do not |
| 13 | +# have any rights to access nor to use this code. |
| 14 | +# |
| 15 | +# Absent a written agreement with Cloudera, Inc. ("Cloudera") to the |
| 16 | +# contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY |
| 17 | +# KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED |
| 18 | +# WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO |
| 19 | +# IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND |
| 20 | +# FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU, |
| 21 | +# AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS |
| 22 | +# ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE |
| 23 | +# OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY |
| 24 | +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR |
| 25 | +# CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES |
| 26 | +# RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF |
| 27 | +# BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF |
| 28 | +# DATA. |
| 29 | +# |
| 30 | + |
| 31 | +"""This script reconstructs RAG Studio's databases/doc_summary_index_global/index_store.json if somehow it (and only it) is corrupted. |
| 32 | +
|
| 33 | +NOTE: |
| 34 | +
|
| 35 | +* Make sure to back up the global directory! |
| 36 | +
|
| 37 | +Requirements: |
| 38 | +
|
| 39 | +* databases/doc_summary_index_global/docstore.json must exist. |
| 40 | +* Run this script from the llm-service/ directory: |
| 41 | + ```python |
| 42 | + uv run python scripts/restore_global_index.py |
| 43 | + ``` |
| 44 | +
|
| 45 | +""" |
| 46 | +import json |
| 47 | +import os |
| 48 | +import sys |
| 49 | +import uuid |
| 50 | +from collections import defaultdict |
| 51 | +from time import sleep |
| 52 | +from typing import Any, cast |
| 53 | + |
| 54 | +from llama_index.core.schema import ( |
| 55 | + NodeRelationship, |
| 56 | + ObjectType, |
| 57 | +) |
| 58 | +from llama_index.core.storage.docstore.types import ( |
| 59 | + DEFAULT_PERSIST_FNAME as DEFAULT_DOC_STORE_FILENAME, |
| 60 | +) |
| 61 | +from llama_index.core.storage.index_store.types import ( |
| 62 | + DEFAULT_PERSIST_FNAME as DEFAULT_INDEX_STORE_FILENAME, |
| 63 | +) |
| 64 | +from pydantic import BaseModel |
| 65 | + |
| 66 | +sys.path.append(".") |
| 67 | +from app.ai.indexing.summary_indexer import SummaryIndexer |
| 68 | + |
| 69 | +GLOBAL_PERSIST_DIR = SummaryIndexer._SummaryIndexer__persist_root_dir() # type: ignore |
| 70 | +GLOBAL_INDEX_STORE_FILEPATH = os.path.join( |
| 71 | + GLOBAL_PERSIST_DIR, |
| 72 | + DEFAULT_INDEX_STORE_FILENAME, |
| 73 | +) |
| 74 | +GLOBAL_DOC_STORE_FILEPATH = os.path.join( |
| 75 | + GLOBAL_PERSIST_DIR, |
| 76 | + DEFAULT_DOC_STORE_FILENAME, |
| 77 | +) |
| 78 | + |
| 79 | + |
| 80 | +def load_doc_store() -> dict[str, Any]: |
| 81 | + with open(GLOBAL_DOC_STORE_FILEPATH, "r") as f: |
| 82 | + doc_store = json.load(f) |
| 83 | + return cast(dict[str, Any], doc_store) |
| 84 | + |
| 85 | + |
| 86 | +def write_index_store(index_store: dict[str, Any]) -> None: |
| 87 | + with open(GLOBAL_INDEX_STORE_FILEPATH, "w") as f: |
| 88 | + json.dump(index_store, f) |
| 89 | + |
| 90 | + |
| 91 | +class DataSource(BaseModel): |
| 92 | + id: int |
| 93 | + summary_id: uuid.UUID |
| 94 | + doc_summary_ids: list[uuid.UUID] |
| 95 | + |
| 96 | + |
| 97 | +def build_index_store(data_sources: list[DataSource]) -> dict[str, Any]: |
| 98 | + id_ = str(uuid.uuid4()) |
| 99 | + |
| 100 | + data = { |
| 101 | + "index_id": id_, |
| 102 | + "summary": None, |
| 103 | + "summary_id_to_node_ids": { |
| 104 | + str(data_source.summary_id): list(map(str, data_source.doc_summary_ids)) |
| 105 | + for data_source in data_sources |
| 106 | + }, |
| 107 | + "node_id_to_summary_id": { |
| 108 | + str(doc_summary_id): str(data_source.summary_id) |
| 109 | + for data_source in data_sources |
| 110 | + for doc_summary_id in data_source.doc_summary_ids |
| 111 | + }, |
| 112 | + "doc_id_to_summary_id": { |
| 113 | + str(data_source.id): str(data_source.summary_id) |
| 114 | + for data_source in data_sources |
| 115 | + }, |
| 116 | + } |
| 117 | + |
| 118 | + return { |
| 119 | + "index_store/data": { |
| 120 | + id_: { |
| 121 | + "__type__": "document_summary", |
| 122 | + "__data__": json.dumps(data), |
| 123 | + } |
| 124 | + } |
| 125 | + } |
| 126 | + |
| 127 | + |
| 128 | +def read_doc_store(doc_store: dict[str, Any]) -> list[DataSource]: |
| 129 | + data_sources: dict[str, dict[str, Any]] = {} |
| 130 | + documents: dict[str, dict[str, Any]] = {} |
| 131 | + for summary_id, summary in doc_store["docstore/data"].items(): |
| 132 | + match summary_type := summary["__type__"]: |
| 133 | + case ObjectType.TEXT: # data source |
| 134 | + data_sources[summary_id] = summary |
| 135 | + case ObjectType.DOCUMENT: # document |
| 136 | + documents[summary_id] = summary |
| 137 | + case _: |
| 138 | + raise ValueError( |
| 139 | + f"Unrecognized type for {summary_type} summary {summary_id}" |
| 140 | + ) |
| 141 | + |
| 142 | + data_source_documents: dict[str, list[str]] = defaultdict(list) |
| 143 | + for summary in documents.values(): |
| 144 | + summary = summary["__data__"] |
| 145 | + source = summary["relationships"][NodeRelationship.SOURCE] |
| 146 | + |
| 147 | + data_source_documents[source["node_id"]].append(summary["id_"]) |
| 148 | + |
| 149 | + ret: list[DataSource] = [] |
| 150 | + for summary in data_sources.values(): |
| 151 | + summary = summary["__data__"] |
| 152 | + source = summary["relationships"][NodeRelationship.SOURCE] |
| 153 | + |
| 154 | + data_source = DataSource( |
| 155 | + id=source["node_id"], |
| 156 | + summary_id=summary["id_"], |
| 157 | + doc_summary_ids=data_source_documents[source["node_id"]], # type: ignore |
| 158 | + ) |
| 159 | + print( |
| 160 | + f"Collected data source {data_source.id}", |
| 161 | + f"with {len(data_source.doc_summary_ids)} documents.", |
| 162 | + ) |
| 163 | + ret.append(data_source) |
| 164 | + return ret |
| 165 | + |
| 166 | + |
| 167 | +def main() -> None: |
| 168 | + doc_store = load_doc_store() |
| 169 | + data_sources = read_doc_store(doc_store) |
| 170 | + index_store = build_index_store(data_sources) |
| 171 | + |
| 172 | + print( |
| 173 | + "Waiting 5 seconds before writing index", |
| 174 | + "in case we want to cancel or something.", |
| 175 | + ) |
| 176 | + sleep(5) |
| 177 | + write_index_store(index_store) |
| 178 | + print("It is written.") |
| 179 | + |
| 180 | + |
| 181 | +if __name__ == "__main__": |
| 182 | + main() |
0 commit comments