|
| 1 | +Here’s a well-structured `README.md` for **LeetCode 1484 - Group Sold Products By The Date**, formatted for a GitHub repository: |
| 2 | + |
| 3 | +```md |
| 4 | +# 🛍️ Group Sold Products By The Date - LeetCode 1484 |
| 5 | + |
| 6 | +## 📌 Problem Statement |
| 7 | +You are given a table **Activities** that contains records of products sold on different dates. |
| 8 | + |
| 9 | +Your task is to return: |
| 10 | +- The **number of distinct products** sold on each date. |
| 11 | +- A **comma-separated string** of the product names, sorted **lexicographically**. |
| 12 | + |
| 13 | +The result should be **ordered by `sell_date`**. |
| 14 | + |
| 15 | +--- |
| 16 | + |
| 17 | +## 📊 Table Structure |
| 18 | + |
| 19 | +### **Activities Table** |
| 20 | +| Column Name | Type | |
| 21 | +| ----------- | ------- | |
| 22 | +| sell_date | date | |
| 23 | +| product | varchar | |
| 24 | + |
| 25 | +- This table **does not** have a **primary key**. |
| 26 | +- It may **contain duplicate entries**. |
| 27 | + |
| 28 | +--- |
| 29 | + |
| 30 | +## 📊 Example 1: |
| 31 | +### **Input:** |
| 32 | +#### **Activities Table** |
| 33 | +| sell_date | product | |
| 34 | +| ---------- | ---------- | |
| 35 | +| 2020-05-30 | Headphone | |
| 36 | +| 2020-06-01 | Pencil | |
| 37 | +| 2020-06-02 | Mask | |
| 38 | +| 2020-05-30 | Basketball | |
| 39 | +| 2020-06-01 | Bible | |
| 40 | +| 2020-06-02 | Mask | |
| 41 | +| 2020-05-30 | T-Shirt | |
| 42 | + |
| 43 | +### **Output:** |
| 44 | +| sell_date | num_sold | products | |
| 45 | +| ---------- | -------- | ---------------------------- | |
| 46 | +| 2020-05-30 | 3 | Basketball,Headphone,T-Shirt | |
| 47 | +| 2020-06-01 | 2 | Bible,Pencil | |
| 48 | +| 2020-06-02 | 1 | Mask | |
| 49 | + |
| 50 | +### **Explanation:** |
| 51 | +- `2020-05-30`: Sold items → _(Headphone, Basketball, T-Shirt)_ |
| 52 | + - Sorted → **"Basketball, Headphone, T-Shirt"** |
| 53 | +- `2020-06-01`: Sold items → _(Pencil, Bible)_ |
| 54 | + - Sorted → **"Bible, Pencil"** |
| 55 | +- `2020-06-02`: Sold item → _(Mask)_ |
| 56 | + - **"Mask"** (only one item) |
| 57 | + |
| 58 | +--- |
| 59 | + |
| 60 | +## 🖥 SQL Solution |
| 61 | + |
| 62 | +### ✅ **Using `GROUP_CONCAT` with `DISTINCT`** |
| 63 | +#### **Explanation:** |
| 64 | +- Use `COUNT(DISTINCT product)` to get the **number of distinct products**. |
| 65 | +- Use `GROUP_CONCAT(DISTINCT product ORDER BY product ASC)` to **join product names in alphabetical order**. |
| 66 | +- Group by `sell_date`, then order the result by `sell_date`. |
| 67 | + |
| 68 | +```sql |
| 69 | +SELECT |
| 70 | + sell_date, |
| 71 | + COUNT(DISTINCT product) AS num_sold, |
| 72 | + GROUP_CONCAT(DISTINCT product ORDER BY product ASC SEPARATOR ',') AS products |
| 73 | +FROM Activities |
| 74 | +GROUP BY sell_date |
| 75 | +ORDER BY sell_date ASC; |
| 76 | +``` |
| 77 | + |
| 78 | +--- |
| 79 | + |
| 80 | +## 🐍 Pandas Solution (Python) |
| 81 | +#### **Explanation:** |
| 82 | +- **Group by `sell_date`**. |
| 83 | +- Use `.nunique()` to count distinct products. |
| 84 | +- Use `', '.join(sorted(set(products)))` to sort and concatenate product names. |
| 85 | + |
| 86 | +```python |
| 87 | +import pandas as pd |
| 88 | + |
| 89 | +def group_sold_products(activities: pd.DataFrame) -> pd.DataFrame: |
| 90 | + grouped_df = ( |
| 91 | + activities.groupby("sell_date")["product"] |
| 92 | + .agg(lambda x: ", ".join(sorted(set(x)))) |
| 93 | + .reset_index() |
| 94 | + ) |
| 95 | + grouped_df["num_sold"] = grouped_df["product"].apply(lambda x: len(x.split(","))) |
| 96 | + return grouped_df.rename(columns={"product": "products"}) |
| 97 | +``` |
| 98 | + |
| 99 | +--- |
| 100 | + |
| 101 | +## 📁 File Structure |
| 102 | +``` |
| 103 | +📂 Group-Sold-Products |
| 104 | +│── 📜 README.md |
| 105 | +│── 📜 solution.sql |
| 106 | +│── 📜 solution_pandas.py |
| 107 | +│── 📜 test_cases.sql |
| 108 | +``` |
| 109 | + |
| 110 | +--- |
| 111 | + |
| 112 | +## 🔗 Useful Links |
| 113 | +- 📖 [LeetCode Problem](https://leetcode.com/problems/group-sold-products-by-the-date/) |
| 114 | +- 📚 [SQL `GROUP BY`](https://www.w3schools.com/sql/sql_groupby.asp) |
| 115 | +- 🐍 [Pandas `groupby()` Documentation](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html) |
| 116 | +``` |
| 117 | +
|
| 118 | +### Features of this `README.md`: |
| 119 | +✅ **Clear problem statement with tables** |
| 120 | +✅ **Example with step-by-step explanation** |
| 121 | +✅ **SQL and Pandas solutions with detailed breakdowns** |
| 122 | +✅ **File structure for easy organization** |
| 123 | +✅ **Helpful references for further learning** |
| 124 | +
|
| 125 | +Would you like any modifications? 🚀 |
0 commit comments