diff --git a/ultralytics_yolov5.md b/ultralytics_yolov5.md
index 88dfa8d..ebaa07a 100644
--- a/ultralytics_yolov5.md
+++ b/ultralytics_yolov5.md
@@ -18,18 +18,17 @@ demo-model-link: https://huggingface.co/spaces/pytorch/YOLOv5
## Before You Start
-Start from a **Python>=3.8** environment with **PyTorch>=1.7** installed. To install PyTorch see [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/). To install YOLOv5 dependencies:
+**Python>=3.8**과 **PyTorch>=1.7** 환경을 갖춘 상태에서 시작해주세요. PyTorch를 설치해야 한다면 [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/) 를 참고하세요. YOLOv5 dependency를 설치하려면:
```bash
-pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt # install dependencies
+pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt # 필요한 모듈 설치
```
-
## Model Description
-[YOLOv5](https://ultralytics.com/yolov5) 🚀 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
+[YOLOv5](https://ultralytics.com/yolov5) 🚀는 compound-scaling을 사용하고 COCO dataset으로 학습한 모델들 중 하나이고, Test Time Augmentation (TTA), 모델 앙상블(model ensembling), 하이퍼파라미터 평가(hyperparameter evolution), 그리고 ONNX, CoreML과 TFLite로 변환(export)을 간단하게 해주는 기능이 포함되어 있습니다.
|Model |size
(pixels) |mAPval
0.5:0.95 |mAPtest
0.5:0.95 |mAPval
0.5 |Speed
V100 (ms) | |params
(M) |FLOPS
640 (B)
|--- |--- |--- |--- |--- |--- |---|--- |---
@@ -40,9 +39,10 @@ pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requ
|[YOLOv5x6](https://github.com/ultralytics/yolov5/releases) TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
- Table Notes (click to expand)
+ 표에 대한 설명 (확장하려면 클릭)
* APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
+ * APtest는
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* SpeedGPU averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
@@ -53,7 +53,7 @@ pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requ

- Figure Notes (click to expand)
+ 그림에 대한 설명 (확장하려면 클릭)
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
@@ -64,27 +64,27 @@ pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requ
## Load From PyTorch Hub
-This example loads a pretrained **YOLOv5s** model and passes an image for inference. YOLOv5 accepts **URL**, **Filename**, **PIL**, **OpenCV**, **Numpy** and **PyTorch** inputs, and returns detections in **torch**, **pandas**, and **JSON** output formats. See our [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36) for details.
+이 예제에서는 사전 훈련된(pretrained) **YOLOv5s** 모델을 불러와 이미지에 대해 추론을 진행합니다. YOLOv5s는 **URL**, **파일 이름**, **PIL**, **OpenCV**, **Numpy**와 **PyTorch** 형식의 입력을 받고, **torch**, **pandas**, **JSON** 출력 형태로 탐지 결과를 반환합니다. 자세히 알고 싶으면 [YOLOv5 파이토치 허브 튜토리얼](https://github.com/ultralytics/yolov5/issues/36) 을 참고하세요.
```python
import torch
-# Model
+# 모델
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
-# Images
-imgs = ['https://ultralytics.com/images/zidane.jpg'] # batch of images
+# 이미지
+imgs = ['https://ultralytics.com/images/zidane.jpg'] # 이미지들의 배치(Batch)
-# Inference
+# 추론
results = model(imgs)
-# Results
+# 결과
results.print()
-results.save() # or .show()
+results.save() # 혹은 .show()
-results.xyxy[0] # img1 predictions (tensor)
-results.pandas().xyxy[0] # img1 predictions (pandas)
+results.xyxy[0] # img1에 대한 예측 (tensor)
+results.pandas().xyxy[0] # img1에 대한 예측 (pandas)
# xmin ymin xmax ymax confidence class name
# 0 749.50 43.50 1148.0 704.5 0.874023 0 person
# 1 433.50 433.50 517.5 714.5 0.687988 27 tie
@@ -101,7 +101,6 @@ results.pandas().xyxy[0] # img1 predictions (pandas)
## Contact
-**Issues should be raised directly in https://github.com/ultralytics/yolov5.** For business inquiries or professional support requests please visit [https://ultralytics.com](https://ultralytics.com) or email Glenn Jocher at [glenn.jocher@ultralytics.com](mailto:glenn.jocher@ultralytics.com).
-
+**이슈가 생기면 즉시 https://github.com/ultralytics/yolov5 로 알려주세요.** 비즈니스 상의 문의나 전문적인 지원 요청은 [https://ultralytics.com](https://ultralytics.com) 을 방문하거나 Glenn Jocher의 이메일인 [glenn.jocher@ultralytics.com](mailto:glenn.jocher@ultralytics.com) 으로 연락 주세요.