@@ -100,7 +100,7 @@ model=BAAI/bge-large-en-v1.5
100100revision=refs/pr/5
101101volume=$PWD /data # share a volume with the Docker container to avoid downloading weights every run
102102
103- docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.3 .0 --model-id $model --revision $revision
103+ docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.4 .0 --model-id $model --revision $revision
104104```
105105
106106And then you can make requests like
@@ -243,13 +243,13 @@ Text Embeddings Inference ships with multiple Docker images that you can use to
243243
244244| Architecture | Image |
245245| -------------------------------------| ---------------------------------------------------------------------------|
246- | CPU | ghcr.io/huggingface/text-embeddings-inference: cpu-0 .3 .0 |
246+ | CPU | ghcr.io/huggingface/text-embeddings-inference: cpu-0 .4 .0 |
247247| Volta | NOT SUPPORTED |
248- | Turing (T4, RTX 2000 series, ...) | ghcr.io/huggingface/text-embeddings-inference: turing-0 .3 .0 (experimental) |
249- | Ampere 80 (A100, A30) | ghcr.io/huggingface/text-embeddings-inference:0.3 .0 |
250- | Ampere 86 (A10, A40, ...) | ghcr.io/huggingface/text-embeddings-inference:86-0.3 .0 |
251- | Ada Lovelace (RTX 4000 series, ...) | ghcr.io/huggingface/text-embeddings-inference:89-0.3 .0 |
252- | Hopper (H100) | ghcr.io/huggingface/text-embeddings-inference: hopper-0 .3 .0 (experimental) |
248+ | Turing (T4, RTX 2000 series, ...) | ghcr.io/huggingface/text-embeddings-inference: turing-0 .4 .0 (experimental) |
249+ | Ampere 80 (A100, A30) | ghcr.io/huggingface/text-embeddings-inference:0.4 .0 |
250+ | Ampere 86 (A10, A40, ...) | ghcr.io/huggingface/text-embeddings-inference:86-0.4 .0 |
251+ | Ada Lovelace (RTX 4000 series, ...) | ghcr.io/huggingface/text-embeddings-inference:89-0.4 .0 |
252+ | Hopper (H100) | ghcr.io/huggingface/text-embeddings-inference: hopper-0 .4 .0 (experimental) |
253253
254254** Warning** : Flash Attention is turned off by default for the Turing image as it suffers from precision issues.
255255You can turn Flash Attention v1 ON by using the ` USE_FLASH_ATTENTION=True ` environment variable.
@@ -278,7 +278,7 @@ model=<your private model>
278278volume=$PWD /data # share a volume with the Docker container to avoid downloading weights every run
279279token=< your cli READ token>
280280
281- docker run --gpus all -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.3 .0 --model-id $model
281+ docker run --gpus all -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.4 .0 --model-id $model
282282```
283283
284284### Using Sequence Classification models
@@ -293,7 +293,7 @@ model=BAAI/bge-reranker-large
293293revision=refs/pr/4
294294volume=$PWD /data # share a volume with the Docker container to avoid downloading weights every run
295295
296- docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.3 .0 --model-id $model --revision $revision
296+ docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.4 .0 --model-id $model --revision $revision
297297```
298298
299299And then you can rank the similarity between a pair of inputs with:
@@ -309,9 +309,9 @@ You can also use classic Sequence Classification models like `SamLowe/roberta-ba
309309
310310``` shell
311311model=SamLowe/roberta-base-go_emotions
312- volume=$PWD /data
312+ volume=$PWD /data # share a volume with the Docker container to avoid downloading weights every run
313313
314- docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.3 .0 --model-id $model
314+ docker run --gpus all -p 8080:80 -v $volume :/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.4 .0 --model-id $model
315315```
316316
317317Once you have deployed the model you can use the ` predict ` endpoint to get the emotions most associated with an input:
0 commit comments