|
| 1 | +Here's a well-structured `README.md` for **LeetCode 1341 - Movie Rating**, formatted for a GitHub repository: |
| 2 | + |
| 3 | +```md |
| 4 | +# 🎬 Movie Rating - LeetCode 1341 |
| 5 | + |
| 6 | +## 📌 Problem Statement |
| 7 | +You are given three tables: **Movies**, **Users**, and **MovieRating**. |
| 8 | + |
| 9 | +Your task is to: |
| 10 | +1. Find the **user who has rated the greatest number of movies**. |
| 11 | + - In case of a tie, return the **lexicographically smaller** name. |
| 12 | +2. Find the **movie with the highest average rating** in **February 2020**. |
| 13 | + - In case of a tie, return the **lexicographically smaller** movie title. |
| 14 | + |
| 15 | +--- |
| 16 | + |
| 17 | +## 📊 Table Structure |
| 18 | + |
| 19 | +### **Movies Table** |
| 20 | +| Column Name | Type | |
| 21 | +| ----------- | ------- | |
| 22 | +| movie_id | int | |
| 23 | +| title | varchar | |
| 24 | + |
| 25 | +- `movie_id` is the **primary key** (unique identifier). |
| 26 | +- `title` is the **name of the movie**. |
| 27 | + |
| 28 | +--- |
| 29 | + |
| 30 | +### **Users Table** |
| 31 | +| Column Name | Type | |
| 32 | +| ----------- | ------- | |
| 33 | +| user_id | int | |
| 34 | +| name | varchar | |
| 35 | + |
| 36 | +- `user_id` is the **primary key** (unique identifier). |
| 37 | +- `name` is **unique** for each user. |
| 38 | + |
| 39 | +--- |
| 40 | + |
| 41 | +### **MovieRating Table** |
| 42 | +| Column Name | Type | |
| 43 | +| ----------- | ---- | |
| 44 | +| movie_id | int | |
| 45 | +| user_id | int | |
| 46 | +| rating | int | |
| 47 | +| created_at | date | |
| 48 | + |
| 49 | +- `(movie_id, user_id)` is the **primary key** (ensuring unique user-movie ratings). |
| 50 | +- `created_at` represents the **review date**. |
| 51 | + |
| 52 | +--- |
| 53 | + |
| 54 | +## 🔢 Goal: |
| 55 | +- Return a **single-column result** containing: |
| 56 | + 1. **User name** with the most ratings. |
| 57 | + 2. **Movie title** with the highest **average rating** in **February 2020**. |
| 58 | + |
| 59 | +--- |
| 60 | + |
| 61 | +## 📊 Example 1: |
| 62 | +### **Input:** |
| 63 | +#### **Movies Table** |
| 64 | +| movie_id | title | |
| 65 | +| -------- | -------- | |
| 66 | +| 1 | Avengers | |
| 67 | +| 2 | Frozen 2 | |
| 68 | +| 3 | Joker | |
| 69 | + |
| 70 | +#### **Users Table** |
| 71 | +| user_id | name | |
| 72 | +| ------- | ------ | |
| 73 | +| 1 | Daniel | |
| 74 | +| 2 | Monica | |
| 75 | +| 3 | Maria | |
| 76 | +| 4 | James | |
| 77 | + |
| 78 | +#### **MovieRating Table** |
| 79 | +| movie_id | user_id | rating | created_at | |
| 80 | +| -------- | ------- | ------ | ---------- | |
| 81 | +| 1 | 1 | 3 | 2020-01-12 | |
| 82 | +| 1 | 2 | 4 | 2020-02-11 | |
| 83 | +| 1 | 3 | 2 | 2020-02-12 | |
| 84 | +| 1 | 4 | 1 | 2020-01-01 | |
| 85 | +| 2 | 1 | 5 | 2020-02-17 | |
| 86 | +| 2 | 2 | 2 | 2020-02-01 | |
| 87 | +| 2 | 3 | 2 | 2020-03-01 | |
| 88 | +| 3 | 1 | 3 | 2020-02-22 | |
| 89 | +| 3 | 2 | 4 | 2020-02-25 | |
| 90 | + |
| 91 | +### **Output:** |
| 92 | +| results | |
| 93 | +| -------- | |
| 94 | +| Daniel | |
| 95 | +| Frozen 2 | |
| 96 | + |
| 97 | +### **Explanation:** |
| 98 | +- **Most Active User:** |
| 99 | + - `Daniel` and `Monica` both rated **3 movies**. |
| 100 | + - Since `Daniel` is **lexicographically smaller**, he is chosen. |
| 101 | + |
| 102 | +- **Highest Average Movie Rating in February 2020:** |
| 103 | + - **Frozen 2**: `(5 + 2) / 2 = 3.5` |
| 104 | + - **Joker**: `(3 + 4) / 2 = 3.5` |
| 105 | + - Since **Frozen 2** is **lexicographically smaller**, it is chosen. |
| 106 | + |
| 107 | +--- |
| 108 | + |
| 109 | +## 🖥 SQL Solution |
| 110 | + |
| 111 | +### ✅ **Using `JOIN` + `GROUP BY` + `HAVING`** |
| 112 | +#### **Explanation:** |
| 113 | +1. **Find the most active user:** |
| 114 | + - Count the number of ratings per user. |
| 115 | + - Use `ORDER BY COUNT(*) DESC, name` to get the **user with the most ratings**, breaking ties lexicographically. |
| 116 | + - Limit the result to **1 user**. |
| 117 | + |
| 118 | +2. **Find the highest-rated movie in February 2020:** |
| 119 | + - Filter rows where `created_at` is **in February 2020**. |
| 120 | + - **Calculate the average rating per movie**. |
| 121 | + - Use `ORDER BY AVG(rating) DESC, title` to get the **highest-rated movie**, breaking ties lexicographically. |
| 122 | + - Limit the result to **1 movie**. |
| 123 | + |
| 124 | +```sql |
| 125 | +( |
| 126 | + SELECT name AS results |
| 127 | + FROM |
| 128 | + Users |
| 129 | + JOIN MovieRating USING (user_id) |
| 130 | + GROUP BY user_id |
| 131 | + ORDER BY COUNT(1) DESC, name |
| 132 | + LIMIT 1 |
| 133 | +) |
| 134 | +UNION ALL |
| 135 | +( |
| 136 | + SELECT title |
| 137 | + FROM |
| 138 | + MovieRating |
| 139 | + JOIN Movies USING (movie_id) |
| 140 | + WHERE DATE_FORMAT(created_at, '%Y-%m') = '2020-02' |
| 141 | + GROUP BY movie_id |
| 142 | + ORDER BY AVG(rating) DESC, title |
| 143 | + LIMIT 1 |
| 144 | +); |
| 145 | +``` |
| 146 | + |
| 147 | +--- |
| 148 | + |
| 149 | +## 🐍 Pandas Solution (Python) |
| 150 | +#### **Explanation:** |
| 151 | +1. **Find the user with the most ratings:** |
| 152 | + - Group by `user_id`, count the ratings. |
| 153 | + - Merge with `Users` table to get `name`. |
| 154 | + - Sort by **count descending**, then **lexicographically**. |
| 155 | + |
| 156 | +2. **Find the highest-rated movie in February 2020:** |
| 157 | + - Filter only `created_at` **in February 2020**. |
| 158 | + - Group by `movie_id` and calculate **average rating**. |
| 159 | + - Merge with `Movies` to get `title`. |
| 160 | + - Sort by **rating descending**, then **lexicographically**. |
| 161 | + |
| 162 | +```python |
| 163 | +import pandas as pd |
| 164 | + |
| 165 | +def movie_rating(users: pd.DataFrame, movies: pd.DataFrame, movie_rating: pd.DataFrame) -> pd.DataFrame: |
| 166 | + # Most active user |
| 167 | + user_counts = movie_rating.groupby("user_id")["rating"].count().reset_index() |
| 168 | + most_active_user = user_counts.merge(users, on="user_id") |
| 169 | + most_active_user = most_active_user.sort_values(by=["rating", "name"], ascending=[False, True]).iloc[0]["name"] |
| 170 | + |
| 171 | + # Highest-rated movie in February 2020 |
| 172 | + movie_rating["created_at"] = pd.to_datetime(movie_rating["created_at"]) |
| 173 | + feb_ratings = movie_rating[movie_rating["created_at"].dt.strftime('%Y-%m') == "2020-02"] |
| 174 | + |
| 175 | + avg_ratings = feb_ratings.groupby("movie_id")["rating"].mean().reset_index() |
| 176 | + highest_rated_movie = avg_ratings.merge(movies, on="movie_id") |
| 177 | + highest_rated_movie = highest_rated_movie.sort_values(by=["rating", "title"], ascending=[False, True]).iloc[0]["title"] |
| 178 | + |
| 179 | + return pd.DataFrame({"results": [most_active_user, highest_rated_movie]}) |
| 180 | +``` |
| 181 | + |
| 182 | +--- |
| 183 | + |
| 184 | +## 📁 File Structure |
| 185 | +``` |
| 186 | +📂 Movie-Rating |
| 187 | +│── 📜 README.md |
| 188 | +│── 📜 solution.sql |
| 189 | +│── 📜 solution_pandas.py |
| 190 | +│── 📜 test_cases.sql |
| 191 | +``` |
| 192 | + |
| 193 | +--- |
| 194 | + |
| 195 | +## 🔗 Useful Links |
| 196 | +- 📖 [LeetCode Problem](https://leetcode.com/problems/movie-rating/) |
| 197 | +- 📚 [SQL `GROUP BY` Clause](https://www.w3schools.com/sql/sql_groupby.asp) |
| 198 | +- 🐍 [Pandas GroupBy Documentation](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html) |
| 199 | +``` |
| 200 | +
|
| 201 | +### Features of this `README.md`: |
| 202 | +✅ **Clear problem description with tables** |
| 203 | +✅ **Example with step-by-step explanation** |
| 204 | +✅ **SQL and Pandas solutions with detailed breakdowns** |
| 205 | +✅ **File structure for easy organization** |
| 206 | +✅ **Helpful references for further learning** |
| 207 | +
|
| 208 | +Would you like any changes or additions? 🚀 |
0 commit comments