Replies: 1 comment 1 reply
-
|
With the changes in #840 this model parses. A few comments: bruh... this layer has over 8 million weights. This won't work in hls4ml. The input shape of CIFAR10 is (3, 32, 32) |
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
Hello,I want to convert the Pytorch model to HLS and have encountered the following error,I referenced the code in test_merge_pytorch.py:
-------------------------------------------------------------------------- Exception Traceback (most recent call last) Cell In[14], line 7 3 config = hls4ml.utils.config_from_pytorch_model( 4 model, default_precision='ap_fixed<32,16>', inputs_channel_last=True, transpose_outputs=False 5 ) 6 output_dir = str('model_torch_cnn') ----> 7 hls_model = hls4ml.converters.convert_from_pytorch_model( 8 model, 9 [batch_input_shape, batch_input_shape], 10 hls_config=config, 11 output_dir=output_dir, 12 io_type='io_stream', 13 backend='Vitis', 14 ) 15 hls_model.compile() File ~/soft/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/hls4ml/converters/__init__.py:303, in convert_from_pytorch_model(model, input_shape, output_dir, project_name, input_data_tb, output_data_tb, backend, hls_config, **kwargs) 299 config['HLSConfig']['Model'] = _check_model_config(model_config) 301 _check_hls_config(config, hls_config) --> 303 return pytorch_to_hls(config) File ~/soft/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/hls4ml/converters/pytorch_to_hls.py:233, in pytorch_to_hls(config) 230 raise Exception('Non-default options for groups not implemented yet') 232 # Process the layer --> 233 layer, output_shape = layer_handlers[pytorch_class]( 234 pytorch_class, layer_name, input_names, input_shapes, node, class_object, reader, config 235 ) 237 print( 238 'Layer name: {}, layer type: {}, input shape: {}'.format( 239 layer['name'], (...) 242 ) 243 ) 244 layer_list.append(layer) File ~/soft/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/hls4ml/converters/pytorch/core.py:111, in parse_batchnorm_layer(operation, layer_name, input_names, input_shapes, node, class_object, data_reader, config) 108 else: 109 layer['beta_data'] = 0 --> 111 layer['mean_data'], layer['variance_data'] = get_weights_data( 112 data_reader, layer['name'], ['running_mean', 'running_variance'] 113 ) 115 in_size = 1 116 for dim in input_shapes[0][1:]: File ~/soft/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/hls4ml/converters/pytorch_to_hls.py:83, in get_weights_data(data_reader, layer_name, var_name) 80 if not isinstance(var_name, (list, tuple)): 81 var_name = [var_name] ---> 83 data = [data_reader.get_weights_data(layer_name, var) for var in var_name] 85 if len(data) == 1: 86 return data[0] File ~/soft/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/hls4ml/converters/pytorch_to_hls.py:83, in <listcomp>(.0) 80 if not isinstance(var_name, (list, tuple)): 81 var_name = [var_name] ---> 83 data = [data_reader.get_weights_data(layer_name, var) for var in var_name] 85 if len(data) == 1: 86 return data[0] File ~/soft/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/hls4ml/converters/pytorch_to_hls.py:39, in PyTorchModelReader.get_weights_data(self, layer_name, var_name) 36 layer_name = layer_name.split('layer_')[-1] 38 if var_name not in list(torch_paramap.keys()) + ['weight', 'bias']: ---> 39 raise Exception('Pytorch parameter not yet supported!') 41 elif var_name in list(torch_paramap.keys()): 42 var_name = torch_paramap[var_name] Exception: Pytorch parameter not yet supported!this is my code:
Beta Was this translation helpful? Give feedback.
All reactions