Skip to content

Commit 88de611

Browse files
Merge pull request #64 from compbiocore/develop
Update docs for Docker
2 parents 1e705b7 + 6107ef4 commit 88de611

12 files changed

+38
-344
lines changed

Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
name = "VariantVisualization"
22
uuid = "7f8bf45c-0ad5-53b5-97e6-33c1305e0aa4"
33
authors = ["George Tollefson <[email protected]>"]
4-
version = "0.3.8"
4+
version = "0.3.9"
55

66
[deps]
77
ArgParse = "c7e460c6-2fb9-53a9-8c5b-16f535851c63"

README.md

Lines changed: 17 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# VariantVisualization.jl
1+
# VIVA: A VCF File Visualization Tool and VariantVisualization.jl
22
## Visualization of Variants
33

44

@@ -11,7 +11,7 @@
1111

1212
VariantVisualization.jl is a package we built specifically to power the genetics visualization tool, *VIVA*.
1313

14-
*VIVA* is a user-friendly command line tool for creating publication quality graphics from Variant Call Format (VCF) files. It has been designed for clinicians and bioinformaticians to explore their VCF files visually. In a single command, users can extract genotype or read depth information and plot trends in interactive categorical heatmaps and scatter plots of average read depth values. VIVA offers a robust set of filters to select variants and samples of interest for analysis. VIVA is especially useful in early data exploration for identifying batch effect and sources of poor read depth, as well as identifying distribution of disease causing variants in a set of clinical samples.
14+
*VIVA* is a user-friendly command line tool for creating publication quality graphics from Variant Call Format (VCF) files. It has been designed for clinicians and bioinformaticians to explore their VCF files visually. In a single command, users can extract genotype or read depth information and plot trends in interactive categorical heatmaps and scatter plots of average read depth values. VIVA offers a robust set of filters to select variants and samples of interest for analysis. VIVA is especially useful in early data exploration for identifying batch effect and sources of poor read depth in sequencing experiments, as well as identifying distribution of disease causing variants in a set of clinical samples.
1515

1616

1717
## Getting Started:
@@ -20,6 +20,8 @@ Note: Once you have set up VIVA, you can quickly run the command line tool [EXAM
2020

2121
## Installation
2222

23+
Read the [installation documentation](https://compbiocore.github.io/VariantVisualization.jl/latest/installation/) for complete installation details.
24+
2325
### Supported Operating Systems:
2426

2527
macOS ( Sierra, High Sierra, and Mojave ), Windows, and Linux.
@@ -60,7 +62,7 @@ Then double-click the Docker.app in the Applications folder to start Docker. You
6062

6163
#### Using Docker
6264

63-
*Note* You must use the flag `--save_remotely` when running VIVA by using Docker.
65+
*Note*: You must use the flag `--save_remotely` when running VIVA by using Docker.
6466

6567
Once Docker is running, you can run VIVA by running the Docker commands below in the Mac/Linux terminal or Windows PowerShell.
6668

@@ -78,7 +80,7 @@ Make sure to add your project VCF files to that folder. That directory will be m
7880

7981
##### Run the VIVA Command Line Tool from a Docker image:
8082

81-
*Note* Remember, you must use the flag `--save_remotely` when running VIVA by using Docker.
83+
*Note*: Remember, you must use the flag `--save_remotely` when running VIVA by using Docker.
8284

8385
- On Mac or Linux:
8486
```shell
@@ -87,7 +89,7 @@ docker run -it --rm -v "$PWD":/data compbiocore/viva-cli --save_remotely arg1 ar
8789

8890
- Example run:
8991
```shell
90-
docker run -it --rm -v "$PWD":/data compbiocore/viva-cli --save_remotely -f file.vcf -p -s pdf
92+
docker run -it --rm -v "$PWD":/data compbiocore/viva-cli --save_remotely -f file.vcf -p
9193
```
9294

9395
- On Windows:
@@ -97,7 +99,7 @@ docker run -it --rm -v "${pwd}":/data compbiocore/viva-cli --save_remotely arg1
9799

98100
- Example run:
99101
```shell
100-
docker run -it --rm -v "${pwd}":/data compbiocore/viva-cli --save_remotely -f file.vcf -p -s pdf
102+
docker run -it --rm -v "${pwd}":/data compbiocore/viva-cli --save_remotely -f file.vcf -p
101103
```
102104

103105
##### Run the VIVA Jupyter Notebook from a Docker image:
@@ -106,14 +108,20 @@ Copy and run the following line from the terminal or Windows PowerShell:
106108

107109
- On Mac or Linux:
108110
```shell
109-
docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "$PWD":/notebook/data compbiocore/viva-notebook
111+
docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "$PWD":/home/jovyan/notebook/data compbiocore/viva-notebook
110112
```
113+
114+
Go to the following url in your internet browser. You'll receive a token to enter into the url.
115+
111116
Go to `http://0.0.0.0:8888/?token=<enter token here>`
112117

113118
- On Windows:
114119
```shell
115-
docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "${pwd}":/notebook/data compbiocore/viva-notebook
120+
docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "${pwd}":/home/jovyan/notebook/data compbiocore/viva-notebook
116121
```
122+
123+
Go to the following url in your internet browser. You'll receive a token to enter into the url.
124+
117125
Go to `http://0.0.0.0:8888/?token=<enter token here>`
118126

119127
[Click here](https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html) for more information about Jupyter Docker Images.
@@ -131,7 +139,7 @@ docker-compose up viva-notebook
131139

132140
- Command Line Tool
133141
```shell
134-
docker-compose run viva -f --save_remotely /data/file.vcf arg2 arg3 ...
142+
docker-compose run viva -f file.vcf --save_remotely arg3 arg4 ...
135143
```
136144

137145
### Latest Features

docs/src/examples.md

Lines changed: 4 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -3,9 +3,9 @@
33
To run examples:
44

55
1. Install Julia and the VariantVisualization.jl package
6-
2. Download the five test files found [here](https://github.com/compbiocore/VariantVisualization.jl/tree/master/test/test_files) and put them into a working directory with the viva script.
7-
3. Open the command line (Terminal or Powershell), copy the provided commands into the command line prompt, and press enter.
8-
4. Your first viva run will take longer than usual (several minutes) because of the way Julia compiles packages. All subsequent runs will be much faster. Each example should take 30-50 seconds to run and you should see the same outputs as those below each demo.
6+
2. Download the five test files found [here](https://github.com/compbiocore/VariantVisualization.jl/tree/master/test/test_files) and put them into a working directory with the viva script.
7+
3. Open the command line (Terminal or Powershell), copy the provided commands into the command line prompt, and press enter.
8+
4. Your first viva run will take longer than usual (several minutes) because of the way Julia compiles packages. All subsequent runs will be much faster. Each example should take 30-50 seconds to run and you should see the same outputs as those below each demo.
99

1010
We encourage you to also run these examples without the flag `-s png` to save and view interactive HTML graphics with cursor hovertext, zooming, panning, and screen capture features. View HTML graphics in your browser by opening the HTML file.
1111

@@ -22,7 +22,7 @@ julia viva -f test_4X_191.vcf -t Default_Options -s png
2222

2323
## Grouping Samples by Metadata Traits and Generating all Four Plots
2424

25-
Group samples by sequencing facility and generate heatmaps of genotype and read depth values as well as scatter plots of average read depth for both all selected samples and all selected variant positions.
25+
Group samples by sequencing facility and generate heatmaps of genotype and read depth values as well as scatter plots of average read depth for both all selected samples and all selected variant positions.
2626

2727
You can find grouping options [here](https://compbiocore.github.io/VariantVisualization.jl/stable/filtering_vcf/#selecting-and-grouping-samples).
2828

@@ -37,14 +37,3 @@ julia viva -f test_4X_191.vcf -t Grouped_by_Sequencing_Site -g sample_metadata_m
3737
![Grouped Variant Average Read Depth Scatter Plot](assets/Average_Variant_Read_Depthtest_4X_191.vcf.png)
3838

3939
![Grouped Sample Average Read Depth Scatter Plot](assets/Average_Sample_Read_Depth_test_4X_191.vcf.png)
40-
41-
## Genomic Range and Samples Selection - Genotype and Read Depth Heatmaps with Variant Position Labels
42-
43-
Generate heatmaps of genotype and read depth values of variants selected within a genomic range, in this case, chromosome 4, nucleotides 200000-500000, with y-axis variant position labels.
44-
45-
```
46-
julia viva -f test_4X_191.vcf -t Genomic_Range -r chr4:3076150-3076390 -y positions --select_samples select_samples_list.txt -s png
47-
```
48-
![Genomic Range Genotype Heatmap](assets/Genotype_Genomic_Range.png)
49-
![Genomic Range Read Depth Heatmap](assets/Read_Depth_Genomic_Range.png)
50-

docs/src/installation.md

Lines changed: 13 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,8 @@ Sierra, High Sierra, and Mojave.
1313

1414
Windows 10, Windows 7.
1515

16+
To install Julia on Windows, you can follow the [platform specific instructions](https://julialang.org/downloads/platform.html).
17+
1618
#### Linux
1719

1820
*Note*: To run on remote compute clusters, you may need to load opengl module along with julia/1.1.0.
@@ -70,7 +72,7 @@ docker run -it --rm -v "$PWD":/data compbiocore/viva-cli --save_remotely arg1 ar
7072

7173
- Example run:
7274
```shell
73-
docker run -it --rm -v "$PWD":/data compbiocore/viva-cli --save_remotely -f file.vcf -p -s pdf
75+
docker run -it --rm -v "$PWD":/data compbiocore/viva-cli --save_remotely -f file.vcf -p
7476
```
7577

7678
- On Windows:
@@ -80,7 +82,7 @@ docker run -it --rm -v "${pwd}":/data compbiocore/viva-cli --save_remotely arg1
8082

8183
- Example run:
8284
```shell
83-
docker run -it --rm -v "${pwd}":/data compbiocore/viva-cli --save_remotely -f file.vcf -p -s pdf
85+
docker run -it --rm -v "${pwd}":/data compbiocore/viva-cli --save_remotely -f file.vcf -p
8486
```
8587

8688
##### Run the VIVA Jupyter Notebook from a Docker image:
@@ -89,14 +91,20 @@ Copy and run the following line from the terminal or Windows PowerShell:
8991

9092
- On Mac or Linux:
9193
```shell
92-
docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "$PWD":/notebook/data compbiocore/viva-notebook
94+
docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "$PWD":/home/jovyan/notebook/data compbiocore/viva-notebook
9395
```
96+
97+
Go to the following url in your internet browser. You'll receive a token to enter into the url.
98+
9499
Go to `http://0.0.0.0:8888/?token=<enter token here>`
95100

96101
- On Windows:
97102
```shell
98-
docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "${pwd}":/notebook/data compbiocore/viva-notebook
103+
docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "${pwd}":/home/jovyan/notebook/data compbiocore/viva-notebook
99104
```
105+
106+
Go to the following url in your internet browser. You'll receive a token to enter into the url.
107+
100108
Go to `http://0.0.0.0:8888/?token=<enter token here>`
101109

102110
[Click here](https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html) for more information about Jupyter Docker Images.
@@ -114,7 +122,7 @@ docker-compose up viva-notebook
114122

115123
- Command Line Tool
116124
```shell
117-
docker-compose run viva -f --save_remotely /data/file.vcf arg2 arg3 ...
125+
docker-compose run viva -f file.vcf --save_remotely arg3 arg4 ...
118126
```
119127

120128
-----

docs/src/plotting.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,6 @@ julia viva -f example.vcf -m genotype
3030

3131
Generate scatter plots of average read depths across either samples or variants. Caps outlier read depth values at 100 to optimize resolution of visualization of values under 50.
3232

33-
3433
*flags*: `--avg_dp`
3534

3635
*arguments*: `samples`, `variants`, or `samples,variants`
@@ -99,7 +98,7 @@ Choose an option for displaying y-axis ticklabels showing the genomic position o
9998

10099
default: `chromosomes`
101100

102-
*Note*: We don't recommend using the `positions` option when visualizing samples grouped with a metadata matrix. This will show labels that are meant to be hidden that exist as an artifact of constructing the metadata trait colorbars which are sized dynamically to make up 1/20th of the plot height. If you must use the `positions` option in this scenario, we recommend editing the final plot in a program like Powerpoint to "cover up" the multitude of tick labels that will appear beside metadata trait rows.
101+
*Note*: We don't recommend using the `positions` option when visualizing samples grouped with a metadata matrix. This will show labels that are meant to be hidden that exist as an artifact of constructing the metadata trait colorbars which are sized dynamically to make up 1/20th of the plot height. If you must use the `positions` option in this scenario, we recommend editing the final plot in a program like Powerpoint to "cover up" the multitude of tick labels that will appear beside metadata trait rows.
103102

104103
```
105104
julia viva -f example.vcf `-y` `hoverlabels_only`

test/.DS_Store

0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)