|
| 1 | +# Licensed to Elasticsearch B.V. under one or more contributor |
| 2 | +# license agreements. See the NOTICE file distributed with |
| 3 | +# this work for additional information regarding copyright |
| 4 | +# ownership. Elasticsearch B.V. licenses this file to you under |
| 5 | +# the Apache License, Version 2.0 (the "License"); you may |
| 6 | +# not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, |
| 12 | +# software distributed under the License is distributed on an |
| 13 | +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +# KIND, either express or implied. See the License for the |
| 15 | +# specific language governing permissions and limitations |
| 16 | +# under the License. |
| 17 | + |
| 18 | +import argparse |
| 19 | +import asyncio |
| 20 | +import json |
| 21 | +import os |
| 22 | +import time |
| 23 | + |
| 24 | +import numpy as np |
| 25 | + |
| 26 | +from elasticsearch import OrjsonSerializer |
| 27 | +from elasticsearch.dsl import AsyncDocument, NumpyDenseVector, async_connections |
| 28 | +from elasticsearch.dsl.types import DenseVectorIndexOptions |
| 29 | +from elasticsearch.helpers import async_bulk, pack_dense_vector |
| 30 | + |
| 31 | +async_connections.create_connection( |
| 32 | + hosts=[os.environ["ELASTICSEARCH_URL"]], serializer=OrjsonSerializer() |
| 33 | +) |
| 34 | + |
| 35 | + |
| 36 | +class Doc(AsyncDocument): |
| 37 | + title: str |
| 38 | + text: str |
| 39 | + emb: np.ndarray = NumpyDenseVector( |
| 40 | + dtype=np.float32, index_options=DenseVectorIndexOptions(type="flat") |
| 41 | + ) |
| 42 | + |
| 43 | + class Index: |
| 44 | + name = "benchmark" |
| 45 | + |
| 46 | + |
| 47 | +async def upload(data_file: str, chunk_size: int, pack: bool) -> tuple[float, float]: |
| 48 | + with open(data_file, "rt") as f: |
| 49 | + # read the data file, which comes in ndjson format and convert it to JSON |
| 50 | + json_data = "[" + f.read().strip().replace("\n", ",") + "]" |
| 51 | + dataset = json.loads(json_data) |
| 52 | + |
| 53 | + # replace the embedding lists with numpy arrays for performance |
| 54 | + dataset = [ |
| 55 | + { |
| 56 | + "docid": doc["docid"], |
| 57 | + "title": doc["title"], |
| 58 | + "text": doc["text"], |
| 59 | + "emb": np.array(doc["emb"], dtype=np.float32), |
| 60 | + } |
| 61 | + for doc in dataset |
| 62 | + ] |
| 63 | + |
| 64 | + # create mapping and index |
| 65 | + if await Doc._index.exists(): |
| 66 | + await Doc._index.delete() |
| 67 | + await Doc.init() |
| 68 | + await Doc._index.refresh() |
| 69 | + |
| 70 | + async def get_next_document(): |
| 71 | + for doc in dataset: |
| 72 | + yield { |
| 73 | + "_index": "benchmark", |
| 74 | + "_id": doc["docid"], |
| 75 | + "_source": { |
| 76 | + "title": doc["title"], |
| 77 | + "text": doc["text"], |
| 78 | + "emb": doc["emb"], |
| 79 | + }, |
| 80 | + } |
| 81 | + |
| 82 | + async def get_next_document_packed(): |
| 83 | + for doc in dataset: |
| 84 | + yield { |
| 85 | + "_index": "benchmark", |
| 86 | + "_id": doc["docid"], |
| 87 | + "_source": { |
| 88 | + "title": doc["title"], |
| 89 | + "text": doc["text"], |
| 90 | + "emb": pack_dense_vector(doc["emb"]), |
| 91 | + }, |
| 92 | + } |
| 93 | + |
| 94 | + start = time.time() |
| 95 | + result = await async_bulk( |
| 96 | + client=async_connections.get_connection(), |
| 97 | + chunk_size=chunk_size, |
| 98 | + actions=get_next_document_packed() if pack else get_next_document(), |
| 99 | + stats_only=True, |
| 100 | + ) |
| 101 | + duration = time.time() - start |
| 102 | + assert result[1] == 0 |
| 103 | + return result[0], duration |
| 104 | + |
| 105 | + |
| 106 | +async def main(): |
| 107 | + parser = argparse.ArgumentParser() |
| 108 | + parser.add_argument("data_file", metavar="JSON_DATA_FILE") |
| 109 | + parser.add_argument( |
| 110 | + "--chunk-sizes", "-s", nargs="+", help="Chunk size(s) for bulk uploader" |
| 111 | + ) |
| 112 | + args = parser.parse_args() |
| 113 | + |
| 114 | + for chunk_size in args.chunk_sizes: |
| 115 | + print(f"Uploading '{args.data_file}' with chunk size {chunk_size}...") |
| 116 | + runs = [] |
| 117 | + packed_runs = [] |
| 118 | + for _ in range(3): |
| 119 | + runs.append(await upload(args.data_file, chunk_size, False)) |
| 120 | + packed_runs.append(await upload(args.data_file, chunk_size, True)) |
| 121 | + |
| 122 | + # ensure that all runs uploaded the same number of documents |
| 123 | + size = runs[0][0] |
| 124 | + for run in runs: |
| 125 | + assert run[0] == size |
| 126 | + for run in packed_runs: |
| 127 | + assert run[0] == size |
| 128 | + |
| 129 | + dur = sum([run[1] for run in runs]) / len(runs) |
| 130 | + packed_dur = sum([run[1] for run in packed_runs]) / len(packed_runs) |
| 131 | + |
| 132 | + print(f"Size: {size}") |
| 133 | + print(f"float duration: {dur:.02f}s / {size / dur:.02f} docs/s") |
| 134 | + print( |
| 135 | + f"float base64 duration: {packed_dur:.02f}s / {size / packed_dur:.02f} docs/s" |
| 136 | + ) |
| 137 | + print(f"Speed up: {dur / packed_dur:.02f}x") |
| 138 | + |
| 139 | + |
| 140 | +if __name__ == "__main__": |
| 141 | + asyncio.run(main()) |
0 commit comments