|
9 | 9 | #############################################################################
|
10 | 10 | ##
|
11 | 11 |
|
12 |
| -#@local C, D, D1, D2, D3, D3_edges, DD |
| 12 | +#@local C, D, D1, D2, D3, D3_edges, DD, S, T, map1, map2 |
13 | 13 | #@local G, G1, L, TestPartialOrderDigraph
|
14 | 14 | #@local TestPartialOrderDigraph2, TestUnion, a, adj, b, comps, copy, d, e
|
15 | 15 | #@local edges, edges2, func, g, gr, gr1, gr2, gr3, gr4, gri, grrt, grt, h, i
|
@@ -2869,6 +2869,122 @@ gap> D := CycleDigraph(5);;
|
2869 | 2869 | gap> IsOrderIdeal(D, [1]);
|
2870 | 2870 | Error, the 1st argument (a digraph) must be a partial order digraph
|
2871 | 2871 |
|
| 2872 | +# AmalgamDigraphs |
| 2873 | +gap> D1 := Digraph([[2, 3], [1, 3], [1, 2], [2], [3, 4]]);; |
| 2874 | +gap> D2 := Digraph([[2, 6], [1, 3, 5], [4], [3], [4, 6], [1, 5]]);; |
| 2875 | +gap> S := InducedSubdigraph(D1, [2, 3, 4, 5]);; |
| 2876 | +gap> T := DigraphEmbedding(S, D2);; |
| 2877 | +gap> AmalgamDigraphs(D2, D1, S, T); |
| 2878 | +[ <immutable digraph with 7 vertices, 15 edges>, |
| 2879 | + Transformation( [ 7, 4, 3, 5, 2, 6, 7 ] ) ] |
| 2880 | +gap> AmalgamDigraphs(D1, D2, S, IdentityTransformation, T); |
| 2881 | +Error, the 4th argument (a transformation) is not a digraph embedding from the\ |
| 2882 | + 3rd argument (a digraph) into the 1st argument (a digraph) |
| 2883 | +gap> D1 := Digraph([ |
| 2884 | +> [2, 3], [1, 3, 4, 6], [1, 2, 5, 7], [2, 6], [3, 7], [2, 4, 7, 8], |
| 2885 | +> [3, 5, 6, 8], [6, 7]]);; |
| 2886 | +gap> D2 := Digraph([ |
| 2887 | +> [2, 3], [1, 4], [1, 5], [2, 5, 6], [3, 4, 7], [4, 7], [5, 6]]);; |
| 2888 | +gap> S := InducedSubdigraph(D1, [2, 3, 6, 7]);; |
| 2889 | +gap> T := DigraphEmbedding(S, D1);; |
| 2890 | +gap> AmalgamDigraphs(D1, D2, S, T, IdentityTransformation); |
| 2891 | +Error, the 5th argument (a transformation) is not a digraph embedding from the\ |
| 2892 | + 3rd argument (a digraph) into the 2nd argument (a digraph) |
| 2893 | +gap> D1 := Digraph([[2, 5], [1, 3], [4], [2, 5], [1, 4]]);; |
| 2894 | +gap> D2 := Digraph([[2, 3], [1, 4], [1, 2], [3]]);; |
| 2895 | +gap> S := Digraph([[2], [3], [1]]);; |
| 2896 | +gap> map1 := DigraphEmbedding(S, D1);; |
| 2897 | +gap> map2 := DigraphEmbedding(S, D2);; |
| 2898 | +gap> AmalgamDigraphs(D1, D2, S, map1, map2); |
| 2899 | +[ <immutable digraph with 6 vertices, 13 edges>, |
| 2900 | + Transformation( [ 6, 2, 4, 3, 5, 6 ] ) ] |
| 2901 | +gap> D1 := DigraphImmutableCopy(D1); |
| 2902 | +<immutable digraph with 5 vertices, 9 edges> |
| 2903 | +gap> AmalgamDigraphs(D1, D2, S, map1, map2); |
| 2904 | +[ <immutable digraph with 6 vertices, 13 edges>, |
| 2905 | + Transformation( [ 6, 2, 4, 3, 5, 6 ] ) ] |
| 2906 | +gap> D1 := DigraphMutableCopy(D1); |
| 2907 | +<mutable digraph with 5 vertices, 9 edges> |
| 2908 | +gap> AmalgamDigraphs(D1, D2, S, map1, map2); |
| 2909 | +[ <immutable digraph with 6 vertices, 13 edges>, |
| 2910 | + Transformation( [ 6, 2, 4, 3, 5, 6 ] ) ] |
| 2911 | +gap> D1; |
| 2912 | +<immutable digraph with 6 vertices, 13 edges> |
| 2913 | +gap> D1 := Digraph([[2, 5], [1, 3], [4], [2, 5], [1, 4]]);; |
| 2914 | +gap> D2 := DigraphMutableCopy(D2); |
| 2915 | +<mutable digraph with 4 vertices, 7 edges> |
| 2916 | +gap> AmalgamDigraphs(D1, D2, S, map1, map2); |
| 2917 | +[ <immutable digraph with 6 vertices, 13 edges>, |
| 2918 | + Transformation( [ 6, 2, 4, 3, 5, 6 ] ) ] |
| 2919 | +gap> D2; |
| 2920 | +<mutable digraph with 4 vertices, 7 edges> |
| 2921 | +gap> D1 := DigraphImmutableCopy(D1); |
| 2922 | +<immutable digraph with 5 vertices, 9 edges> |
| 2923 | +gap> AmalgamDigraphs(D1, D2, S, map1, map2); |
| 2924 | +[ <immutable digraph with 6 vertices, 13 edges>, |
| 2925 | + Transformation( [ 6, 2, 4, 3, 5, 6 ] ) ] |
| 2926 | +gap> D1 := PetersenGraph();; |
| 2927 | +gap> D2 := Digraph([[], [1, 3, 4], [1, 2, 5], [2, 6], [3, 6], [4, 5]]);; |
| 2928 | +gap> S := CycleGraph(5);; |
| 2929 | +gap> AmalgamDigraphs(D1, D2, S, IdentityTransformation); |
| 2930 | +[ <immutable digraph with 11 vertices, 32 edges>, |
| 2931 | + Transformation( [ 11, 1, 2, 5, 3, 4, 7, 8, 9, 10, 11 ] ) ] |
| 2932 | +gap> AmalgamDigraphs(D1, D2, S); |
| 2933 | +[ <immutable digraph with 11 vertices, 32 edges>, |
| 2934 | + Transformation( [ 11, 1, 2, 5, 3, 4, 7, 8, 9, 10, 11 ] ) ] |
| 2935 | +gap> D1 := Digraph([[2], [3, 4], [1], [1]]);; |
| 2936 | +gap> D2 := Digraph([[3], [1], [2, 4, 5], [], []]);; |
| 2937 | +gap> S := Digraph([[2], [3], [1]]);; |
| 2938 | +gap> map1 := Transformation([1, 2, 4, 4]);; |
| 2939 | +gap> map2 := Transformation([2, 1]);; |
| 2940 | +gap> AmalgamDigraphs(D1, D2, S, map1, map2); |
| 2941 | +[ <immutable digraph with 6 vertices, 7 edges>, |
| 2942 | + Transformation( [ 2, 1, 4, 5, 6, 6 ] ) ] |
| 2943 | +gap> AmalgamDigraphs(D1, D2, S, map1); |
| 2944 | +[ <immutable digraph with 6 vertices, 7 edges>, |
| 2945 | + Transformation( [ 1, 4, 2, 5, 6, 6 ] ) ] |
| 2946 | +gap> AmalgamDigraphs(D1, D2, S); |
| 2947 | +[ <immutable digraph with 6 vertices, 7 edges>, |
| 2948 | + Transformation( [ 1, 3, 2, 5, 6, 6 ] ) ] |
| 2949 | +gap> AmalgamDigraphs(D1, D2, S, Transformation([3, 2, 1])); |
| 2950 | +Error, the 4th argument (a transformation) is not a digraph embedding from the\ |
| 2951 | + 3rd argument (a digraph) into the 1st argument (a digraph) |
| 2952 | +gap> AmalgamDigraphs(D1, D2, D1, IdentityTransformation); |
| 2953 | +Error, no embeddings could be found from the 3rd argument (a digraph) to the 2\ |
| 2954 | +nd argument (a digraph) |
| 2955 | +gap> AmalgamDigraphs(D1, D2, D1); |
| 2956 | +Error, no embeddings could be found from the 3rd argument (a digraph) to the 2\ |
| 2957 | +nd argument (a digraph) |
| 2958 | +gap> AmalgamDigraphs(D1, D2, D2); |
| 2959 | +Error, no embeddings could be found from the 3rd argument (a digraph) to the 1\ |
| 2960 | +st argument (a digraph) |
| 2961 | +gap> D1 := Digraph([[2, 3, 3], [3], []]);; |
| 2962 | +gap> D2 := Digraph([[2, 3], [3, 4], [4], []]);; |
| 2963 | +gap> S := Digraph([[2, 3], [3], []]);; |
| 2964 | +gap> AmalgamDigraphs(D1, D2, S); |
| 2965 | +Error, the 1st argument (a digraph) must not satisfy IsMultiDigraph |
| 2966 | +gap> AmalgamDigraphs(D1, D2, S, IdentityTransformation); |
| 2967 | +Error, the 1st argument (a digraph) must not satisfy IsMultiDigraph |
| 2968 | +gap> AmalgamDigraphs( |
| 2969 | +> D1, D2, S, IdentityTransformation, IdentityTransformation); |
| 2970 | +Error, the 1st argument (a digraph) must not satisfy IsMultiDigraph |
| 2971 | +gap> AmalgamDigraphs(D2, D1, S); |
| 2972 | +Error, the 2nd argument (a digraph) must not satisfy IsMultiDigraph |
| 2973 | +gap> AmalgamDigraphs(D2, D1, S, IdentityTransformation); |
| 2974 | +Error, the 2nd argument (a digraph) must not satisfy IsMultiDigraph |
| 2975 | +gap> AmalgamDigraphs( |
| 2976 | +> D2, D1, S, IdentityTransformation, IdentityTransformation); |
| 2977 | +Error, the 2nd argument (a digraph) must not satisfy IsMultiDigraph |
| 2978 | +gap> D1 := PetersenGraph();; |
| 2979 | +gap> S := Digraph([[2], [3, 3], [1]]);; |
| 2980 | +gap> AmalgamDigraphs(D1, D1, S); |
| 2981 | +Error, the 3rd argument (a digraph) must not satisfy IsMultiDigraph |
| 2982 | +gap> AmalgamDigraphs(D1, D1, S, IdentityTransformation); |
| 2983 | +Error, the 3rd argument (a digraph) must not satisfy IsMultiDigraph |
| 2984 | +gap> AmalgamDigraphs( |
| 2985 | +> D1, D1, S, IdentityTransformation, IdentityTransformation); |
| 2986 | +Error, the 3rd argument (a digraph) must not satisfy IsMultiDigraph |
| 2987 | + |
2872 | 2988 | # IsOrderFilter
|
2873 | 2989 | gap> D := DigraphByEdges([[1, 1], [1, 2], [1, 3], [2, 3], [3, 3], [2, 2], [2, 4], [4, 4], [1, 4]]);
|
2874 | 2990 | <immutable digraph with 4 vertices, 9 edges>
|
|
0 commit comments