|
24 | 24 | def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
|
25 | 25 | render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
|
26 | 26 | gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
|
| 27 | + depth_path = os.path.join(model_path, name, "ours_{}".format(iteration), "depth") |
27 | 28 |
|
28 | 29 | makedirs(render_path, exist_ok=True)
|
29 | 30 | makedirs(gts_path, exist_ok=True)
|
| 31 | + makedirs(depth_path, exist_ok=True) |
30 | 32 |
|
31 | 33 | for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
|
32 |
| - rendering = render(view, gaussians, pipeline, background)["render"] |
| 34 | + results = render(view, gaussians, pipeline, background) |
| 35 | + rendering = results["render"] |
| 36 | + depth = results["depth"] |
| 37 | + depth = depth / (depth.max() + 1e-5) |
| 38 | + |
33 | 39 | gt = view.original_image[0:3, :, :]
|
34 | 40 | torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
|
35 | 41 | torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
|
| 42 | + torchvision.utils.save_image(depth, os.path.join(depth_path, '{0:05d}'.format(idx) + ".png")) |
36 | 43 |
|
37 | 44 | def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool):
|
38 | 45 | with torch.no_grad():
|
|
0 commit comments