|
| 1 | +#if canImport(_Differentiation) |
| 2 | + |
| 3 | +import ComplexModule |
| 4 | + |
| 5 | +extension Complex: @retroactive Differentiable where RealType: Differentiable, RealType.TangentVector == RealType { |
| 6 | + public typealias TangentVector = Self |
| 7 | + |
| 8 | + @inlinable |
| 9 | + public mutating func move(by offset: Complex<RealType>) { |
| 10 | + self += offset |
| 11 | + } |
| 12 | +} |
| 13 | + |
| 14 | +extension Complex where RealType: Differentiable, RealType.TangentVector == RealType { |
| 15 | + @derivative(of: init(_:_:)) |
| 16 | + @_transparent |
| 17 | + public static func _vjpInit(_ real: RealType, _ imaginary: RealType) -> (value: Complex, pullback: (Complex) -> (RealType, RealType)) { |
| 18 | + ( |
| 19 | + value: .init(real, imaginary), |
| 20 | + pullback: { v in (v.real, v.imaginary) } |
| 21 | + ) |
| 22 | + } |
| 23 | + |
| 24 | + @derivative(of: init(_:)) |
| 25 | + @_transparent |
| 26 | + public static func _vjpInit(_ real: RealType) -> (value: Complex, pullback: (Complex) -> RealType) { |
| 27 | + ( |
| 28 | + value: .init(real), |
| 29 | + pullback: { v in v.real } |
| 30 | + ) |
| 31 | + } |
| 32 | + |
| 33 | + @derivative(of: init(imaginary:)) |
| 34 | + @_transparent |
| 35 | + public static func _vjpInit(imaginary: RealType) -> (value: Complex, pullback: (Complex) -> RealType) { |
| 36 | + ( |
| 37 | + value: .init(imaginary: imaginary), |
| 38 | + pullback: { v in v.imaginary } |
| 39 | + ) |
| 40 | + } |
| 41 | + |
| 42 | + @derivative(of: real) |
| 43 | + @_transparent |
| 44 | + public func _vjpReal() -> (value: RealType, pullback: (RealType) -> Complex) { |
| 45 | + (value: real, pullback: { v in Complex(v, .zero) }) |
| 46 | + } |
| 47 | + |
| 48 | + @derivative(of: real.set) |
| 49 | + @_transparent |
| 50 | + public mutating func _vjpRealSet(_ newValue: RealType) -> (value: Void, pullback: (inout Complex) -> RealType) { |
| 51 | + self.real = newValue |
| 52 | + return ( |
| 53 | + value: (), |
| 54 | + pullback: { v in |
| 55 | + let real = v.real |
| 56 | + v.real = .zero |
| 57 | + return real |
| 58 | + } |
| 59 | + ) |
| 60 | + } |
| 61 | + |
| 62 | + @derivative(of: imaginary) |
| 63 | + @_transparent |
| 64 | + public func _vjpImaginary() -> (value: RealType, pullback: (RealType) -> Complex) { |
| 65 | + (value: imaginary, pullback: { v in Complex(.zero, v) }) |
| 66 | + } |
| 67 | + |
| 68 | + @derivative(of: imaginary.set) |
| 69 | + @_transparent |
| 70 | + public mutating func _vjpImaginarySet(_ newValue: RealType) -> (value: Void, pullback: (inout Complex) -> RealType) { |
| 71 | + self.imaginary = newValue |
| 72 | + return ( |
| 73 | + value: (), |
| 74 | + pullback: { v in |
| 75 | + let imaginary = v.imaginary |
| 76 | + v.imaginary = .zero |
| 77 | + return imaginary |
| 78 | + } |
| 79 | + ) |
| 80 | + } |
| 81 | + |
| 82 | + @derivative(of: +) |
| 83 | + @_transparent |
| 84 | + public static func _vjpAdd(z: Complex, w: Complex) -> (value: Complex, pullback: (Complex) -> (Complex, Complex)) { |
| 85 | + (value: z + w, pullback: { v in (v, v) }) |
| 86 | + } |
| 87 | + |
| 88 | + @derivative(of: +=) |
| 89 | + @_transparent |
| 90 | + public static func _vjpAddAssign(z: inout Complex, w: Complex) -> (value: Void, pullback: (inout Complex) -> (Complex)) { |
| 91 | + z += w |
| 92 | + return (value: (), pullback: { v in v }) |
| 93 | + } |
| 94 | + |
| 95 | + @derivative(of: -) |
| 96 | + @_transparent |
| 97 | + public static func _vjpSubtract(z: Complex, w: Complex) -> (value: Complex, pullback: (Complex) -> (Complex, Complex)) { |
| 98 | + (value: z - w, pullback: { v in (v, -v) }) |
| 99 | + } |
| 100 | + |
| 101 | + @derivative(of: -=) |
| 102 | + @_transparent |
| 103 | + public static func _vjpSubtractAssign(z: inout Complex, w: Complex) -> (value: Void, pullback: (inout Complex) -> (Complex)) { |
| 104 | + z -= w |
| 105 | + return (value: (), pullback: { v in -v }) |
| 106 | + } |
| 107 | + |
| 108 | + @derivative(of: *) |
| 109 | + @_transparent |
| 110 | + public static func _vjpMultiply(z: Complex, w: Complex) -> (value: Complex, pullback: (Complex) -> (Complex, Complex)) { |
| 111 | + (value: z * w, pullback: { v in (w * v, z * v) }) |
| 112 | + } |
| 113 | + |
| 114 | + @derivative(of: *=) |
| 115 | + @_transparent |
| 116 | + public static func _vjpMultiplyAssign(z: inout Complex, w: Complex) -> (value: Void, pullback: (inout Complex) -> (Complex)) { |
| 117 | + defer { z *= w } |
| 118 | + return ( |
| 119 | + value: (), |
| 120 | + pullback: { [z = z] v in |
| 121 | + let drhs = z * v |
| 122 | + v *= w |
| 123 | + return drhs |
| 124 | + } |
| 125 | + ) |
| 126 | + } |
| 127 | + |
| 128 | + @derivative(of: /) |
| 129 | + @_transparent |
| 130 | + public static func _vjpDivide(z: Complex, w: Complex) -> (value: Complex, pullback: (Complex) -> (Complex, Complex)) { |
| 131 | + (value: z / w, pullback: { v in (v / w, -z / (w * w) * v) }) |
| 132 | + } |
| 133 | + |
| 134 | + @derivative(of: /=) |
| 135 | + @_transparent |
| 136 | + public static func _vjpDivideAssign(z: inout Complex, w: Complex) -> (value: Void, pullback: (inout Complex) -> (Complex)) { |
| 137 | + defer { z /= w } |
| 138 | + return ( |
| 139 | + value: (), |
| 140 | + pullback: { [z = z] v in |
| 141 | + let drhs = -z / (w * w) * v |
| 142 | + v /= w |
| 143 | + return drhs |
| 144 | + } |
| 145 | + ) |
| 146 | + } |
| 147 | + |
| 148 | + @derivative(of: conjugate) |
| 149 | + @_transparent |
| 150 | + public func _vjpConjugate() -> (value: Complex, pullback: (Complex) -> Complex) { |
| 151 | + (value: conjugate, pullback: { v in v.conjugate }) |
| 152 | + } |
| 153 | +} |
| 154 | + |
| 155 | +#endif |
0 commit comments