|
| 1 | +# port of 1.py |
| 2 | +import math |
| 3 | + |
| 4 | +ln_tau = math.log(6.283185307179586) |
| 5 | +ln_10 = math.log(float(10)) |
| 6 | + |
| 7 | + |
| 8 | +def sum_terms(a: int, b: int) -> (int, int): |
| 9 | + if b == a + 1: |
| 10 | + return 1, b |
| 11 | + mid = (a + b) // 2 |
| 12 | + p_left, q_left = sum_terms(a, mid) |
| 13 | + p_right, q_right = sum_terms(mid, b) |
| 14 | + return p_left * q_right + p_right, q_left*q_right |
| 15 | + |
| 16 | + |
| 17 | +def binary_search(n) -> int: |
| 18 | + a = 0 |
| 19 | + b = 1 |
| 20 | + while not test_k(n, b): |
| 21 | + a = b |
| 22 | + b *= 2 |
| 23 | + while b - a > 1: |
| 24 | + m = (a + b) // 2 |
| 25 | + if test_k(n, m): |
| 26 | + b = m |
| 27 | + else: |
| 28 | + a = m |
| 29 | + return b |
| 30 | + |
| 31 | + |
| 32 | +def test_k(n, k) -> bool: |
| 33 | + if k <= 0: |
| 34 | + return False |
| 35 | + else: |
| 36 | + ln_k_factorial = float(k) * (math.log(float(k))-1) + 0.5 * ln_tau |
| 37 | + log_10_k_factorial = ln_k_factorial / ln_10 |
| 38 | + return (int(log_10_k_factorial) >= n+50) |
| 39 | + |
| 40 | +actor main(env): |
| 41 | + n = 27 if len(env.argv) < 2 else int(env.argv[1]) |
| 42 | + k = binary_search(n) |
| 43 | + p, q = sum_terms(0, k - 1) |
| 44 | + p += q |
| 45 | + answer = p * (10 ** (n - 1)) // q |
| 46 | + s = str(answer) |
| 47 | + for i in range(0, n, 10): |
| 48 | + if i+10 <= n: |
| 49 | + print(s[i:i+10] + "\t:" + str(i+10)) |
| 50 | + else: |
| 51 | + spaces = "" |
| 52 | + for j in range(0, (10-(len(str(s[i:])))), 1): |
| 53 | + spaces += " " |
| 54 | + print(s[i:] + spaces + "\t:" + str(n)) |
| 55 | + #print(f'{s[i:]}{" "*(10-n%10)}\t:{n}') |
| 56 | + await async env.exit(0) |
0 commit comments