diff --git a/Exercises_2.ipynb b/Exercises_2.ipynb index ddfaf18..af80e7c 100644 --- a/Exercises_2.ipynb +++ b/Exercises_2.ipynb @@ -1,728 +1,1594 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![rmotr](https://user-images.githubusercontent.com/7065401/52071918-bda15380-2562-11e9-828c-7f95297e4a82.png)\n", - "
\n", - "\n", - "# Exercises\n", - "## The Sakila Database\n", - "\n", - "One of the best example databases out there is the Sakila Database, which was originally created by MySQL and has been open sourced under the terms of the BSD License.\n", - "\n", - "The Sakila database is a nicely normalised schema modelling a DVD rental store, featuring things like films, actors, film-actor relationships, and a central inventory table that connects films, stores, and rentals.\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![purple-divider](https://user-images.githubusercontent.com/7065401/52071927-c1cd7100-2562-11e9-908a-dde91ba14e59.png)\n", - "\n", - "## Hands on! " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import sqlite3\n", - "\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "conn = sqlite3.connect('data/sakila.db')\n", - "\n", - "df = pd.read_sql('''\n", - " SELECT\n", - " rental.rental_id, rental.rental_date, rental.return_date,\n", - " customer.last_name AS customer_lastname,\n", - " store.store_id,\n", - " city.city AS rental_store_city,\n", - " film.title AS film_title, film.rental_duration AS film_rental_duration,\n", - " film.rental_rate AS film_rental_rate, film.replacement_cost AS film_replacement_cost,\n", - " film.rating AS film_rating\n", - " FROM rental\n", - " INNER JOIN customer ON rental.customer_id == customer.customer_id\n", - " INNER JOIN inventory ON rental.inventory_id == inventory.inventory_id\n", - " INNER JOIN store ON inventory.store_id == store.store_id\n", - " INNER JOIN address ON store.address_id == address.address_id\n", - " INNER JOIN city ON address.city_id == city.city_id\n", - " INNER JOIN film ON inventory.film_id == film.film_id\n", - " ;\n", - "''', conn, index_col='rental_id', parse_dates=['rental_date', 'return_date'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### What's the mean of `film_rental_duration`?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['film_rental_duration'].mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### What's the most common rental duration?\n", - "\n", - "Show a bar plot with all the durations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['film_rental_duration'].value_counts().plot(kind='bar', figsize=(14,6))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### What is the most common rental rate?\n", - "\n", - "- Show a pie plot with all possible rental rates.\n", - "- Show a bar plot with all possible rental rates.\n", - "- Which plot you think fits the best in this case? Why?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['film_rental_rate'].value_counts().plot(kind='pie', figsize=(6,6))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['film_rental_rate'].value_counts().plot(kind='bar', figsize=(14,6))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### How is the replacement cost distributed?\n", - "\n", - "- Show a box plot of the replacement costs.\n", - "- Show a density plot of the replacement costs.\n", - "- Add a red line on the mean.\n", - "- Add a green line on the median median." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['film_replacement_cost'].plot(kind='box', vert=False, figsize=(14,6))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "ax = df['film_replacement_cost'].plot(kind='density', figsize=(14,6))\n", - "ax.axvline(df['film_replacement_cost'].mean(), color='red')\n", - "ax.axvline(df['film_replacement_cost'].median(), color='green')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### How many films of each rating do we have?\n", - "\n", - "- Show the raw count of each film rating.\n", - "- Show a bar plot with all possible film ratings." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['film_rating'].value_counts()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['film_rating'].value_counts().plot(kind='bar', figsize=(14,6))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### Does the film replacement cost vary depending on film rating?\n", - "\n", - "In the United States, film classification is a voluntary process with the ratings issued by the Motion Picture Association of America (MPAA) via the Classification and Rating Administration (CARA).\n", - "\n", - "- G (General Audiences): All Ages are Admitted.\n", - "- PG (Parental Guidance Suggested): Some Material May Not Be Suitable for Children.\n", - "- PG-13 (Parents Strongly Cautioned): Some Material May Be Inappropriate for Children Under 13.\n", - "- R (Restricted): Under 17 Requires Accompanying Parent or Adult Guardian.\n", - "- NC-17 (Adults Only): No One 17 and Under Admitted.\n", - "\n", - "Show a grouped box plot per film rating with the film replacement costs." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df[['film_replacement_cost', 'film_rating']].boxplot(by='film_rating', figsize=(14,6))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### Add and calculate a new `rental_days` column\n", - "\n", - "This numeric column should have the count of days between `rental_date` and `return_date`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['rental_days'] = df[['rental_date', 'return_date']].apply(lambda x: (x[1] - x[0]).days, axis=1)\n", - "\n", - "df['rental_days'].head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### Analyze the distribution of `rental_days`\n", - "\n", - "- Calculate the mean of `rental_days`.\n", - "- Show a density (KDE) of `rental_days`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['rental_days'].mean()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "ax = df['rental_days'].plot(kind='density', figsize=(14,6))\n", - "ax.axvline(df['rental_days'].mean(), color='red')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### Add and calculate a new `film_daily_rental_rate` column\n", - "\n", - "This value should be the division of `film_rental_rate` by `film_rental_duration`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['film_daily_rental_rate'] = df['film_rental_rate'] / df['film_rental_duration']\n", - "\n", - "df['film_daily_rental_rate'].head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### Analyze the distribution of `film_daily_rental_rate`\n", - "\n", - "- Calculate the mean of `film_daily_rental_rate`.\n", - "- Show a density (KDE) of `film_daily_rental_rate`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df['film_daily_rental_rate'].mean()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "ax = df['film_daily_rental_rate'].plot(kind='density', figsize=(14,6))\n", - "ax.axvline(df['film_daily_rental_rate'].mean(), color='red')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### List 10 films with the lowest daily rental rate" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df.loc[df['film_daily_rental_rate'] == df['film_daily_rental_rate'].min()].head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### List 10 films with the highest daily rental rate" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df.loc[df['film_daily_rental_rate'] == df['film_daily_rental_rate'].max()].head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### How many rentals were made in Lethbridge city?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df.loc[df['rental_store_city'] == 'Lethbridge'].shape[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### How many rentals of each film rating were made in Lethbridge city?\n", - "\n", - "Show a bar plot with each film rating count." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df.loc[df['rental_store_city'] == 'Lethbridge', 'film_rating'].value_counts()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df.loc[df['rental_store_city'] == 'Lethbridge', 'film_rating'].value_counts().plot(kind='bar', figsize=(14,6))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### How many rentals were made in Woodridge city with rental duration higher than 5 days?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df.loc[(df['rental_store_city'] == 'Woodridge') & (df['film_rental_duration'] > 5)].shape[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "### How many rentals were made at the store with id 2 or with replacement cost lower than 10.99 USD?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code goes here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cell_type": "solution" - }, - "outputs": [], - "source": [ - "df.loc[(df['store_id'] == 2) | (df['film_replacement_cost'] < 10.99)].shape[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![purple-divider](https://user-images.githubusercontent.com/7065401/52071927-c1cd7100-2562-11e9-908a-dde91ba14e59.png)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zcn0QEpUAWNt" + }, + "source": [ + "![rmotr](https://user-images.githubusercontent.com/7065401/52071918-bda15380-2562-11e9-828c-7f95297e4a82.png)\n", + "
\n", + "\n", + "# Exercises\n", + "## The Sakila Database\n", + "\n", + "One of the best example databases out there is the Sakila Database, which was originally created by MySQL and has been open sourced under the terms of the BSD License.\n", + "\n", + "The Sakila database is a nicely normalised schema modelling a DVD rental store, featuring things like films, actors, film-actor relationships, and a central inventory table that connects films, stores, and rentals.\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qHZxfJNmAWN0" + }, + "source": [ + "![purple-divider](https://user-images.githubusercontent.com/7065401/52071927-c1cd7100-2562-11e9-908a-dde91ba14e59.png)\n", + "\n", + "## Hands on!" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "aDeZuLu7AWN1" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import sqlite3\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "DG1jGO4TAWN3" + }, + "outputs": [], + "source": [ + "conn = sqlite3.connect('sakila.db')\n", + "\n", + "df = pd.read_sql('''\n", + " SELECT\n", + " rental.rental_id, rental.rental_date, rental.return_date,\n", + " customer.last_name AS customer_lastname,\n", + " store.store_id,\n", + " city.city AS rental_store_city,\n", + " film.title AS film_title, film.rental_duration AS film_rental_duration,\n", + " film.rental_rate AS film_rental_rate, film.replacement_cost AS film_replacement_cost,\n", + " film.rating AS film_rating\n", + " FROM rental\n", + " INNER JOIN customer ON rental.customer_id == customer.customer_id\n", + " INNER JOIN inventory ON rental.inventory_id == inventory.inventory_id\n", + " INNER JOIN store ON inventory.store_id == store.store_id\n", + " INNER JOIN address ON store.address_id == address.address_id\n", + " INNER JOIN city ON address.city_id == city.city_id\n", + " INNER JOIN film ON inventory.film_id == film.film_id\n", + " ;\n", + "''', conn, index_col='rental_id', parse_dates=['rental_date', 'return_date'])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 344 + }, + "id": "e3ZFELmNAWN3", + "outputId": "63d31fbf-8fd6-414a-c3e6-005fc173662b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " rental_date return_date customer_lastname store_id \\\n", + "rental_id \n", + "16045 2005-08-23 22:25:26 2005-08-25 23:54:26 WHITE 1 \n", + "16046 2005-08-23 22:26:47 2005-08-27 18:02:47 KELLY 2 \n", + "16047 2005-08-23 22:42:48 2005-08-25 02:48:48 ELLIS 2 \n", + "16048 2005-08-23 22:43:07 2005-08-31 21:33:07 HAMILTON 1 \n", + "16049 2005-08-23 22:50:12 2005-08-30 01:01:12 CAUSEY 2 \n", + "\n", + " rental_store_city film_title film_rental_duration \\\n", + "rental_id \n", + "16045 Lethbridge COMANCHEROS ENEMY 5 \n", + "16046 Woodridge VOYAGE LEGALLY 6 \n", + "16047 Woodridge ILLUSION AMELIE 4 \n", + "16048 Lethbridge HUNCHBACK IMPOSSIBLE 4 \n", + "16049 Woodridge MOB DUFFEL 4 \n", + "\n", + " film_rental_rate film_replacement_cost film_rating \n", + "rental_id \n", + "16045 0.99 23.99 R \n", + "16046 0.99 28.99 PG-13 \n", + "16047 0.99 15.99 R \n", + "16048 4.99 28.99 PG-13 \n", + "16049 0.99 25.99 G " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rental_datereturn_datecustomer_lastnamestore_idrental_store_cityfilm_titlefilm_rental_durationfilm_rental_ratefilm_replacement_costfilm_rating
rental_id
160452005-08-23 22:25:262005-08-25 23:54:26WHITE1LethbridgeCOMANCHEROS ENEMY50.9923.99R
160462005-08-23 22:26:472005-08-27 18:02:47KELLY2WoodridgeVOYAGE LEGALLY60.9928.99PG-13
160472005-08-23 22:42:482005-08-25 02:48:48ELLIS2WoodridgeILLUSION AMELIE40.9915.99R
160482005-08-23 22:43:072005-08-31 21:33:07HAMILTON1LethbridgeHUNCHBACK IMPOSSIBLE44.9928.99PG-13
160492005-08-23 22:50:122005-08-30 01:01:12CAUSEY2WoodridgeMOB DUFFEL40.9925.99G
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"rental_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 16045,\n \"max\": 16049,\n \"num_unique_values\": 5,\n \"samples\": [\n 16046,\n 16049,\n 16047\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rental_date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2005-08-23 22:25:26\",\n \"max\": \"2005-08-23 22:50:12\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"2005-08-23 22:26:47\",\n \"2005-08-23 22:50:12\",\n \"2005-08-23 22:42:48\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"return_date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2005-08-25 02:48:48\",\n \"max\": \"2005-08-31 21:33:07\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"2005-08-27 18:02:47\",\n \"2005-08-30 01:01:12\",\n \"2005-08-25 02:48:48\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"customer_lastname\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"KELLY\",\n \"CAUSEY\",\n \"ELLIS\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"store_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 2,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rental_store_city\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"Woodridge\",\n \"Lethbridge\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"film_title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"VOYAGE LEGALLY\",\n \"MOB DUFFEL\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"film_rental_duration\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 4,\n \"max\": 6,\n \"num_unique_values\": 3,\n \"samples\": [\n 5,\n 6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"film_rental_rate\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.7888543819998317,\n \"min\": 0.99,\n \"max\": 4.99,\n \"num_unique_values\": 2,\n \"samples\": [\n 4.99,\n 0.99\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"film_replacement_cost\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.3572380943915485,\n \"min\": 15.99,\n \"max\": 28.99,\n \"num_unique_values\": 4,\n \"samples\": [\n 28.99,\n 25.99\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"film_rating\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"R\",\n \"PG-13\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IeMjxkMHAWN4" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### What's the mean of `film_rental_duration`?" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "OR65G_6PAWN5" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "cell_type": "solution", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4CdaL9ekAWN5", + "outputId": "b63f6029-05d7-41da-e7de-bc12997f8d2e" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "4.935489902767389" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ], + "source": [ + "df['film_rental_duration'].mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Qt7Grx1DAWN6" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### What's the most common rental duration?\n", + "\n", + "Show a bar plot with all the durations." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "emAnP3C7AWN6" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "cell_type": "solution", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 460 + }, + "id": "ddLh__vPAWN7", + "outputId": "edc43cd0-2ffe-4db7-e2b0-229143eb179e" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH0AAAIICAYAAADzKZL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3bUlEQVR4nO3df5RXdYH/8deAzCDCDKEyAwsCaSooaEDhZBopMSr51aPnW+QP1BDTBc8qiS7flAi/iauhsivpt6OG7cIqtemuoPwQA1PBHySpaJSE4q4MlAajpIDA94/98vk2hj+GoJHr43HOPWc+974/9/O+oxc8T+/n3rJt27ZtCwAAAACF0qK5JwAAAADArif6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAe3V3BPYXbZu3ZpXX3017dq1S1lZWXNPBwAAAGCX2LZtW95444107tw5LVq89/U8hY0+r776arp27drc0wAAAADYLV555ZV06dLlPbcXNvq0a9cuyX//AiorK5t5NgAAAAC7RkNDQ7p27VpqH++lsNFn+1e6KisrRR8AAACgcD7odjZu5AwAAABQQKIPAAAAQAGJPgAAAAAF1KToc8stt6RPnz6l++TU1tbmgQceKG0fOHBgysrKGi0XXnhho32sWrUqQ4YMSZs2bdKxY8eMGTMm77zzTqMxCxYsSN++fVNRUZGDDjooU6dO3fkjBAAAAPgYatKNnLt06ZJrr702n/rUp7Jt27bceeedOeWUU/L000/nsMMOS5KMGDEiEyZMKL2nTZs2pZ+3bNmSIUOGpKamJo899lhWr16dYcOGpVWrVrnmmmuSJCtXrsyQIUNy4YUXZtq0aZk/f37OP//8dOrUKXV1dbvimAEAAAAKr2zbtm3b/pIddOjQIddff32GDx+egQMH5sgjj8xNN920w7EPPPBAvvzlL+fVV19NdXV1kuTWW2/NFVdckd/97ncpLy/PFVdckVmzZuW5554rvW/o0KFZt25dZs+e/aHn1dDQkKqqqqxfv97TuwAAAIDC+LDNY6fv6bNly5bcdddd2bBhQ2pra0vrp02blv322y+HH354xo4dmz/+8Y+lbYsWLUrv3r1LwSdJ6urq0tDQkGXLlpXGDBo0qNFn1dXVZdGiRe87n40bN6ahoaHRAgAAAPBx1aSvdyXJs88+m9ra2rz99ttp27Zt7rnnnvTq1StJcsYZZ6Rbt27p3LlznnnmmVxxxRVZvnx5fvrTnyZJ6uvrGwWfJKXX9fX17zumoaEhb731Vvbee+8dzmvixIn5zne+09TDAQAAACikJkefQw45JEuXLs369evzk5/8JOecc04WLlyYXr165YILLiiN6927dzp16pTjjz8+K1asyIEHHrhLJ/5uY8eOzejRo0uvGxoa0rVr1936mQAAAAAfVU3+eld5eXkOOuig9OvXLxMnTswRRxyRyZMn73DsgAEDkiQvvvhikqSmpiZr1qxpNGb765qamvcdU1lZ+Z5X+SRJRUVF6ali2xcAAACAj6udvqfPdlu3bs3GjRt3uG3p0qVJkk6dOiVJamtr8+yzz2bt2rWlMfPmzUtlZWXpK2K1tbWZP39+o/3Mmzev0X2DAAAAAHh/Tfp619ixY3PiiSfmgAMOyBtvvJHp06dnwYIFmTNnTlasWJHp06fnpJNOyr777ptnnnkml156aY499tj06dMnSTJ48OD06tUrZ599dq677rrU19fnyiuvzMiRI1NRUZEkufDCC3PzzTfn8ssvz9e//vU89NBDmTFjRmbNmrXrjx4AAACgoJoUfdauXZthw4Zl9erVqaqqSp8+fTJnzpx86UtfyiuvvJIHH3wwN910UzZs2JCuXbvm9NNPz5VXXll6f8uWLTNz5sxcdNFFqa2tzT777JNzzjknEyZMKI3p0aNHZs2alUsvvTSTJ09Oly5dctttt6Wurm7XHTUAAABAwZVt27ZtW3NPYnf4sM+sBwAAANiTfNjm8Rff0wcAAACAjx7RBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAooCY9sp2Phu5/P6u5p0ATvXTtkOaeAgAAAB8zrvQBAAAAKCBX+gC8i6vp9jyupgMAgD/nSh8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIAC2qu5JwAAfLx0//tZzT0Fmuila4c09xQAgJ3gSh8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKKC9mnsCAADArtP972c19xRoopeuHdLcUwAKypU+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABNSn63HLLLenTp08qKytTWVmZ2traPPDAA6Xtb7/9dkaOHJl99903bdu2zemnn541a9Y02seqVasyZMiQtGnTJh07dsyYMWPyzjvvNBqzYMGC9O3bNxUVFTnooIMyderUnT9CAAAAgI+hJkWfLl265Nprr82SJUvy1FNP5bjjjsspp5ySZcuWJUkuvfTS3Hffffnxj3+chQsX5tVXX81pp51Wev+WLVsyZMiQbNq0KY899ljuvPPOTJ06NePGjSuNWblyZYYMGZIvfvGLWbp0aS655JKcf/75mTNnzi46ZAAAAIDi26spg08++eRGr7/73e/mlltuyeLFi9OlS5fcfvvtmT59eo477rgkyQ9/+MP07NkzixcvzlFHHZW5c+fm+eefz4MPPpjq6uoceeSRufrqq3PFFVdk/PjxKS8vz6233poePXpk0qRJSZKePXvmkUceyY033pi6urpddNgAAAAAxbbT9/TZsmVL7rrrrmzYsCG1tbVZsmRJNm/enEGDBpXGHHrooTnggAOyaNGiJMmiRYvSu3fvVFdXl8bU1dWloaGhdLXQokWLGu1j+5jt+3gvGzduTENDQ6MFAAAA4OOqydHn2WefTdu2bVNRUZELL7ww99xzT3r16pX6+vqUl5enffv2jcZXV1envr4+SVJfX98o+Gzfvn3b+41paGjIW2+99Z7zmjhxYqqqqkpL165dm3poAAAAAIXR5OhzyCGHZOnSpXn88cdz0UUX5Zxzzsnzzz+/O+bWJGPHjs369etLyyuvvNLcUwIAAABoNk26p0+SlJeX56CDDkqS9OvXL08++WQmT56cr371q9m0aVPWrVvX6GqfNWvWpKamJklSU1OTJ554otH+tj/d60/HvPuJX2vWrEllZWX23nvv95xXRUVFKioqmno4AAAAAIW00/f02W7r1q3ZuHFj+vXrl1atWmX+/PmlbcuXL8+qVatSW1ubJKmtrc2zzz6btWvXlsbMmzcvlZWV6dWrV2nMn+5j+5jt+wAAAADggzXpSp+xY8fmxBNPzAEHHJA33ngj06dPz4IFCzJnzpxUVVVl+PDhGT16dDp06JDKyspcfPHFqa2tzVFHHZUkGTx4cHr16pWzzz471113Xerr63PllVdm5MiRpat0Lrzwwtx88825/PLL8/Wvfz0PPfRQZsyYkVmzZu36owcAAAAoqCZFn7Vr12bYsGFZvXp1qqqq0qdPn8yZMydf+tKXkiQ33nhjWrRokdNPPz0bN25MXV1dvv/975fe37Jly8ycOTMXXXRRamtrs88+++Scc87JhAkTSmN69OiRWbNm5dJLL83kyZPTpUuX3HbbbR7XDgAAANAETYo+t99++/tub926daZMmZIpU6a855hu3brl/vvvf9/9DBw4ME8//XRTpgYAAADAn/iL7+kDAAAAwEeP6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFtFdzTwAAAAD2FN3/flZzT4EmeunaIc09hWbjSh8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCAmhR9Jk6cmM985jNp165dOnbsmFNPPTXLly9vNGbgwIEpKytrtFx44YWNxqxatSpDhgxJmzZt0rFjx4wZMybvvPNOozELFixI3759U1FRkYMOOihTp07duSMEAAAA+BhqUvRZuHBhRo4cmcWLF2fevHnZvHlzBg8enA0bNjQaN2LEiKxevbq0XHfddaVtW7ZsyZAhQ7Jp06Y89thjufPOOzN16tSMGzeuNGblypUZMmRIvvjFL2bp0qW55JJLcv7552fOnDl/4eECAAAAfDzs1ZTBs2fPbvR66tSp6dixY5YsWZJjjz22tL5NmzapqanZ4T7mzp2b559/Pg8++GCqq6tz5JFH5uqrr84VV1yR8ePHp7y8PLfeemt69OiRSZMmJUl69uyZRx55JDfeeGPq6uqaeowAAAAAHzt/0T191q9fnyTp0KFDo/XTpk3Lfvvtl8MPPzxjx47NH//4x9K2RYsWpXfv3qmuri6tq6urS0NDQ5YtW1YaM2jQoEb7rKury6JFi95zLhs3bkxDQ0OjBQAAAODjqklX+vyprVu35pJLLsnRRx+dww8/vLT+jDPOSLdu3dK5c+c888wzueKKK7J8+fL89Kc/TZLU19c3Cj5JSq/r6+vfd0xDQ0Peeuut7L333n82n4kTJ+Y73/nOzh4OAAAAQKHsdPQZOXJknnvuuTzyyCON1l9wwQWln3v37p1OnTrl+OOPz4oVK3LggQfu/Ew/wNixYzN69OjS64aGhnTt2nW3fR4AAADAR9lOfb1r1KhRmTlzZn72s5+lS5cu7zt2wIABSZIXX3wxSVJTU5M1a9Y0GrP99fb7AL3XmMrKyh1e5ZMkFRUVqaysbLQAAAAAfFw1Kfps27Yto0aNyj333JOHHnooPXr0+MD3LF26NEnSqVOnJEltbW2effbZrF27tjRm3rx5qaysTK9evUpj5s+f32g/8+bNS21tbVOmCwAAAPCx1aToM3LkyPzLv/xLpk+fnnbt2qW+vj719fV56623kiQrVqzI1VdfnSVLluSll17Kf/zHf2TYsGE59thj06dPnyTJ4MGD06tXr5x99tn55S9/mTlz5uTKK6/MyJEjU1FRkSS58MIL89vf/jaXX355fvWrX+X73/9+ZsyYkUsvvXQXHz4AAABAMTUp+txyyy1Zv359Bg4cmE6dOpWWu+++O0lSXl6eBx98MIMHD86hhx6ab37zmzn99NNz3333lfbRsmXLzJw5My1btkxtbW3OOuusDBs2LBMmTCiN6dGjR2bNmpV58+bliCOOyKRJk3Lbbbd5XDsAAADAh9SkGzlv27btfbd37do1Cxcu/MD9dOvWLffff//7jhk4cGCefvrppkwPAAAAgP9np27kDAAAAMBHm+gDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQE2KPhMnTsxnPvOZtGvXLh07dsypp56a5cuXNxrz9ttvZ+TIkdl3333Ttm3bnH766VmzZk2jMatWrcqQIUPSpk2bdOzYMWPGjMk777zTaMyCBQvSt2/fVFRU5KCDDsrUqVN37ggBAAAAPoaaFH0WLlyYkSNHZvHixZk3b142b96cwYMHZ8OGDaUxl156ae677778+Mc/zsKFC/Pqq6/mtNNOK23fsmVLhgwZkk2bNuWxxx7LnXfemalTp2bcuHGlMStXrsyQIUPyxS9+MUuXLs0ll1yS888/P3PmzNkFhwwAAABQfHs1ZfDs2bMbvZ46dWo6duyYJUuW5Nhjj8369etz++23Z/r06TnuuOOSJD/84Q/Ts2fPLF68OEcddVTmzp2b559/Pg8++GCqq6tz5JFH5uqrr84VV1yR8ePHp7y8PLfeemt69OiRSZMmJUl69uyZRx55JDfeeGPq6up20aEDAAAAFNdfdE+f9evXJ0k6dOiQJFmyZEk2b96cQYMGlcYceuihOeCAA7Jo0aIkyaJFi9K7d+9UV1eXxtTV1aWhoSHLli0rjfnTfWwfs30fO7Jx48Y0NDQ0WgAAAAA+rnY6+mzdujWXXHJJjj766Bx++OFJkvr6+pSXl6d9+/aNxlZXV6e+vr405k+Dz/bt27e935iGhoa89dZbO5zPxIkTU1VVVVq6du26s4cGAAAAsMfb6egzcuTIPPfcc7nrrrt25Xx22tixY7N+/frS8sorrzT3lAAAAACaTZPu6bPdqFGjMnPmzDz88MPp0qVLaX1NTU02bdqUdevWNbraZ82aNampqSmNeeKJJxrtb/vTvf50zLuf+LVmzZpUVlZm77333uGcKioqUlFRsTOHAwAAAFA4TbrSZ9u2bRk1alTuueeePPTQQ+nRo0ej7f369UurVq0yf/780rrly5dn1apVqa2tTZLU1tbm2Wefzdq1a0tj5s2bl8rKyvTq1as05k/3sX3M9n0AAAAA8P6adKXPyJEjM3369Pz7v/972rVrV7oHT1VVVfbee+9UVVVl+PDhGT16dDp06JDKyspcfPHFqa2tzVFHHZUkGTx4cHr16pWzzz471113Xerr63PllVdm5MiRpSt1Lrzwwtx88825/PLL8/Wvfz0PPfRQZsyYkVmzZu3iwwcAAAAopiZd6XPLLbdk/fr1GThwYDp16lRa7r777tKYG2+8MV/+8pdz+umn59hjj01NTU1++tOflra3bNkyM2fOTMuWLVNbW5uzzjorw4YNy4QJE0pjevTokVmzZmXevHk54ogjMmnSpNx2220e1w4AAADwITXpSp9t27Z94JjWrVtnypQpmTJlynuO6datW+6///733c/AgQPz9NNPN2V6AAAAAPw/O/30LgAAAAA+ukQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCAmhx9Hn744Zx88snp3LlzysrKcu+99zbafu6556asrKzRcsIJJzQa8/rrr+fMM89MZWVl2rdvn+HDh+fNN99sNOaZZ57JMccck9atW6dr16657rrrmn50AAAAAB9TTY4+GzZsyBFHHJEpU6a855gTTjghq1evLi3/+q//2mj7mWeemWXLlmXevHmZOXNmHn744VxwwQWl7Q0NDRk8eHC6deuWJUuW5Prrr8/48ePzgx/8oKnTBQAAAPhY2qupbzjxxBNz4oknvu+YioqK1NTU7HDbCy+8kNmzZ+fJJ59M//79kyT/9E//lJNOOinf+9730rlz50ybNi2bNm3KHXfckfLy8hx22GFZunRpbrjhhkZxCAAAAIAd2y339FmwYEE6duyYQw45JBdddFFee+210rZFixalffv2peCTJIMGDUqLFi3y+OOPl8Yce+yxKS8vL42pq6vL8uXL84c//GGHn7lx48Y0NDQ0WgAAAAA+rnZ59DnhhBPyox/9KPPnz88//MM/ZOHChTnxxBOzZcuWJEl9fX06duzY6D177bVXOnTokPr6+tKY6urqRmO2v94+5t0mTpyYqqqq0tK1a9ddfWgAAAAAe4wmf73rgwwdOrT0c+/evdOnT58ceOCBWbBgQY4//vhd/XElY8eOzejRo0uvGxoahB8AAADgY2u3P7L9k5/8ZPbbb7+8+OKLSZKampqsXbu20Zh33nknr7/+euk+QDU1NVmzZk2jMdtfv9e9gioqKlJZWdloAQAAAPi42u3R5z//8z/z2muvpVOnTkmS2trarFu3LkuWLCmNeeihh7J169YMGDCgNObhhx/O5s2bS2PmzZuXQw45JJ/4xCd295QBAAAA9nhNjj5vvvlmli5dmqVLlyZJVq5cmaVLl2bVqlV58803M2bMmCxevDgvvfRS5s+fn1NOOSUHHXRQ6urqkiQ9e/bMCSeckBEjRuSJJ57Io48+mlGjRmXo0KHp3LlzkuSMM85IeXl5hg8fnmXLluXuu+/O5MmTG319CwAAAID31uTo89RTT+XTn/50Pv3pTydJRo8enU9/+tMZN25cWrZsmWeeeSb/43/8jxx88MEZPnx4+vXrl5///OepqKgo7WPatGk59NBDc/zxx+ekk07K5z//+fzgBz8oba+qqsrcuXOzcuXK9OvXL9/85jczbtw4j2sHAAAA+JCafCPngQMHZtu2be+5fc6cOR+4jw4dOmT69OnvO6ZPnz75+c9/3tTpAQAAAJC/wj19AAAAAPjrE30AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKqMnR5+GHH87JJ5+czp07p6ysLPfee2+j7du2bcu4cePSqVOn7L333hk0aFB+85vfNBrz+uuv58wzz0xlZWXat2+f4cOH580332w05plnnskxxxyT1q1bp2vXrrnuuuuafnQAAAAAH1NNjj4bNmzIEUcckSlTpuxw+3XXXZd//Md/zK233prHH388++yzT+rq6vL222+Xxpx55plZtmxZ5s2bl5kzZ+bhhx/OBRdcUNre0NCQwYMHp1u3blmyZEmuv/76jB8/Pj/4wQ924hABAAAAPn72auobTjzxxJx44ok73LZt27bcdNNNufLKK3PKKackSX70ox+luro69957b4YOHZoXXnghs2fPzpNPPpn+/fsnSf7pn/4pJ510Ur73ve+lc+fOmTZtWjZt2pQ77rgj5eXlOeyww7J06dLccMMNjeIQAAAAADu2S+/ps3LlytTX12fQoEGldVVVVRkwYEAWLVqUJFm0aFHat29fCj5JMmjQoLRo0SKPP/54acyxxx6b8vLy0pi6urosX748f/jDH3b42Rs3bkxDQ0OjBQAAAODjapdGn/r6+iRJdXV1o/XV1dWlbfX19enYsWOj7XvttVc6dOjQaMyO9vGnn/FuEydOTFVVVWnp2rXrX35AAAAAAHuowjy9a+zYsVm/fn1peeWVV5p7SgAAAADNZpdGn5qamiTJmjVrGq1fs2ZNaVtNTU3Wrl3baPs777yT119/vdGYHe3jTz/j3SoqKlJZWdloAQAAAPi42qXRp0ePHqmpqcn8+fNL6xoaGvL444+ntrY2SVJbW5t169ZlyZIlpTEPPfRQtm7dmgEDBpTGPPzww9m8eXNpzLx583LIIYfkE5/4xK6cMgAAAEAhNTn6vPnmm1m6dGmWLl2a5L9v3rx06dKsWrUqZWVlueSSS/K///f/zn/8x3/k2WefzbBhw9K5c+eceuqpSZKePXvmhBNOyIgRI/LEE0/k0UcfzahRozJ06NB07tw5SXLGGWekvLw8w4cPz7Jly3L33Xdn8uTJGT169C47cAAAAIAia/Ij25966ql88YtfLL3eHmLOOeecTJ06NZdffnk2bNiQCy64IOvWrcvnP//5zJ49O61bty69Z9q0aRk1alSOP/74tGjRIqeffnr+8R//sbS9qqoqc+fOzciRI9OvX7/st99+GTdunMe1AwAAAHxITY4+AwcOzLZt295ze1lZWSZMmJAJEya855gOHTpk+vTp7/s5ffr0yc9//vOmTg8AAACAFOjpXQAAAAD8f6IPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAuzz6jB8/PmVlZY2WQw89tLT97bffzsiRI7Pvvvumbdu2Of3007NmzZpG+1i1alWGDBmSNm3apGPHjhkzZkzeeeedXT1VAAAAgMLaa3fs9LDDDsuDDz74/z9kr///MZdeemlmzZqVH//4x6mqqsqoUaNy2mmn5dFHH02SbNmyJUOGDElNTU0ee+yxrF69OsOGDUurVq1yzTXX7I7pAgAAABTObok+e+21V2pqav5s/fr163P77bdn+vTpOe6445IkP/zhD9OzZ88sXrw4Rx11VObOnZvnn38+Dz74YKqrq3PkkUfm6quvzhVXXJHx48envLx8d0wZAAAAoFB2yz19fvOb36Rz58755Cc/mTPPPDOrVq1KkixZsiSbN2/OoEGDSmMPPfTQHHDAAVm0aFGSZNGiRendu3eqq6tLY+rq6tLQ0JBly5a952du3LgxDQ0NjRYAAACAj6tdHn0GDBiQqVOnZvbs2bnllluycuXKHHPMMXnjjTdSX1+f8vLytG/fvtF7qqurU19fnySpr69vFHy2b9++7b1MnDgxVVVVpaVr16679sAAAAAA9iC7/OtdJ554YunnPn36ZMCAAenWrVtmzJiRvffee1d/XMnYsWMzevTo0uuGhgbhBwAAAPjY2u2PbG/fvn0OPvjgvPjii6mpqcmmTZuybt26RmPWrFlTugdQTU3Nnz3Na/vrHd0naLuKiopUVlY2WgAAAAA+rnZ79HnzzTezYsWKdOrUKf369UurVq0yf/780vbly5dn1apVqa2tTZLU1tbm2Wefzdq1a0tj5s2bl8rKyvTq1Wt3TxcAAACgEHb517suu+yynHzyyenWrVteffXVfPvb307Lli3zta99LVVVVRk+fHhGjx6dDh06pLKyMhdffHFqa2tz1FFHJUkGDx6cXr165eyzz851112X+vr6XHnllRk5cmQqKip29XQBAAAACmmXR5///M//zNe+9rW89tpr2X///fP5z38+ixcvzv77758kufHGG9OiRYucfvrp2bhxY+rq6vL973+/9P6WLVtm5syZueiii1JbW5t99tkn55xzTiZMmLCrpwoAAABQWLs8+tx1113vu71169aZMmVKpkyZ8p5junXrlvvvv39XTw0AAADgY2O339MHAAAAgL8+0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCAPtLRZ8qUKenevXtat26dAQMG5IknnmjuKQEAAADsET6y0efuu+/O6NGj8+1vfzu/+MUvcsQRR6Suri5r165t7qkBAAAAfOR9ZKPPDTfckBEjRuS8885Lr169cuutt6ZNmza54447mntqAAAAAB95ezX3BHZk06ZNWbJkScaOHVta16JFiwwaNCiLFi3a4Xs2btyYjRs3ll6vX78+SdLQ0LB7J9sMtm78Y3NPgSYq4r+HReYc2/M4x/YszrE9j3Nsz+Ic2/M4x/YszrE9TxHPse3HtG3btvcd95GMPr///e+zZcuWVFdXN1pfXV2dX/3qVzt8z8SJE/Od73znz9Z37dp1t8wRmqLqpuaeARSbcwx2L+cY7F7OMdi9inyOvfHGG6mqqnrP7R/J6LMzxo4dm9GjR5deb926Na+//nr23XfflJWVNePM+DAaGhrStWvXvPLKK6msrGzu6UDhOMdg93KOwe7lHIPdyzm259m2bVveeOONdO7c+X3HfSSjz3777ZeWLVtmzZo1jdavWbMmNTU1O3xPRUVFKioqGq1r37797poiu0llZaU/ZGA3co7B7uUcg93LOQa7l3Nsz/J+V/hs95G8kXN5eXn69euX+fPnl9Zt3bo18+fPT21tbTPODAAAAGDP8JG80idJRo8enXPOOSf9+/fPZz/72dx0003ZsGFDzjvvvOaeGgAAAMBH3kc2+nz1q1/N7373u4wbNy719fU58sgjM3v27D+7uTPFUFFRkW9/+9t/9hU9YNdwjsHu5RyD3cs5BruXc6y4yrZ90PO9AAAAANjjfCTv6QMAAADAX0b0AQAAACgg0QcAAACggEQfAIBdwG0SAYCPGtEHAGAXqKioyAsvvNDc0wAAKPnIPrKdYnvhhReyePHi1NbW5tBDD82vfvWrTJ48ORs3bsxZZ52V4447rrmnCAA7NHr06B2u37JlS6699trsu+++SZIbbrjhrzktKKwNGzZkxowZefHFF9OpU6d87WtfK51nQNNdfPHF+cpXvpJjjjmmuafCX4FHtvNXN3v27Jxyyilp27Zt/vjHP+aee+7JsGHDcsQRR2Tr1q1ZuHBh5s6dK/zATvrFL36RT3ziE+nRo0eS5J//+Z9z6623ZtWqVenWrVtGjRqVoUOHNvMsYc/VokWLHHHEEWnfvn2j9QsXLkz//v2zzz77pKysLA899FDzTBD2cL169cojjzySDh065JVXXsmxxx6bP/zhDzn44IOzYsWK7LXXXlm8eHHp7zmgaVq0aJGysrIceOCBGT58eM4555zU1NQ097TYTXy9i7+6CRMmZMyYMXnttdfywx/+MGeccUZGjBiRefPmZf78+RkzZkyuvfba5p4m7LHOO++8rFixIkly22235Rvf+Eb69++fb33rW/nMZz6TESNG5I477mjmWcKe65prrsn69etz1VVX5Wc/+1lpadmyZaZOnZqf/exngg/8BX71q1/lnXfeSZKMHTs2nTt3zssvv5wnnngiL7/8cvr06ZNvfetbzTxL2LPNnTs3J510Ur73ve/lgAMOyCmnnJKZM2dm69atzT01djFX+vBXV1VVlSVLluSggw7K1q1bU1FRkSeeeCKf/vSnkyTPPfdcBg0alPr6+maeKeyZ2rRpkxdeeCHdunVL3759c9FFF2XEiBGl7dOnT893v/vdLFu2rBlnCXu2J598MmeddVZOPvnkTJw4Ma1atUqrVq3yy1/+Mr169Wru6cEerUWLFqmvr0/Hjh1z4IEH5tZbb82XvvSl0vbHHnssQ4cOzapVq5pxlrDn+tNzbPPmzbnnnntyxx135MEHH0x1dXXOPffcnHfeeTnooIOae6rsAq70oVmUlZUl+e8/cFq3bp2qqqrStnbt2mX9+vXNNTXY47Vp0ya///3vkyT/9V//lc9+9rONtg8YMCArV65sjqlBYXzmM5/JkiVL8rvf/S79+/fPc889V/q7DfjLbT+f3n777XTq1KnRtr/5m7/J7373u+aYFhROq1at8pWvfCWzZ8/Ob3/724wYMSLTpk3LIYcc0txTYxcRffir6969e37zm9+UXi9atCgHHHBA6fWqVav+7C934MM78cQTc8sttyRJvvCFL+QnP/lJo+0zZszwf25gF2jbtm3uvPPOjB07NoMGDcqWLVuae0pQGMcff3z69u2bhoaGLF++vNG2l19+2Y2cYTc44IADMn78+KxcuTKzZ89u7umwi3h6F391F110UaP/MD788MMbbX/ggQfcxBn+Av/wD/+Qo48+Ol/4whfSv3//TJo0KQsWLEjPnj2zfPnyLF68OPfcc09zTxMKY+jQofn85z+fJUuWpFu3bs09Hdjjffvb3270um3bto1e33fffZ46BH+Bbt26pWXLlu+5vaysrNFXKtmzuacPQAGtW7cu1157be6777789re/zdatW9OpU6ccffTRufTSS9O/f//mniIAALCbiT4AAAAABeSePgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AsFO2bduWCy64IB06dEhZWVnat2+fSy65pLS9e/fuuemmm5ptfs3h3HPPzamnnrrT7x84cGCj3+Ff24IFC1JWVpZ169Y12xwAgF3HI9sBgJ0ye/bsTJ06NQsWLMgnP/nJtGjRInvvvXdzT2uXGDhwYI488shCR6sdHePnPve5rF69OlVVVc03MQBglxF9AICdsmLFinTq1Cmf+9znmnsqSZJNmzalvLy8uafR7DZv3pxWrVrt1HvLy8tTU1Ozi2cEADQXX+8CAJrs3HPPzcUXX5xVq1alrKws3bt3/8CvJpWVleX//J//ky9/+ctp06ZNevbsmUWLFuXFF1/MwIEDs88+++Rzn/tcVqxY8aHmMH78+Bx55JG57bbb0qNHj7Ru3TpJsm7dupx//vnZf//9U1lZmeOOOy6//OUv/+x9//zP/5zu3bunqqoqQ4cOzRtvvFE6toULF2by5MkpKytLWVlZXnrppWzZsiXDhw9Pjx49svfee+eQQw7J5MmTd/p3uGHDhgwbNixt27ZNp06dMmnSpB3+zu69995G69q3b5+pU6cmSV566aWUlZXl7rvvzhe+8IW0bt0606ZNy2uvvZavfe1r+Zu/+Zu0adMmvXv3zr/+67+W9vFex7ijr3f927/9Ww477LBUVFSke/fufzbP7t2755prrsnXv/71tGvXLgcccEB+8IMf7PTvBQDYdUQfAKDJJk+enAkTJqRLly5ZvXp1nnzyyQ/1vquvvjrDhg3L0qVLc+ihh+aMM87IN77xjYwdOzZPPfVUtm3bllGjRn3oebz44ov5t3/7t/z0pz/N0qVLkyT/83/+z6xduzYPPPBAlixZkr59++b444/P66+/XnrfihUrcu+992bmzJmZOXNmFi5cmGuvvbZ0bLW1tRkxYkRWr16d1atXp2vXrtm6dWu6dOmSH//4x3n++eczbty4/K//9b8yY8aMD/+L+xNjxozJwoUL8+///u+ZO3duFixYkF/84hc7ta+///u/z9/93d/lhRdeSF1dXd5+++3069cvs2bNynPPPZcLLrggZ599dp544on3PcZ3W7JkSb7yla9k6NChefbZZzN+/PhcddVVpei03aRJk9K/f/88/fTT+du//dtcdNFFWb58+U4dCwCw6/h6FwDQZFVVVWnXrl1atmzZpK8DnXfeefnKV76SJLniiitSW1ubq666KnV1dUmSv/u7v8t55533ofe3adOm/OhHP8r++++fJHnkkUfyxBNPZO3atamoqEiSfO9738u9996bn/zkJ7nggguSJFu3bs3UqVPTrl27JMnZZ5+d+fPn57vf/W6qqqpSXl6eNm3aNDq2li1b5jvf+U7pdY8ePbJo0aLMmDGjdEwf1ptvvpnbb789//Iv/5Ljjz8+SXLnnXemS5cuTdrPdpdccklOO+20Rusuu+yy0s8XX3xx5syZkxkzZuSzn/3sex7ju91www05/vjjc9VVVyVJDj744Dz//PO5/vrrc+6555bGnXTSSfnbv/3bJP/9z/XGG2/Mz372sxxyyCE7dTwAwK4h+gAAfzV9+vQp/VxdXZ0k6d27d6N1b7/9dhoaGlJZWfmB++vWrVsp+CTJL3/5y7z55pvZd999G4176623Gn1trHv37qXgkySdOnXK2rVrP/DzpkyZkjvuuCOrVq3KW2+9lU2bNuXII4/8wPe924oVK7Jp06YMGDCgtK5Dhw47HUn69+/f6PWWLVtyzTXXZMaMGfmv//qvbNq0KRs3bkybNm2atN8XXnghp5xySqN1Rx99dG666aZs2bIlLVu2TNL4n2tZWVlqamo+1O8TANi9RB8A4K/mT28wXFZW9p7rtm7d+qH2t88++zR6/eabb6ZTp05ZsGDBn41t3779Duex/XM/6DPvuuuuXHbZZZk0aVJqa2vTrl27XH/99Xn88cc/1Fx3RllZWbZt29Zo3ebNm/9s3Lt/D9dff30mT56cm266Kb17984+++yTSy65JJs2bdot89yZ3ycAsPuJPgBAYfTt2zf19fXZa6+90r17953eT3l5ebZs2dJo3aOPPprPfe5zpa8xJfnQN51+twMPPDCtWrXK448/ngMOOCBJ8oc//CG//vWv84UvfKE0bv/998/q1atLr3/zm9/kj3/84wfu/9FHH80pp5ySs846K8l/R7Rf//rX6dWr1/se47v17Nkzjz766J/t++CDDy5d5QMAfHS5kTMAUBiDBg1KbW1tTj311MydOzcvvfRSHnvssXzrW9/KU0899aH307179zz++ON56aWX8vvf/z5bt27Npz71qTz11FOZM2dOfv3rX+eqq6760Dewfre2bdtm+PDhGTNmTB566KE899xzOffcc9OiReP/NDvuuONy88035+mnn85TTz2VCy+88EM9jv1Tn/pU5s2bl8ceeywvvPBCvvGNb2TNmjUfeIzv9s1vfjPz58/P1VdfnV//+te58847c/PNNze6XxAA8NEl+gAAhVFWVpb7778/xx57bM4777wcfPDBGTp0aF5++eXSPYQ+jMsuuywtW7ZMr169sv/++2fVqlX5xje+kdNOOy1f/epXM2DAgLz22muNrvppquuvvz7HHHNMTj755AwaNCif//zn069fv0ZjJk2alK5du+aYY47JGWeckcsuu+xD3ZfnyiuvTN++fVNXV5eBAwempqYmp5566gce47v17ds3M2bMyF133ZXDDz8848aNy4QJExrdxBkA+Ogq2/buL4oDAAAAsMdzpQ8AAABAAYk+AMBH0mGHHZa2bdvucJk2bVpzT+99rVq16j3n3rZt2x1+lQoAYFfz9S4A4CPp5Zdf3uHjyZOkuro67dq1+yvP6MN755138tJLL73n9u7du2evvTxEFQDYvUQfAAAAgALy9S4AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggP4vtMTxTPeb9m4AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "df['film_rental_duration'].value_counts().plot(kind='bar', figsize=(14,6))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zqr8IIvKAWN8" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### What is the most common rental rate?\n", + "\n", + "- Show a pie plot with all possible rental rates.\n", + "- Show a bar plot with all possible rental rates.\n", + "- Which plot you think fits the best in this case? Why?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WEpz3D9KAWN8" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "cell_type": "solution", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 516 + }, + "id": "r9Gu-t4fAWN8", + "outputId": "71c5a851-cd8d-4dfd-f6ff-e8e931f341ae" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAHiCAYAAADxm1UyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABATElEQVR4nO3dd3xUVf4+8Gdm0ia9kE4IpBAiLYKAoObrCoKCa1kUVFwRlF3sqOsKK4ssdn4rrsvuKpYABmlKs4KIgKB0EEEgEFoaKaRnkkym/f6IokhLmZnPnXuf9+7rhQ43kye+Eh7OPeeeo3M4HA4QERGRx9NLByAiIiLnYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIS9t///hedO3eGn58fBgwYgO3bt1/wWovFghkzZiA5ORl+fn7o3bs3Vq9efdY1tbW1mDRpEhITE2E0GjFo0CDs2LHD1V8GKQBLnYhI0JIlS/Dkk0/iueeew+7du9G7d28MGzYMpaWl571+6tSpmDNnDmbPno0DBw5g4sSJuO2227Bnz54z1zzwwANYu3YtsrOzsW/fPgwdOhRDhgxBYWGhu74sEqJzOBwO6RBERFo1YMAA9OvXD//5z38AAHa7HQkJCXj00UcxefLkc66Pi4vDs88+i4cffvjMayNHjoTRaMSCBQvQ0NCAoKAgrFq1CiNGjDhzTd++fXHjjTfihRdecP0XRWK8pAMQkXPY7A6Um8yoMDWhwtSESpMFFfVNqDQ1obrBgiarHVa7HRabA1abHRa7AxarHVa7AxabHVab45fft9vhcAABPl4I8DXA39cLgT5eCPBt/vcAXy8E+Pz0q6/XmesiAnwRG+oHbwNvArZEU1MTdu3ahSlTppx5Ta/XY8iQIdiyZct5P8ZsNsPPz++s14xGIzZv3gwAsFqtsNlsF72G1IulTuQhqustyC2rxdFSEwqrGlBa24iSGjNKapp/rTCZYVfAfTe9DogM8kVcqBFxoUZ0/OnX+J9/DTMixOgtHVMRTp8+DZvNhujo6LNej46OxqFDh877McOGDcOsWbOQmZmJ5ORkrFu3DsuXL4fNZgMABAUFYeDAgXj++eeRnp6O6OhoLFq0CFu2bEFKSorLvyaSxVInUpji6kbkltYht7QWuWV1P/2zCafrzNLRWsTuwE9/2TBjT17Vea8J8vVqLvwwI1Kjg9A9LhiXxQWjS0QA9HqdewN7mDfeeAMTJkxAt27doNPpkJycjHHjxiErK+vMNdnZ2Rg/fjzi4+NhMBjQp08f3HXXXdi1a5dgcnIHljqREJPZij15VdhXWN1c3GV1OFZah1qzVTqay9WarcgpqUVOSS3WHfplQViAjwFpMUHoHhdypujTYoLg62UQTOs6HTp0gMFgQElJyVmvl5SUICYm5rwfExkZiZUrV6KxsRHl5eWIi4vD5MmTkZSUdOaa5ORkbNy4ESaTCTU1NYiNjcXo0aPPuobUiaVO5CbF1Y3YcaICu05WYseJChwqroVNCffLFcTUZMPuvCrs/tUI30uvQ3Jk4JmSz0gIRe+EUFXM2/v4+KBv375Yt24dbr31VgDNC+XWrVuHRx555KIf6+fnh/j4eFgsFixbtgyjRo0655qAgAAEBASgsrISa9aswcyZM13xZZCCcPU7kQvY7Q7klNRi58lK7DxRgZ0nKlFY1SAdSzUCfAzo1yUcVyV3wKCUCFwWGwydzjNv2y9ZsgRjx47FnDlz0L9/f/zrX//C0qVLcejQIURHR+Pee+9FfHw8Xn75ZQDAtm3bUFhYiIyMDBQWFmL69Ok4fvw4du/ejdDQUADAmjVr4HA4kJaWhtzcXDz99NPw8/PDpk2b4O3N9QxqxpE6kZPkFNdi3aESbDtWgd15lahtVP9tdCmmJhs25JRhQ04ZACA8wAcDkyJwVUoHXJUSgcSIAOGELTd69GiUlZVh2rRpKC4uRkZGBlavXn1m8VxeXh70+l/uSjQ2NmLq1Kk4duwYAgMDMXz4cGRnZ58pdACorq7GlClTUFBQgPDwcIwcORIvvvgiC10DOFInaiOrzY7tJyrw1YFSfHWwBHkV9dKR6CfxoUZcldJc8oOSOyAyyFc6EpFbsNSJWqHObMWGnFJ8daAE63PKUN1gkY5El6DTAf0SwzGiVyxu7BmDqCC/S38QkYdiqRNdQlFVA746WIK1B5pvrTfZ7NKRqI30OqB/l3Dc1CsON/aIQUQgR/CkLix1ovOoqm/Cij2FWL67EPsKq6XjkAsY9DoMTIrAiF6xuKF7DMICfKQjEbUbS53oJ3a7A98cKcOHOwuw9mAJmqwckWuFl16HQSkdcFPPWAzrHoMQfy4oI8/EUifNyyuvx9Kd+Vi+uwBF1Y3ScUiYj0GP4T1j8MeBieibGC4dh6hVWOqkSY0WGz7fdwpLd+Zj2/EK8KeAzqd7XDDuuTIRt2bEw+ijzl3tSF1Y6qQp+wqqsXB7Hj7dW6SJ7VjJOYL9vHB73wT8cWAiunTwnGfgSXtY6qQJ63NKMWfjUWw9ViEdhTyYTgdcndIB91yZiCHp0TDw8BlSGJY6qZbVZsenP5zCWxuP4lBxrXQcUpn4UCPu6p+AO/t3Qgc+GkcKwVIn1WlosmHJjjy8u/k4Ciq53zq5lq+XHnf2S8DEa5MRG2KUjkMax1In1ag0NWH+lhN4f8tJVJiapOOQxvgY9BjZNx4PXZuChHB/6TikUSx18niFVQ1455tjWLozH/VNNuk4pHFeeh1uzojDI79LQVJkoHQc0hiWOnms0tpGvL72CD7cmQ8rzyUnhTHodbjt8ng8PjiVI3dyG5Y6eZz6Jive/uYY3vnmGEwcmZPCeRt0GHVFAh69LhUxITxMhlyLpU4ew2Z3YOnOfLy+9jBKa83ScYhaxddLjzEDEvHodSncZ55chqVOHuHrQyV45YtDOFxSJx2FqF1CjN54amhXjBmQyOfcyelY6qRo+wur8dLnB/Hd0XLpKEROlR4bjBm3dEe/ztxfnpyHpU6KVFjVgH+uycHK7wu5Lzup2i0Zcfjb8HREB3O+ndqPpU6K0mS14z/rczFn41GYefQpaUSAjwGPDk7F+Ku6wMdLLx2HPBhLnRRj18kKPLNsH3JLOW9O2pTUIQDP3dwd/9c1UjoKeSiWOokzma2YufoQsreeBB83JwKuvywa0266jM+3U6ux1EnUhpxSPLtiPwqruEc70a/5eunxxPVd8adrkqDnKnlqIZY6iag0NWHGpwewYk+hdBQiRevXOQyv3ZGBThEctdOlsdTJ7VZ9X4gZnxxAOQ9dIWqRAB8Dnh1xGe4e0Ek6CikcS53c5lR1A6au2I91h0qloxB5pOu6ReGVkT0RFcTH3+j8WOrkFst2FWD6xz+i1myVjkLk0cL8vfHibT0xvGesdBRSIJY6uZTJbMXUlfs5d07kZLdkxGHGLT0QYvSWjkIKwlInl9lXUI1HF+3GifJ66ShEqhQb4oeZt/fCNal8rp2asdTJ6RwOB97bfBwzV+egycZd4YhcSacDxg7sjGdHpMPbwN3otI7fAeRcDZWwL70PW7Z+y0IncgOHA5j33Qnc/c5WlNY2SschYRypk/MU7QGW3gtU5cEcloYrTz+LSouXdCoizYgO9sWb9/RFn05h0lFICEfq5Bw73gXeGwZU5QEAfCtzsDxxuXAoIm0pqTHjzjlb8cG2k9JRSAhH6tQ+lgbg48eAfUvP+9sL46bgb8d6ujkUEd3ZLwH/uKU7fL0M0lHIjVjq1Ha1JcCiO4Gi3Re8xOEdgPt9ZuLrct4OJHK3jIRQvHVPX8SEcLMarWCpU9uUHAAWjgKq8y95KefXieR0CPTF/8b0Qf8u4dJRyA04p06tl/sVkDWsRYUONM+vL0tc4eJQRHQ+p+vMGPPuVsz79rh0FHIDljq1zo73gA9GAeaaVn1YUsEKvJi030WhiOhiLDYHpn9yAE9/uBdWPmqqarz9Ti1jtwNfTgW2/rfNb+HwDsA475nYUMH5dSIpg7tF4b9j+sDPmwvo1IilTpfWZAKWTQByPmv3W5nD09C/7FlUc36dSMwViWF4775+3DdehXj7nS6uthiYe6NTCh0AfCtysDxxpVPei4jaZufJSoyeswUlNdyBTm1Y6nRhZTnAO4OBU3ud+rbJBcvxQtKPTn1PImqdQ8W1GPnmdzh+2iQdhZyIt9/p/Ep+BN6/BTCVueTtHT4BuM97Jjby+XUiUREBPpg/vj96xIdIRyEn4EidznVqLzDvJpcVOgDomkyY4zsbId5Wl30OIrq0clMT7nx7K77LPS0dhZyApU5nK9gFzP890FDh8k/lV3EIyzqvcvnnIaKLqzNbcd+8Hfhi3ynpKNROLHX6Rd5WIPtWoLHabZ8yJX8ZZnQ54LbPR0Tn12S14+GFu3kYjIdjqVOzE5uBBSNbvamMM/yx/HVkhle5/fMS0dnsDuDZFfuRvZXF7qlY6gQcXQ98cAfQVCfy6XVNJrztNxtBXpxfJ1KCaav2Y9muAukY1AYsda07srb5pDVLvWgMv4qDWN7lY9EMRNTM4QD+uuwHfM45do/DUteyQ58Di+8GrMrYgCI1/yNM73JQOgYRAbDZHXh88R6sP1QqHYVagaWuVcc3AR/eB9iapJOcZSzn14kUw2JzYOKCXfjuKB938xQsdS0q3g8sHgPYzNJJzqFrqsPbxv9wfp1IIcxWOybM34ldJyulo1ALsNS1pvLkT6vc3ffYWmv5lR/Asi6fSMcgop+YmmwYN3c79hcq988NasZS1xJTObDgD0BdsXSSS+qa/yGe4/w6kWLUNFpxb9Z2HCmplY5CF8FS14omE7DwDqA8VzpJi91X/jquDufIgEgpKkxNuOe9bThZzkNglIqlrgU2C7D0XqBwl3SSVtE11eEd438Q4GWTjkJEPympMeOe97ahwqSsRbbUjKWudg4HsOoRIPcr6SRtYiz/kc+vEylMfkUDJmbvgsVml45Cv8FSV7u104AfFkunaJe0/A/x9y6HpGMQ0a9sP1GBqSv2S8eg32Cpq9nWN4Hv/i2dwinGV7yOq8I4v06kJEt25uO9zcelY9CvsNTV6tgGYM2z0imcRmeuxbv+/+X8OpHCvPT5QWw8XCYdg37CUlejqjzgo/GAQ10FaCzfj+VdPpWOQUS/YrM78MjC3ThaJnMgFJ2Npa42lkZgyT1Afbl0EpdIy1+CqZ1zpGMQ0a/UNlrxwPydqK63SEfRPJa62nz6BHBqr3QKl7q/chYGcn6dSFGOnzbh4YW7YeWKeFEsdTXZ/g6wd6F0CpfTmWuRFcD5dSKl2Zx7GjM+PSAdQ9NY6mqRtxVYPUU6hdsYT+/HMs6vEynO+1tOYsHWk9IxNIulrga1xcDSsYBdW/NZ3fKX4FnOrxMpzj8++RF786ukY2gSS93T/bwFrAcc0uIKD1TOwoDQGukYRPQrFpsDjy/eA5OZRyi7G0vd033xDJC/TTqFGJ25FnMD/4sAAxfnECnJifJ6TFv1o3QMzWGpe7IDq4Cd70mnEOd/eh8+SuL8OpHSLNtdgE/2FknH0BSWuqeqLQE+mSSdQjHS8xfjb50PS8cgot94dsU+FFTWS8fQDJa6p/r4EaChQjqFokyonIX+nF8nUpSaRiueWPI9bHaHdBRNYKl7op1ZwJEvpVMojs5cg3mB/+P8OpHC7DhRidlfH5GOoQksdU9TfhRYM1U6hWL5n/4BHyZ9Jh2DiH5j9te52HWSdxddjaXuSew2YMVEwGKSTqJol+UvwjOJHBUQKYnN7sDji79HTaO29tNwN5a6J9k8CyjYLp3CI0ys4vw6kdIUVDbg2RX7pWOoGkvdUxR9D2x4VTqFx9CZqzE38E34G7g/PJGSfLK3CCv3FErHUC2WuiewNAIr/qy5bWDbK+D0XixN+kI6BhH9xoxPD6DC1CQdQ5VY6p7g6+eBskPSKTxSj/yF+Cvn14kUpcLUhBd4mptLsNSV7tReYOub0ik82sTq13FFSK10DCL6leV7CrHpSJl0DNVhqSuZwwF89hfAwXnh9tA3VmF+8Jswcn6dSFGeXbEfjRb+XDoTS13J9izgancnCSj7HkuTVkvHIKJfyauox+tfcXtnZ2KpK1VDJfDVdOkUqtIz/wM81emodAwi+pX3Nh3H4RJOjzkLS12pvn4BqD8tnUJ1Hq55DX04v06kGFa7A9NW8dl1Z2GpK1HR9837u5PT6RurkM35dSJF2XqsAqu+57PrzsBSVxqHA/j8L4CDh5K4SkDZ91iStEY6BhH9youfHUSd2Sodw+Ox1JVmTzZQsEM6her1yl/A+XUiBSmtNeP1tVw0114sdSXh4ji3ap5fr5OOQUQ/mf/dCeSW8meyPVjqSrLueaC+XDqFZugbq/A+59eJFMNqd+C1L3OkY3g0lrpSlB0Gds2TTqE5gWV7sDjpS+kYRPSTL/YX44eCKukYHoulrhQbXuLOcUJ65S/AE52OSccgop/8vzUcrbcVS10JivcDP66UTqFZOjjwaM1ryAjmXB6REmw6chpbjnIqsi1Y6kqw/kUADukUmqZvrMSCkLfgq+ejhERK8P/W8GTKtmCpSyvcBeR8Lp2CAASW7caSZM6vEynB7rwqfHWgRDqGx2GpS/v6BekE9Cu987MxifPrRIrwzy9z4HDwLmZrsNQlnfwOOPq1dAr6FR0ceKx2FufXiRTgUHEtPt5bJB3Do7DUJa17XjoBnYe+oQILQudwfp1IAWatPQyLjT+LLcVSl5K7Dsj7TjoFXUBg6S4sTl4rHYNI806W12PJjnzpGB6DpS5l/YvSCegSMvLfx+OcXycSN/vrI2i0cB+PlmCpS8hZ3bzqnRRNBwcer52FXpxfJxJVUmPGyj08mrUlWOoSvn1DOgG1kL6hAh+Evs35dSJhc789IR3BI7DU3a1wF+fSPUxQ6U4s4vw6kaicklpsOlImHUPxWOru9t1/pBNQG1ye/z4e7XRcOgaRpr23mT+Dl8JSd6eqPODAKukU1AY6OPBE7Sz0DDJJRyHSrI2Hy3je+iWw1N1p61s8ic2D6RvKsTBsDrz13OGKSILDAcz9lqP1i2Gpu4u5DtiTLZ2C2imodCcWJ38lHYNIs5bvLkRVfZN0DMViqbvL3kWAuUY6BTlBn/x5eDjhhHQMIk1qsNiwcHuedAzFYqm7y/a3pROQk+jgwFN1nF8nkvL+dye5dewFsNTd4eh64PRh6RTkRPqG0/gg7G3OrxMJKK5pxOf7TknHUCSWujtwlK5KwaU7sIjz60Qisvh423mx1F2tKh84vFo6BblI3/x5eJDz60Rut7egGrvzKqVjKA5L3dV+WAI4OPejVjo48HTdLHTn/DqR2y3fXSAdQXFY6q72wxLpBORi+obTWBT+LufXidzssx9OccHcb7DUXalwNxfIaURwyTYsTF4nHYNIUyrrLdiQw/3gf42l7ko/LJVOQG50RcE8PJhwUjoGkabwSNazsdRdxWYF9n8knYLcSOew42nTa0gPrJeOQqQZXx0sQU2jRTqGYrDUXeXo14CJt4W0Rl9/GosjOL9O5C5mqx1f8Jn1M1jqrvLDYukEJCSkZCsWJK+XjkGkGSt4C/4MlrormGuBQ59LpyBB/Quy8OeO3J+ayB22Ha9AUVWDdAxFYKm7woGPASu/wbRM57Djmfp/cn6dyA0cDmDV90XSMRSBpe4KvPVO+GV+3aDjc7RErsZV8M1Y6s5WUwSc2CydghQipGQrPkjZIB2DSPVySmpxoIjHW7PUnS3nC24LS2cZUJCFP3F+ncjlPt7LW/AsdWc78qV0AlIYncOOyfWvoRvn14lcakNOqXQEcSx1Z7KagePfSKcgBdLXl2Fxh/c4v07kQoeKa3GqWtuLlFnqznRiE2DhaIzOL7R4CxakbJSOQaRqGzW+FzxL3ZmOrJVOQAp3ZcF7eKBjvnQMItXaeJilTs5yeI10AlI4ncOOKQ2voWuAtm8RErnK5tzTsGr4OFaWurOczgUqj0unIA9gMJViaSTn14lcobbRil0nK6VjiGGpOwtXvVMrhBZ/h+wULqokcoUNGr4Fz1J3FpY6tdLAgndxfzzn14mcTcuL5VjqztBkAk5+K52CPIzOYcffGmchlfPrRE514FQNSmsapWOIYKk7w7ENgK1JOgV5IIOpBEsjszi/TuRkWr0Fz1J3hmMbpBOQBwsr/hbvp2ySjkGkKlp9tI2l7gz526UTkIcbVPAu7osrkI5BpBqbj5yG3e6QjuF2LPX2aqoHSvZLpyAPp3PY8Hfza5xfJ3KS6gYLcsvqpGO4HUu9vYr2AHardApSAc6vEznX9/lV0hHcjqXeXgW89U7OE1b8LealbJaOQaQKe1nq1Gr5O6QTkMpcXfAOxsYVSscg8nh7C6qkI7gdS729Cljq5Fw6hw3TzK8h2Z/z60TtkVNci0aLTTqGW7HU26PyBGAqlU5BKmQwFePD6HnQ6bS3epfIWSw2B34sqpGO4VYs9fbgrXdyofBTmzCf8+tE7aK1eXWWentwkRy52DUFb+PeuCLpGEQeS2vz6iz19uCmM+RiOocNzzW9hiR/be5jTdReHKlTy1gauOkMuYWh7hTn14na6ER5ParrLdIx3Ial3lZlOdx0htwm4tQ3fH6dqI2+19AteJZ6W50+Ip2ANCaz4G38kc+vE7Walm7Bs9TbqpylTu6lc9gwvel1zq8TtdLBU9p5rI2l3lanD0snIA0y1BXhw+j5nF8naoUT5fXSEdyGpd5WvP1OQiJObURWynfSMYg8Rl65STqC27DU28LhAMqPSqcgDbu2cA7GxPL5daKWMDXZUFZrlo7hFiz1tqjKA6zcl5vk6OxWzLDMQmcj59eJWuKkRkbrLPW24K13UgBDXRGWxXB+nagltDKvzlJvC658J4WIOLUR73F+neiStDKvzlJvC658JwX5XeEc3B17SjoGkaJxpE4XxtvvpCA6uxUzrLPQifPrRBfEOXW6MK58J4Xxqi3Esthszq8TXQBH6nR+djtQVyKdgugckUXr8W7KFukYRIpU3WDRxMEuLPXWaqgAHDbpFETndV3hW7iT8+tE53VCA7fgWeqtVVcqnYDognR2K17g/DrReZ2sUP8teJZ6a5lY6qRsnF8nOj8t7CrHUm+tujLpBESXFFm0Hu+kbJWOQaQo1fVN0hFcrk2lft1116Gqquqc12tqanDddde1N5OycaROHmJw4VsYHVssHYNIMaoauFDuvDZs2ICmpnP/xtPY2IhNmza1O5SicU6dPITObsGL1tfQ0U/9txyJWqJKA6vfvVpz8Q8//HDmnw8cOIDi4l9GATabDatXr0Z8fLzz0imRibffyXN41RZiedwC9D92v3QUInHVGhipt6rUMzIyoNPpoNPpznub3Wg0Yvbs2U4Lp0gcqZOHiSpah7dTuuNPuVdKRyESpYXb760q9ePHj8PhcCApKQnbt29HZGTkmd/z8fFBVFQUDAaD00MqCufUyQNdX/Qm7ojpjA+LY6SjEInRwkK5VpV6YmIiAMBut7skjEfg6nfyQDq7BS/bZmGL3/MoaPSVjkMkgiP1izhy5AjWr1+P0tLSc0p+2rRp7Q6mWPXl0gmI2sSrtoDz66RpNQ0WOBwO6HQ66Sgu06ZSf+edd/Dggw+iQ4cOiImJOes/kE6nU2+pOxyAjSuJyXNFFa3DnJTu+DPn10mD7A6gpsGKEH9v6Sguo3M4HK3edioxMREPPfQQnnnmGVdkUi6rGXghSjoFUbs49N54OngmPiqOlo5C5HbfPP07dIrwl47hMm16Tr2yshJ33HGHs7Mon039iyxI/XR2C16xz0I8n18nDapqUPef420q9TvuuANffvmls7Mon1Xd3wykHV41+Vge94F0DCK3U/uz6m2aU09JScHf//53bN26FT179oS399nzE4899phTwikOR+qkItFFX+GtlO6YmDtAOgqR21ht6j7oqE1z6l26dLnwG+p0OHbsWLtCKVblCeCN3tIpiJzGYfDBXwJfxbISzq+TNrx77xUYcpl6v9/bNFI/fvy4s3N4Bpu6b9uQ9uhsTXjV8Tq2+v0DhXx+nTTA1vpxrEfh0autYeXCIlIfr5o8LItbKB2DyC3sdnWXeptG6uPHj7/o72dlZbUpjOJxTp1UKqZoLd5M6Y4Hc/tLRyFyKbWP1NtU6pWVlWf9u8Viwf79+1FVVaXu89RZ6qRiN5z6H/4Q3RnLS7gXA6mXjSP1c61YseKc1+x2Ox588EEkJye3O5RisdRJxXS2JjiS1yAo/EfpKEQu4x38KgD1HhHutDl1vV6PJ598Eq+//rqz3lJ5HBo+yIZU70RkMr6uOigdg8il9Hp1LyVz6ld39OhRWK1WZ76lsngZpRMQucy8hG6w8y+upHIGnbqPB2/T7fcnn3zyrH93OBw4deoUPvvsM4wdO9YpwRTJm6VO6lQWHINPqnOkYxC5nF6n7pF6m0p9z549Z/27Xq9HZGQkXnvttUuujPdo3uo9BIC0bUFyXzRV7ZOOQeRyepU/yd2mUl+/fr2zc3gGjtRJher8gvGhSaMbSpHmGPS8/X5BZWVlyMlpvmWXlpaGyMhIp4RSLJY6qdDSrlehtpYr3kkbjCpfG9Wm+xAmkwnjx49HbGwsMjMzkZmZibi4ONx///2or693dkbl4O13UhmLwQcLLKekYxC5TbBPsHQEl2pTqT/55JPYuHEjPvnkE1RVVaGqqgqrVq3Cxo0b8dRTTzk7o3J4+wEqX2RB2vJJWibKGiukYxC5TZBPkHQEl2rTKW0dOnTARx99hGuvvfas19evX49Ro0ahrKzMWfmU56V4oKlOOgVRu9l1etzSfQBOmAqloxC5zXd3fafqYm/TsLO+vh7R0eceXRcVFaXu2+8A59VJNdanXMVCJ03R6/QI9A6UjuFSbSr1gQMH4rnnnkNjY+OZ1xoaGvCPf/wDAwcOdFo4RWKpk0pk+at7FTDRbwV4B0Cn00nHcKk2rX7/17/+hRtuuAEdO3ZE7969AQB79+6Fr68vvvzyS6cGVBwuliMV2JnYFz/UHJOOQeRWal8kB7Sx1Hv27IkjR47ggw8+wKFDhwAAd911F8aMGQOjUeUjWV/1zsWQdmSFdwCqVLz2heg81DyX/rM2lfrLL7+M6OhoTJgw4azXs7KyUFZWhmeeecYp4RQpgMdSkmc7HN0Nm3hwC2mQFkq9TXPqc+bMQbdu3c55vXv37njrrbda9V6vvPIKdDodJk2adMFrLBYLZsyYgeTkZPj5+aF3795YvXr1WdfU1tZi0qRJSExMhNFoxKBBg7Bjx45WZWmRQJY6eba58UnSEYhEBHmz1M+ruLgYsbGx57weGRmJU6davpHFjh07MGfOHPTq1eui102dOhVz5szB7NmzceDAAUycOBG33XbbWXvQP/DAA1i7di2ys7Oxb98+DB06FEOGDEFhoZNX9waeu+qfyFOcCkvA6qpD0jGIRHCkfgEJCQn49ttvz3n922+/RVxcXIveo66uDmPGjME777yDsLCwi16bnZ2Nv/3tbxg+fDiSkpLw4IMPYvjw4XjttdcANK+8X7ZsGWbOnInMzEykpKRg+vTpSElJwZtvvtn6L/BiOFInD/Z+l96wOlR8PDLRRYT6hkpHcLk2lfqECRMwadIkzJ07FydPnsTJkyeRlZWFJ5544px59gt5+OGHMWLECAwZMuSS15rNZvj5+Z31mtFoxObNmwEAVqsVNpvtotc4DUfq5KGq/cOwrPaIdAwiMbGB595hVps2LZR7+umnUV5ejoceeghNTU0AAD8/PzzzzDOYMmXKJT9+8eLF2L17d4vnvIcNG4ZZs2YhMzMTycnJWLduHZYvXw6bzQYACAoKwsCBA/H8888jPT0d0dHRWLRoEbZs2YKUlJS2fIkXFqz+bwpSp4WpA9FQs186BpGYjoEdpSO4XJtG6jqdDq+++irKysqwdetW7N27FxUVFZg2bdolPzY/Px+PP/44Pvjgg3NG1hfyxhtvIDU1Fd26dYOPjw8eeeQRjBs3Dnr9L/Gzs7PhcDgQHx8PX19f/Pvf/8Zdd9111jVOEaz+bwpSn0ZvIxabC6RjEImKC2zZ9LAna9Pe7+2xcuVK3HbbbTAYftnNymazQafTQa/Xw2w2n/V7v9bY2Ijy8nLExcVh8uTJ+PTTT/Hjj2cfGWkymVBTU4PY2FiMHj0adXV1+Oyzz5z3BTgcwAtRgK3Jee9J5GKLegzDSyY+xkbatu3ubfBX+QZi7TpPvS0GDx6Mffv2nfXauHHj0K1bNzzzzDMXLHSg+RZ/fHw8LBYLli1bhlGjRp1zTUBAAAICAlBZWYk1a9Zg5syZzv0CdDogOA6oPOHc9yVyEZvOgPkOnsRG2hbmG6b6QgcESj0oKAg9evQ467WAgABEREScef3ee+9FfHw8Xn75ZQDAtm3bUFhYiIyMDBQWFmL69Omw2+3461//euY91qxZA4fDgbS0NOTm5uLpp59Gt27dMG7cOOd/EcEdWerkMdakXYPCem4JS9qmhVvvgECpt0ReXt5Zc+GNjY2YOnUqjh07hsDAQAwfPhzZ2dkIDQ09c011dTWmTJmCgoIChIeHY+TIkXjxxRfh7e3t/IAhnFcnzzHXxwaYpVMQydJKqbt9Tl0VNrwCbHhZOgXRJX2XdCX+7CiSjkEkblz3cXjyiielY7ick5eGa0TkuVvkEilRVrC6z44maimtjNRZ6m0RlS6dgOiSfozviW3Vh6VjECkCS50uLDwZMPhKpyC6qKxorv0g+pkWNp4BWOptY/ACOqRKpyC6oLwOXfAVj1clAgB4672REJwgHcMtWOptxXl1UrB5nS6D3WGXjkGkCCmhKfDWu+BJKAViqbcV59VJoU4HRuHjGs6lE/2sW7h2BmEs9baKukw6AdF5LUzpB7OND6YT/YylTpcWpZ1vEvIcJt8gLK4/Lh2DSFHSI7RzZ5Wl3lZhXQAN7CNMnuWjtKtQa6mTjkGkGDrokBaWJh3DbVjqbaXTAZHa+UYh5bPovfG+pVQ6BpGidArupImDXH7GUm8PzquTgnzW7f9Q2nhaOgaRomhpPh1gqbdP3OXSCYgAAA7oMNdQLx2DSHFY6tRyiYOkExABADakXoVjdQXSMYgUJz1cO4vkAJZ6+0RdBviFSqcgQpa/NjbWIGotjtSp5XQ6oNOV0ilI4/YkXI7va45KxyBSnNiAWEQYI6RjuBVLvb06DZROQBqXFRklHYFIkfrF9JOO4HYs9fZiqZOg3Og0bKw8JB2DSJEGxA6QjuB2LPX2irsc8PKTTkEaNTc+GQ44pGMQKVL/mP7SEdyOpd5eXj5A/BXSKUiDikPj8Xk1R+lE59MpqBNiAmKkY7gdS90ZEnkLntwvu8vlsNqt0jGIFEmL8+kAS905OK9OblZtDMVHdbnSMYgUS4vz6QBL3TkS+gM6g3QK0pAlXQeh3sod5IguhCN1ajvfICC2t3QK0gizlx8+MBdKxyBSrOSQZHQwdpCOIYKl7ixdb5BOQBqxqlsmKsyV0jGIFEuro3SApe48aTdKJyANsOkMmOeoko5BpGhanU8HWOrOE9sLCOkknYJUbm3q1civL5aOQaRYXjovjtTJSThaJxeb68eNZogupm9MX4T4hkjHEMNSdyaWOrnQ1i79caD2hHQMIkW7vtP10hFEsdSdqfPVgIb/hkiulRXK7y2ii9Hr9BicOFg6hiiWujMZvIHUIdIpSIUOxl6GLVU50jGIFC0jMkOzj7L9jKXubGnDpROQCs2N7SwdgUjxBnfS9igdYKk7X+r1gN5bOgWpSH5EIr6sOigdg0jxhiTyTilL3dn8QoDOV0mnIBWZn9gDNodNOgaRonWP6I64wDjpGOJY6q6QNkI6AalERUAHrKo5LB2DSPE4Sm/GUneF7rcCei/pFKQCC1MHoNFmlo5BpHjXJ2r7UbafsdRdITAKSOE3GLVPvU8AFjeclI5BpHipYalIDE6UjqEILHVXuXyMdALycMvSrkF1U410DCLFG5Y4TDqCYrDUXaXrDYC/tp+XpLaz6r2QbSuTjkGkeAadAbek3CIdQzFY6q5i8AZ6jZJOQR7qi7RMnGpgqRNdylXxVyEmIEY6hmKw1F0pg7fgqfUc0CHLi4vjiFpiZOpI6QiKwlJ3pZgeQGxv6RTkYTYlD0RuXb50DCLFizRGIrNjpnQMRWGpu1rGPdIJyMNkBRmlIxB5hFtTboUXHx8+C0vd1XreDhh8pVOQh9ib0Bu7qo9IxyBSPB10uC31NukYisNSdzX/cJ6zTi2WFRkrHYHIIwyIHYCEoATpGIrDUneHy3kLni7teGQy1lfy4BailhjZlQvkzoel7g7Jg4GwLtIpSOHmJXSDAw7pGESKF+YbhsEJPGb1fFjq7qDXAwMflk5BClYaEotPqg9JxyDyCDcn3wxvA4+4Ph+WurtkjAGM4dIpSKEWJPWBxW6RjkGkeAadAaPTRkvHUCyWurv4+AP9HpBOQQpU6xeCD03HpGMQeYQhiUOQEMwFchfCUnen/n8CvPykU5DCLO06CHUWk3QMIo9wf4/7pSMoGkvdnQIjgd53SqcgBWky+GJB0ynpGEQeYVDcIKRHpEvHUDSWursNfBTQ8T87Nfu4WyZOmyukYxB5BI7SL43t4m4dUoCu3IyGALtOj/m6WukYRB6hV4de6B/bXzqG4rHUJQx6VDoBKcDXqVfhhKlIOgaRRxjfY7x0BI/AUpeQOBDo2E86BQnLMhqkIxB5hC4hXXBdp+ukY3gElrqUQY9JJyBBOzr3w74aPsZG1BLjuo+DTqeTjuERWOpS0n8PxPSUTkFC3gsLk45A5BGi/aNxU/JN0jE8Bktdik4HDJ4unYIE5MSk49sqbglL1BJju4+Ft55bwrYUS11S6hCg8zXSKcjN5sbxcB+ilogJiMGotFHSMTwKS13akOnSCciNisI6YQ1H6UQt8lDvh+Br8JWO4VFY6tI6XtE8v06aML9zT1gdVukYRIqXFJKEm5Nvlo7hcVjqSnDdNEDHx5vUrso/HCtqj0jHIPIIj/V5DAY9/1xsLZa6EkR2BTLulk5BLrao60A02BqlYxApXq/IXhjcabB0DI/EUleKa6fwBDcVa/Dxx8KGPOkYRB7h6Suelo7gsVjqShES33w0K6nS8rRrUNVULR2DSPGGJg5FRlSGdAyPxVJXkmueBPxCpFOQk1n1Xsi28yQ2okvx0fvgib5PSMfwaCx1JTGGAZm87aQ2a7peg8L6EukYRIo3Jn0MOgZ1lI7h0VjqSjPgQSC6h3QKcqK5PnyEjehSwnzDMKHXBOkYHo+lrjQGL+Cm1wHw8AI12Jx0JXJqT0rHIFK8p654CkE+QdIxPB5LXYkS+gN975NOQU4wNzhQOgKR4g2IHYBbUm6RjqEKLHWlGjIdCIiUTkHtsD++J7ZXH5aOQaRovgZfTLtymnQM1WCpK5UxFBj2knQKaoesaC74IbqUP/f6MzoFd5KOoRosdSXrNQpIulY6BbXByQ5JWFd1UDoGkaKlhqXivh73ScdQFZa60o2YBfCUIo8zr1M67A67dAwixdLr9Hhu4HM8K93JWOpKF5EMXPOUdApqhdNB0fi4Okc6BpGijeo6Cr0je0vHUB2Wuie4+gkgIlU6BbXQgpQr0GRvko5BpFjR/tGY1HeSdAxVYql7Ai8f4Pf/Ap9dVz6TbxCWmo5LxyBStCkDpiDAO0A6hiqx1D1F56uBKx+STkGX8GHa1ai11EnHIFKsIZ2G8FhVF2Kpe5IhzwFRl0mnoAuwGHyQbSmWjkGkWFHGKDw38DnpGKrGUvckXr7AH94BDD7SSeg8Pk3LRGljuXQMIkXS6/R46ZqXEOoXKh1F1VjqniamB/C7Z6VT0G84oMNcvUk6BpFije8xHgNiB0jHUD2Wuica9BjQ+RrpFPQr61OvxnFToXQMIkXq1aEXHs54WDqGJrDUPZFeD/zhbcAYLp2EfpLl7yUdgUiRAr0D8Wrmq/DS82fEHVjqnio4Drj1f9IpCMCuTn2wt+aodAwiRfr7lX9HxyCeg+AuLHVPlnYjMGCidArNmxvB0/SIzufm5JsxPGm4dAxN0TkcDod0CGoHqxl4dwhQ/IN0Ek3KjU7DH/wb4QB/jIh+LTE4EUtvWgp/b3/pKJrCkbqn8/IF7pgH+IVIJ9GkufEpLHSi3/DWe+PVzFdZ6AJY6moQkQzcngXoDNJJNKU4tCM+r+bxqkS/Nbn/ZHSP6C4dQ5NY6mqRMgS4/h/SKTTl/S4ZsNqt0jGIFGV02miMShslHUOzWOpqMuhRoPdd0ik0odoYimV1udIxiBRlQMwATO4/WTqGprHU1eb3bwDxV0inUL3FXQeh3lovHYNIMRKCEvData/xeXRhLHW18fIF7vwACIqVTqJaZi8/LDQXSMcgUoxA70DMvm42Qny5YFcaS12NgmKA0R8AXn7SSVRpZbdMVJirpGMQKYJep8erma8iOTRZOgqBpa5eHfs234onp7LpDJjnqJKOQaQYk/pMQmbHTOkY9BOWupr1vhMY+Ih0ClVZ2/UaFNTzzHQioHnHuHE9xknHoF9hqavd9TOA1GHSKVQjy9cuHYFIEXpF9sJzA5+TjkG/wVJXO70BGDUf6DRQOonH29KlPw7WnpCOQSSuc3BnzL5uNnwMPtJR6DdY6lrgbQTuXgLE9JJO4tGyQrmylyg2IBbvDH0H4X48+lmJWOpa4RcC3LMciEiRTuKRDsR1x9aqHOkYRKLC/cLxztB3EBMQIx2FLoClriWBkcAfVwLB8dJJPE5WTCfpCESignyC8Pb1byMxOFE6Cl0ES11rQhOai92/g3QSj5EfkYivqg5JxyASY/Qy4n+D/4e08DTpKHQJLHUtiuwK3LMM8A2WTuIR5if2gM1hk45BJMJb743Xr30dGVEZ0lGoBVjqWhWXAdy1iLvOXUJ5YCRW1hyWjkEkwqAz4JVrXsFV8VdJR6EWYqlrWeergTvmAzyA4YI+SOkPs80sHYNIxLSB0zC081DpGNQKLHWtS7sBGPkuoPeWTqI49b6BWNJwQjoGkdvpoMPk/pPxh9Q/SEehVmKpE9D9NuDOhbwV/xsfdb0aNU210jGI3Eqv02P6oOkYkz5GOgq1AUudmnUdCoz5CPAJkk6iCBa9N963lUrHIHIrL70XXs18lSN0D8ZSp190uQa4dxVgDJNOIu7ztEyUNJyWjkHkNn4GP7zxuzdwQ+cbpKNQO7DU6Wwd+wL3fQYERksnEeOADvO8GqVjELlNgHcA/jfkfzxCVQVY6nSu6O7AuC+AkATpJCK+SRmE3Lp86RhEbhHiG4J3h76LfjH9pKOQE7DU6fwikoHxqzW5V3xWoK90BCK36GDsgLnD5qJHhx7SUchJWOp0YSEdgXGrgeie0knc5vuEy7G7Olc6BpHLxQXEYf4N85EaliodhZyIpU4XFxgJ3PcpkHi1dBK3yIrU7loC0o60sDTMv3E+OgXzoCK10TkcDod0CPIANgvw2VPA7vnSSVzmWFQqbg1oggP8kSD1GtxpMF66+iX4e/tLRyEX4EidWsbgDdz8b+CGVwGdQTqNS8zt2JWFTqo2oecEvH7t6yx0FeNInVovdx3w0TigsVo6idOUhMThxg5GWOwW6ShETudr8MX0QdNxU9JN0lHIxThSp9ZLGQw8sA4IT5ZO4jQLkvqw0EmVOhg7IGtYFgtdIzhSp7ZrqASWjgWOb5RO0i41xhAM7RgLk7VeOgqRU6WHp+Pf1/0bMQEx0lHITThSp7YzhgH3LAf6PSCdpF2Wdr2KhU6qM6TTEMy/cT4LXWM4Uifn2PEu8MUzgN0qnaRVmgy+GJraDeXmSukoRE6hgw4Tek3AIxmPQKfTScchN2Opk/PkbQOWPQBU50knabEPu1+PGfU50jGInCLCLwIvXf0SBsUPko5CQnj7nZyn0wDgwc3N57N7ALtOj/k6npdO6jAwdiA+uvkjFrrGcaROrrH7/ebb8RblzlV/mZaJp5pOSMcgahcvvRcevfxRjOs+jrfbiSN1cpE+9wJ/2gjEKHff+Cw//gFIni0+MB7zb5iP8T3Gs9AJAEfq5GpWM7D2OWDbm9JJzrK9cz/cryuRjkHUZjd2vhHTBk5DoE+gdBRSEJY6ucfhNcDKh4D609JJAAATLx+Kb6sOSccgajWjlxGT+0/GH1L/IB2FFIilTu5TWwws/5P4ZjWHYi/DHX51ohmI2iI9PB2vXPMKkkKTpKOQQnFOndwnKAa4dxUwYhbgGyIWIyu2s9jnJmoLH70PHu/zOBaOWMhCp4viSJ1k1BYDX/wVOLDKrZ+2MLwTRoQaYHPY3Pp5idoqIzID/7jqH0gKYZnTpbHUSVbOF8BnfwFqCtzy6V66/CYsqvrBLZ+LqD2MXkY8dvljuDv9buh1vKlKLcNSJ3nmOuDr54HtbwMOu8s+TWVABIbFRqDB1uiyz0HkDNcmXIu/9f8bYgNjpaOQh2Gpk3IU7gI+fhwo2eeSt/9vxgi8Ve2a9yZyhmj/aEzpPwWDEwdLRyEPxVInZbFZgS3/ATa8AlgbnPa2DT7+GNolGVVN1U57TyJnMegMuLPbnXj08kcR4B0gHYc8GEudlKniOLB2GnDwY6e83Qc9b8ArdQec8l5EzpTZMRNP9n0SyaHJ0lFIBVjqpGz525vLPW9Lm9/CqvfCiG4ZKGoodWIwovZJD0/HX674C/rH9peOQirCUifPcOgz4KvpwOnDrf7QT7tdhynmXOdnImqDmIAYPHb5Y7gp6Sbu105Ox1Inz2G3NZ/+tuEVoK64xR82sufVOFznOWe8kzoFegfi/p7344+X/RG+Bl/pOKRSLHXyPE0mYMt/gW//DTRd/Dz0TckD8ZC90E3BiM7lpfPCHWl3YGLviQj3C5eOQyrHUifPVVcGbHwV2DUPsFvOe8m4jMHYWX3EvbmI0LyifWjnoXio90PoHNJZOg5pBLcpIs8VGAmM+Cfw6E6g7zjgN7c093XsxUInt/PR++D2rrfjk1s/wczMmW4r9Jdffhn9+vVDUFAQoqKicOuttyInJ+eiH2OxWDBjxgwkJyfDz88PvXv3xurVq8+6pra2FpMmTUJiYiKMRiMGDRqEHTt2uPJLoXZgqZPnC+sM/P5fwKQfgIGPAD8955sVFS8ai7TF38sfYy8bi9UjV+O5gc8hITjBrZ9/48aNePjhh7F161asXbsWFosFQ4cOhclkuuDHTJ06FXPmzMHs2bNx4MABTJw4Ebfddhv27Nlz5poHHngAa9euRXZ2Nvbt24ehQ4diyJAhKCzktJYS8fY7qU99Bep2zcOIwpWoMFdKpyGVC/UNxd3pd+PubncjRPD0wd8qKytDVFQUNm7ciMzMzPNeExcXh2effRYPP/zwmddGjhwJo9GIBQsWoKGhAUFBQVi1ahVGjBhx5pq+ffvixhtvxAsvvODyr4Nax0s6AJHT+Ycj8Jonsdr6IFblrkL2gWzk1XL1OzlXlH8Uxl42Frd3vR3+3v7Scc5RXd28e2J4+IUX55nNZvj5+Z31mtFoxObNmwEAVqsVNpvtoteQsnCkTqpnd9ixPn893v/xfewu3S0dhzxc94juGJ02Gjcl3QRvg7d0nPOy2+24+eabUVVVddHyvfvuu7F3716sXLkSycnJWLduHW655RbYbDaYzWYAwKBBg+Dj44OFCxciOjoaixYtwtixY5GSknLJOXtyP5Y6acrB8oNYdmQZPj/+OWov8Tgc0c8CvQMxvMtw3N71dqRHpEvHuaQHH3wQX3zxBTZv3oyOHTte8LqysjJMmDABn3zyCXQ6HZKTkzFkyBBkZWWhoaH57IWjR49i/Pjx+Oabb2AwGNCnTx907doVu3btwsGDB931JVELsdRJkxqtjVh7ci1W5K7AzuKdcIA/BnSuHhE9cHvX23FjlxsVeYv9fB555BGsWrUK33zzDbp06dKij2lsbER5eTni4uIwefJkfPrpp/jxxx/PusZkMqGmpgaxsbEYPXo06urq8Nlnn7niS6B2YKmT5uXV5GH5keX4+OjHKGsok45DwgK9AzEiaQRu73o7uoV3k47TYg6HA48++ihWrFiBDRs2IDU1tdXvYbFYkJ6ejlGjRuGll1467zWVlZXo0qULZs6ciT/96U/tjU1OxlIn+onVbsWmgk1YfmQ5NhVugs1hk45EbqKDDhlRGbg15Vbc0PkGjxmV/9pDDz2EhQsXYtWqVUhLSzvzekhICIxGIwDg3nvvRXx8PF5++WUAwLZt21BYWIiMjAwUFhZi+vTpOH78OHbv3o3Q0FAAwJo1a+BwOJCWlobc3Fw8/fTT8PPzw6ZNm+Dtrcw1BVrG1e9EP/HSe+F3nX6H33X6HUrrS/HliS+xLm8d9pTuYcGrkF6nR0ZkBoZ2HorrE69HlH+UdKR2efPNNwEA11577Vmvz507F/fddx8AIC8vD3r9L9uTNDY2YurUqTh27BgCAwMxfPhwZGdnnyl0oHkV/ZQpU1BQUIDw8HCMHDkSL774IgtdoThSJ7qEisYKrM9bj6/yvsK2U9tgucCWtKR8Bp0BfaP74vrE6zEkcQg6GDtIRyJyKpY6USvUNdXhm4Jv8FXeV9hcuBkN1gbpSHQJXjovXBFzBa5PvB6DOw1GhDFCOhKRy7DUidrIbDPju8LvsC5vHb4t+hanG05LR6KfRPlH4crYKzEgdgAy4zMR6hcqHYnILVjqRE5yrPoYdhbvxI7iHdhRvAPljeXSkTQjxDcE/WP6Y0DMAPSP7Y8uIS17lItIbVjqRC5yrOpYc8GXNJd8RWOFdCTVMHoZ0Se6D66MaR6Np4WnQa/j+VRELHUiNzladRQ7indgT+keHK48jBPVJ2B1WKVjKZ6XzgtJoUlID09HekQ6ukd0R/cO3eGt5+prot9iqRMJMdvMyK3KRU5FDnIqcnCo4hAOVx5GnaVOOpoYH70PUsNSkR6RjvTwdFwWcRlSw1Lha/CVjkbkEVjqRAricDhQWFfYXPSVOThSeQSFdYUorCtETVONdDynCfMNQ8egjogPjEfHoI5IDE5Eeng6kkOT4aXn9hlEbcVSJ/IQJosJRXVFOGU6haK6IhSZinCq7hSKTEUoqitCeUO5Yvaw9/fyR2xALOKD4tEx8Jfyjg+MR0JQgkfu2EbkCVjqRCrRZGtCRWMF6prqUGepQ21T7Tm//vzPdU11MFlMcMABHXTQ6XT4+X/N/9ed9Tp0gLfeG0HeQQjwDkCQzy+/BvsEI9QvFGG+YQj1DUWoXyhvlxMJYakTERGpBJ8BISIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJVjqREREKsFSJyIiUgmWOhERkUqw1ImIiFSCpU5ERKQSLHUiIiKVYKkTERGpBEudiIhIJf4/i4gkbEKSQEUAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "df['film_rental_rate'].value_counts().plot(kind='pie', figsize=(6,6))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JbftWIUdAWN9" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "cell_type": "solution", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 478 + }, + "id": "0SWcNJxVAWN9", + "outputId": "ea00e74e-a454-4a16-cc87-99300ed96ca4" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 16 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH0AAAIeCAYAAAAmpnN6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxJklEQVR4nO3de5RX9X3v/9cAznCdoaDOSEAhyyRC4iVij45NLBqOU0vaWkkbWyteYzCQU+AQDY2xRtPiMfFCGpS2Jo5tdBHtSXOOYECChcQ4ik7FGI0mMZohlYFaD4wod+b3R358dSJeRokzfng81vquxez9+e557/ljZ+Xp/u5vVWdnZ2cAAAAAKEqfnh4AAAAAgL1P9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACtSvpwf4Tdm1a1eeeeaZDBkyJFVVVT09DgAAAMBe0dnZmeeffz4jRoxInz6vfj9PsdHnmWeeyahRo3p6DAAAAIDfiDVr1mTkyJGvur/Y6DNkyJAkv/oD1NbW9vA0AAAAAHtHR0dHRo0aVWkfr6bY6LP7I121tbWiDwAAAFCc13ucjQc5AwAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUKB+PT0A73yjP7u4p0eAverpKyf19AgAAABvmTt9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFCgfj09AADwmzX6s4t7egTYq56+clJPjwAA7wju9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBA/Xp6AAAAgH3Z6M8u7ukRYK95+spJPT0CL+NOHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUqFvR57LLLktVVVWX12GHHVbZv2XLlkybNi3Dhw/P4MGDM3ny5Kxbt67LMdra2jJp0qQMHDgwBx54YD7zmc9kx44dXdasWLEiRx99dGpqanLooYemubn5zZ8hAAAAwD6o23f6vP/978/atWsrr3vuuaeyb+bMmbnjjjty++23Z+XKlXnmmWdy2mmnVfbv3LkzkyZNyrZt23Lvvffm5ptvTnNzcy699NLKmqeeeiqTJk3KiSeemNWrV2fGjBk5//zzs3Tp0rd4qgAAAAD7jm5/ZXu/fv3S0NDwiu0bN27M1772tdx666056aSTkiQ33XRTxo4dm/vuuy/HHXdc7rrrrjz22GP57ne/m/r6+hx11FG54oorcvHFF+eyyy5LdXV1FixYkDFjxuTqq69OkowdOzb33HNPrr322jQ1Nb3F0wUAAADYN3T7Tp+f/vSnGTFiRN797nfnjDPOSFtbW5KktbU127dvz8SJEytrDzvssBx88MFpaWlJkrS0tOTwww9PfX19ZU1TU1M6Ojry6KOPVta8/Bi71+w+xqvZunVrOjo6urwAAAAA9lXdij7HHntsmpubs2TJktxwww156qmn8uEPfzjPP/982tvbU11dnaFDh3Z5T319fdrb25Mk7e3tXYLP7v27973Wmo6OjmzevPlVZ5s7d27q6uoqr1GjRnXn1AAAAACK0q2Pd51yyimVfx9xxBE59thjc8ghh+S2227LgAED9vpw3TFnzpzMmjWr8nNHR4fwAwAAAOyz3tJXtg8dOjTvfe9787Of/SwNDQ3Ztm1bNmzY0GXNunXrKs8AamhoeMW3ee3++fXW1NbWvmZYqqmpSW1tbZcXAAAAwL7qLUWfTZs25cknn8xBBx2U8ePHZ7/99svy5csr+5944om0tbWlsbExSdLY2JhHHnkk69evr6xZtmxZamtrM27cuMqalx9j95rdxwAAAADg9XUr+syePTsrV67M008/nXvvvTd//Md/nL59++bP/uzPUldXl/POOy+zZs3Kv/3bv6W1tTXnnHNOGhsbc9xxxyVJTj755IwbNy5nnnlmHn744SxdujSXXHJJpk2blpqamiTJ1KlT8/Of/zwXXXRRHn/88Vx//fW57bbbMnPmzL1/9gAAAACF6tYzfX75y1/mz/7sz/Jf//VfOeCAA/KhD30o9913Xw444IAkybXXXps+ffpk8uTJ2bp1a5qamnL99ddX3t+3b98sWrQoF154YRobGzNo0KCcddZZufzyyytrxowZk8WLF2fmzJmZN29eRo4cmRtvvNHXtQMAAAB0Q7eiz8KFC19zf//+/TN//vzMnz//VdcccsghufPOO1/zOBMmTMhDDz3UndEAAAAAeJm39EwfAAAAAHon0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIHeUvS58sorU1VVlRkzZlS2bdmyJdOmTcvw4cMzePDgTJ48OevWrevyvra2tkyaNCkDBw7MgQcemM985jPZsWNHlzUrVqzI0UcfnZqamhx66KFpbm5+K6MCAAAA7FPedPR54IEH8vd///c54ogjumyfOXNm7rjjjtx+++1ZuXJlnnnmmZx22mmV/Tt37sykSZOybdu23Hvvvbn55pvT3NycSy+9tLLmqaeeyqRJk3LiiSdm9erVmTFjRs4///wsXbr0zY4LAAAAsE95U9Fn06ZNOeOMM/KP//iP+a3f+q3K9o0bN+ZrX/tarrnmmpx00kkZP358brrpptx777257777kiR33XVXHnvssXzjG9/IUUcdlVNOOSVXXHFF5s+fn23btiVJFixYkDFjxuTqq6/O2LFjM3369HzsYx/LtddeuxdOGQAAAKB8byr6TJs2LZMmTcrEiRO7bG9tbc327du7bD/ssMNy8MEHp6WlJUnS0tKSww8/PPX19ZU1TU1N6ejoyKOPPlpZ8+vHbmpqqhxjT7Zu3ZqOjo4uLwAAAIB9Vb/uvmHhwoX593//9zzwwAOv2Nfe3p7q6uoMHTq0y/b6+vq0t7dX1rw8+Ozev3vfa63p6OjI5s2bM2DAgFf87rlz5+YLX/hCd08HAAAAoEjdutNnzZo1+cu//Mvccsst6d+//29qpjdlzpw52bhxY+W1Zs2anh4JAAAAoMd0K/q0trZm/fr1Ofroo9OvX7/069cvK1euzFe+8pX069cv9fX12bZtWzZs2NDlfevWrUtDQ0OSpKGh4RXf5rX759dbU1tbu8e7fJKkpqYmtbW1XV4AAAAA+6puRZ+PfOQjeeSRR7J69erK65hjjskZZ5xR+fd+++2X5cuXV97zxBNPpK2tLY2NjUmSxsbGPPLII1m/fn1lzbJly1JbW5tx48ZV1rz8GLvX7D4GAAAAAK+tW8/0GTJkSD7wgQ902TZo0KAMHz68sv28887LrFmzMmzYsNTW1ubTn/50Ghsbc9xxxyVJTj755IwbNy5nnnlmrrrqqrS3t+eSSy7JtGnTUlNTkySZOnVqvvrVr+aiiy7Kueeem7vvvju33XZbFi9evDfOGQAAAKB43X6Q8+u59tpr06dPn0yePDlbt25NU1NTrr/++sr+vn37ZtGiRbnwwgvT2NiYQYMG5ayzzsrll19eWTNmzJgsXrw4M2fOzLx58zJy5MjceOONaWpq2tvjAgAAABTpLUefFStWdPm5f//+mT9/fubPn/+q7znkkENy5513vuZxJ0yYkIceeuitjgcAAACwT+rWM30AAAAAeGcQfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFKhb0eeGG27IEUcckdra2tTW1qaxsTHf+c53Kvu3bNmSadOmZfjw4Rk8eHAmT56cdevWdTlGW1tbJk2alIEDB+bAAw/MZz7zmezYsaPLmhUrVuToo49OTU1NDj300DQ3N7/5MwQAAADYB3Ur+owcOTJXXnllWltb8+CDD+akk07KH/3RH+XRRx9NksycOTN33HFHbr/99qxcuTLPPPNMTjvttMr7d+7cmUmTJmXbtm259957c/PNN6e5uTmXXnppZc1TTz2VSZMm5cQTT8zq1aszY8aMnH/++Vm6dOleOmUAAACA8lV1dnZ2vpUDDBs2LF/60pfysY99LAcccEBuvfXWfOxjH0uSPP744xk7dmxaWlpy3HHH5Tvf+U4++tGP5plnnkl9fX2SZMGCBbn44ovzn//5n6murs7FF1+cxYsX50c/+lHld5x++unZsGFDlixZ8obn6ujoSF1dXTZu3Jja2tq3coq8jtGfXdzTI8Be9fSVk3p6BNirXKcpjes0pXGdpiSu0W+PN9o83vQzfXbu3JmFCxfmhRdeSGNjY1pbW7N9+/ZMnDixsuawww7LwQcfnJaWliRJS0tLDj/88ErwSZKmpqZ0dHRU7hZqaWnpcozda3Yf49Vs3bo1HR0dXV4AAAAA+6puR59HHnkkgwcPTk1NTaZOnZp//dd/zbhx49Le3p7q6uoMHTq0y/r6+vq0t7cnSdrb27sEn937d+97rTUdHR3ZvHnzq841d+7c1NXVVV6jRo3q7qkBAAAAFKPb0ed973tfVq9enfvvvz8XXnhhzjrrrDz22GO/idm6Zc6cOdm4cWPltWbNmp4eCQAAAKDH9OvuG6qrq3PooYcmScaPH58HHngg8+bNy8c//vFs27YtGzZs6HK3z7p169LQ0JAkaWhoyKpVq7ocb/e3e718za9/49e6detSW1ubAQMGvOpcNTU1qamp6e7pAAAAABTpTT/TZ7ddu3Zl69atGT9+fPbbb78sX768su+JJ55IW1tbGhsbkySNjY155JFHsn79+sqaZcuWpba2NuPGjausefkxdq/ZfQwAAAAAXl+37vSZM2dOTjnllBx88MF5/vnnc+utt2bFihVZunRp6urqct5552XWrFkZNmxYamtr8+lPfzqNjY057rjjkiQnn3xyxo0blzPPPDNXXXVV2tvbc8kll2TatGmVu3SmTp2ar371q7noooty7rnn5u67785tt92WxYs90R4AAADgjepW9Fm/fn2mTJmStWvXpq6uLkcccUSWLl2a//7f/3uS5Nprr02fPn0yefLkbN26NU1NTbn++usr7+/bt28WLVqUCy+8MI2NjRk0aFDOOuusXH755ZU1Y8aMyeLFizNz5szMmzcvI0eOzI033pimpqa9dMoAAAAA5etW9Pna1772mvv79++f+fPnZ/78+a+65pBDDsmdd975mseZMGFCHnrooe6MBgAAAMDLvOVn+gAAAADQ+4g+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoECiDwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAK1K3oM3fu3Pz2b/92hgwZkgMPPDCnnnpqnnjiiS5rtmzZkmnTpmX48OEZPHhwJk+enHXr1nVZ09bWlkmTJmXgwIE58MAD85nPfCY7duzosmbFihU5+uijU1NTk0MPPTTNzc1v7gwBAAAA9kHdij4rV67MtGnTct9992XZsmXZvn17Tj755LzwwguVNTNnzswdd9yR22+/PStXrswzzzyT0047rbJ/586dmTRpUrZt25Z77703N998c5qbm3PppZdW1jz11FOZNGlSTjzxxKxevTozZszI+eefn6VLl+6FUwYAAAAoX7/uLF6yZEmXn5ubm3PggQemtbU1J5xwQjZu3Jivfe1rufXWW3PSSSclSW666aaMHTs29913X4477rjcddddeeyxx/Ld73439fX1Oeqoo3LFFVfk4osvzmWXXZbq6uosWLAgY8aMydVXX50kGTt2bO65555ce+21aWpq2kunDgAAAFCut/RMn40bNyZJhg0bliRpbW3N9u3bM3HixMqaww47LAcffHBaWlqSJC0tLTn88MNTX19fWdPU1JSOjo48+uijlTUvP8buNbuPsSdbt25NR0dHlxcAAADAvupNR59du3ZlxowZ+Z3f+Z184AMfSJK0t7enuro6Q4cO7bK2vr4+7e3tlTUvDz679+/e91prOjo6snnz5j3OM3fu3NTV1VVeo0aNerOnBgAAAPCO96ajz7Rp0/KjH/0oCxcu3JvzvGlz5szJxo0bK681a9b09EgAAAAAPaZbz/TZbfr06Vm0aFG+973vZeTIkZXtDQ0N2bZtWzZs2NDlbp9169aloaGhsmbVqlVdjrf7271evubXv/Fr3bp1qa2tzYABA/Y4U01NTWpqat7M6QAAAAAUp1t3+nR2dmb69On513/919x9990ZM2ZMl/3jx4/Pfvvtl+XLl1e2PfHEE2lra0tjY2OSpLGxMY888kjWr19fWbNs2bLU1tZm3LhxlTUvP8buNbuPAQAAAMBr69adPtOmTcutt96a//N//k+GDBlSeQZPXV1dBgwYkLq6upx33nmZNWtWhg0bltra2nz6059OY2NjjjvuuCTJySefnHHjxuXMM8/MVVddlfb29lxyySWZNm1a5U6dqVOn5qtf/WouuuiinHvuubn77rtz2223ZfHixXv59AEAAADK1K07fW644YZs3LgxEyZMyEEHHVR5ffOb36ysufbaa/PRj340kydPzgknnJCGhoZ861vfquzv27dvFi1alL59+6axsTF/8Rd/kSlTpuTyyy+vrBkzZkwWL16cZcuW5cgjj8zVV1+dG2+80de1AwAAALxB3brTp7Oz83XX9O/fP/Pnz8/8+fNfdc0hhxySO++88zWPM2HChDz00EPdGQ8AAACA/9+b/vYuAAAAAHov0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIFEHwAAAIACiT4AAAAABRJ9AAAAAAok+gAAAAAUSPQBAAAAKJDoAwAAAFAg0QcAAACgQKIPAAAAQIG6HX2+973v5Q/+4A8yYsSIVFVV5dvf/naX/Z2dnbn00ktz0EEHZcCAAZk4cWJ++tOfdlnz3HPP5YwzzkhtbW2GDh2a8847L5s2beqy5oc//GE+/OEPp3///hk1alSuuuqq7p8dAAAAwD6q29HnhRdeyJFHHpn58+fvcf9VV12Vr3zlK1mwYEHuv//+DBo0KE1NTdmyZUtlzRlnnJFHH300y5Yty6JFi/K9730vF1xwQWV/R0dHTj755BxyyCFpbW3Nl770pVx22WX5h3/4hzdxigAAAAD7nn7dfcMpp5ySU045ZY/7Ojs7c9111+WSSy7JH/3RHyVJ/umf/in19fX59re/ndNPPz0//vGPs2TJkjzwwAM55phjkiR/93d/l9///d/Pl7/85YwYMSK33HJLtm3blq9//euprq7O+9///qxevTrXXHNNlzgEAAAAwJ7t1Wf6PPXUU2lvb8/EiRMr2+rq6nLsscempaUlSdLS0pKhQ4dWgk+STJw4MX369Mn9999fWXPCCSekurq6sqapqSlPPPFE/t//+397/N1bt25NR0dHlxcAAADAvmqvRp/29vYkSX19fZft9fX1lX3t7e058MADu+zv169fhg0b1mXNno7x8t/x6+bOnZu6urrKa9SoUW/9hAAAAADeoYr59q45c+Zk48aNldeaNWt6eiQAAACAHrNXo09DQ0OSZN26dV22r1u3rrKvoaEh69ev77J/x44dee6557qs2dMxXv47fl1NTU1qa2u7vAAAAAD2VXs1+owZMyYNDQ1Zvnx5ZVtHR0fuv//+NDY2JkkaGxuzYcOGtLa2Vtbcfffd2bVrV4499tjKmu9973vZvn17Zc2yZcvyvve9L7/1W7+1N0cGAAAAKFK3o8+mTZuyevXqrF69OsmvHt68evXqtLW1paqqKjNmzMgXv/jF/N//+3/zyCOPZMqUKRkxYkROPfXUJMnYsWPze7/3e/nEJz6RVatW5Qc/+EGmT5+e008/PSNGjEiS/Pmf/3mqq6tz3nnn5dFHH803v/nNzJs3L7NmzdprJw4AAABQsm5/ZfuDDz6YE088sfLz7hBz1llnpbm5ORdddFFeeOGFXHDBBdmwYUM+9KEPZcmSJenfv3/lPbfcckumT5+ej3zkI+nTp08mT56cr3zlK5X9dXV1ueuuuzJt2rSMHz8++++/fy699FJf1w4AAADwBnU7+kyYMCGdnZ2vur+qqiqXX355Lr/88lddM2zYsNx6662v+XuOOOKIfP/73+/ueAAAAACkoG/vAgAAAOAlog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAKJPgAAAAAFEn0AAAAACiT6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgUQfAAAAgAL16ugzf/78jB49Ov3798+xxx6bVatW9fRIAAAAAO8IvTb6fPOb38ysWbPy13/91/n3f//3HHnkkWlqasr69et7ejQAAACAXq/XRp9rrrkmn/jEJ3LOOedk3LhxWbBgQQYOHJivf/3rPT0aAAAAQK/Xr6cH2JNt27altbU1c+bMqWzr06dPJk6cmJaWlj2+Z+vWrdm6dWvl540bNyZJOjo6frPDkl1bX+zpEWCvct2gNK7TlMZ1mtK4TlMS1+i3x+6/c2dn52uu65XR59lnn83OnTtTX1/fZXt9fX0ef/zxPb5n7ty5+cIXvvCK7aNGjfqNzAiUq+66np4AgNfiOg3Qe7lGv72ef/751NXVver+Xhl93ow5c+Zk1qxZlZ937dqV5557LsOHD09VVVUPTgZ7R0dHR0aNGpU1a9aktra2p8cB4GVcowF6N9dpStPZ2Znnn38+I0aMeM11vTL67L///unbt2/WrVvXZfu6devS0NCwx/fU1NSkpqamy7ahQ4f+pkaEHlNbW+t/qAB6KddogN7NdZqSvNYdPrv1ygc5V1dXZ/z48Vm+fHll265du7J8+fI0Njb24GQAAAAA7wy98k6fJJk1a1bOOuusHHPMMflv/+2/5brrrssLL7yQc845p6dHAwAAAOj1em30+fjHP57//M//zKWXXpr29vYcddRRWbJkySse7gz7ipqamvz1X//1Kz7GCEDPc40G6N1cp9lXVXW+3vd7AQAAAPCO0yuf6QMAAADAWyP6AAAAABRI9AEAAAAokOgDAAAAUCDRBwAAAKBAog8AAABAgfr19ADAnq1duzY33HBD7rnnnqxduzZ9+vTJu9/97px66qk5++yz07dv354eEWCf5RoN0Lu5TsOvuNMHeqEHH3wwY8eOzZ133pnt27fnpz/9acaPH59BgwZl9uzZOeGEE/L888/39JgA+yTXaIDezXUaXiL6QC80Y8aMzJw5Mw8++GC+//3vp7m5OT/5yU+ycOHC/PznP8+LL76YSy65pKfHBNgnuUYD9G6u0/CSqs7Ozs6eHgLoauDAgfnRj36Ud7/73UmSXbt2pX///lmzZk3q6+uzbNmynH322fmP//iPHp4UYN/jGg3Qu7lOw0vc6QO90IEHHpi1a9dWfl63bl127NiR2traJMl73vOePPfccz01HsA+zTUaoHdznYaXiD7QC5166qmZOnVqlixZkn/7t3/LGWeckd/93d/NgAEDkiRPPPFE3vWud/XwlAD7JtdogN7NdRpe4tu7oBf64he/mLVr1+YP/uAPsnPnzjQ2NuYb3/hGZX9VVVXmzp3bgxMC7LtcowF6N9dpeIln+kAvtmXLluzYsSODBw/u6VEA+DWu0QC9m+s0iD4AAAAARfJMH+ilHn744UyZMiXvfve7M2DAgAwaNCiHH354Pv/5z6ejo6OnxwPYp7lGA/RurtPwK6IP9EJLly5NY2NjXnzxxfzO7/xO+vTpk3PPPTeTJk3KwoULc/TRR6e9vb2nxwTYJ7lGA/RurtPwEh/vgl7ogx/8YD75yU9m6tSpSZJly5blf/yP/5Ef//jH2b59e0455ZSMGjUqN910Uw9PCrDvcY0G6N1cp+Elog/0QgMGDMiPf/zjjB49OknS2dmZmpqa/OIXv8hBBx2U73//+5k8eXLWr1/fs4MC7INcowF6N9dpeImPd0Ev9K53vStPPPFE5ecnn3wyu3btyvDhw5MkI0eOzKZNm3pqPIB9mms0QO/mOg0v6dfTAwCvNGXKlJx//vn53Oc+l5qamlxzzTX5wz/8w1RXVydJVq9enTFjxvTwlAD7JtdogN7NdRpe4uNd0Avt2LEjn/vc5/KNb3wjW7duTVNTU+bNm5f9998/SbJq1aps2bIlJ5xwQg9PCrDvcY0G6N1cp+Elog8AAABAgTzTBwAAAKBAog+8A/3VX/1Vzj333J4eA4A9cI0G6N1cp9mXeJAzvAP98pe/zC9/+cueHgOAPfiP//iPrFmzpqfHAOBVuE6zL/FMHwCAvaCzszNVVVU9PQYAQIU7faCXevbZZ/P1r389LS0taW9vT5I0NDTk+OOPz9lnn50DDjighycE4OVqamry8MMPZ+zYsT09CgBAEnf6QK/0wAMPpKmpKQMHDszEiRNTX1+fJFm3bl2WL1+eF198MUuXLs0xxxzTw5MC7HtmzZq1x+3z5s3LX/zFX2T48OFJkmuuuebtHAuAl9m8eXNaW1szbNiwjBs3rsu+LVu25LbbbsuUKVN6aDp4+4g+0Asdd9xxOfLII7NgwYJXfFSgs7MzU6dOzQ9/+MO0tLT00IQA+64+ffrkyCOPzNChQ7tsX7lyZY455pgMGjQoVVVVufvuu3tmQIB93E9+8pOcfPLJaWtrS1VVVT70oQ9l4cKFOeigg5L86j+kjhgxIjt37uzhSeE3T/SBXmjAgAF56KGHcthhh+1x/+OPP54PfvCD2bx589s8GQBXXnll/uEf/iE33nhjTjrppMr2/fbbLw8//PAr/osyAG+vP/7jP8727dvT3NycDRs2ZMaMGXnssceyYsWKHHzwwaIP+xRf2Q69UENDQ1atWvWq+1etWlX5yBcAb6/Pfvaz+eY3v5kLL7wws2fPzvbt23t6JABe5t57783cuXOz//7759BDD80dd9yRpqamfPjDH87Pf/7znh4P3lYe5Ay90OzZs3PBBRektbU1H/nIR17xTJ9//Md/zJe//OUenhJg3/Xbv/3baW1tzbRp03LMMcfklltu8c1dAL3E5s2b06/fS/9Xt6qqKjfccEOmT5+e3/3d382tt97ag9PB20v0gV5o2rRp2X///XPttdfm+uuvr9x62rdv34wfPz7Nzc350z/90x6eEmDfNnjw4Nx8881ZuHBhJk6c6GMCAL3EYYcdlgcffPAV36b41a9+NUnyh3/4hz0xFvQIz/SBXm779u159tlnkyT7779/9ttvvx6eCIBf98tf/jKtra2ZOHFiBg0a1NPjAOzT5s6dm+9///u5884797j/U5/6VBYsWJBdu3a9zZPB20/0AQAAACiQBzkDAAAAFEj0AQAAACiQ6AMAAABQINEHAHjbdXZ25oILLsiwYcNSVVWVoUOHZsaMGZX9o0ePznXXXddj8/WEs88+O6eeempPjwEAFET0AQDedkuWLElzc3MWLVqUtWvX5ic/+UmuuOKKnh5rr5gwYUKXgNWbNDc3Z+jQoT09BgDwNunX0wMAAPueJ598MgcddFCOP/74nh4lSbJt27ZUV1f39Bhv2jt9fgDgN8OdPgDA2+rss8/Opz/96bS1taWqqiqjR49+3btjqqqq8vd///f56Ec/moEDB2bs2LFpaWnJz372s0yYMCGDBg3K8ccfnyeffPINzXDZZZflqKOOyo033pgxY8akf//+SZINGzbk/PPPzwEHHJDa2tqcdNJJefjhh1/xvn/+53/O6NGjU1dXl9NPPz3PP/985dxWrlyZefPmpaqqKlVVVXn66aezc+fOnHfeeRkzZkwGDBiQ973vfZk3b96b/htOmDAh06dPz4wZM7L//vunqakpSXLNNdfk8MMPz6BBgzJq1Kh86lOfyqZNm5IkK1asyDnnnJONGzdWZrvsssuSJFu3bs3s2bPzrne9K4MGDcqxxx6bFStWvOn5AIDeQfQBAN5W8+bNy+WXX56RI0dm7dq1eeCBB97Q+6644opMmTIlq1evzmGHHZY///M/zyc/+cnMmTMnDz74YDo7OzN9+vQ3PMfPfvaz/O///b/zrW99K6tXr06S/Mmf/EnWr1+f73znO2ltbc3RRx+dj3zkI3nuuecq73vyySfz7W9/O4sWLcqiRYuycuXKXHnllZVza2xszCc+8YmsXbs2a9euzahRo7Jr166MHDkyt99+ex577LFceuml+au/+qvcdtttb/wP92tuvvnmVFdX5wc/+EEWLFiQJOnTp0++8pWv5NFHH83NN9+cu+++OxdddFGS5Pjjj891112X2traymyzZ89OkkyfPj0tLS1ZuHBhfvjDH+ZP/uRP8nu/93v56U9/+qbnAwB6no93AQBvq7q6ugwZMiR9+/ZNQ0PDG37fOeeckz/90z9Nklx88cVpbGzM5z//+cpdLn/5l3+Zc8455w0fb9u2bfmnf/qnHHDAAUmSe+65J6tWrcr69etTU1OTJPnyl7+cb3/72/mXf/mXXHDBBUmSXbt2pbm5OUOGDEmSnHnmmVm+fHn+5m/+JnV1damurs7AgQO7nFvfvn3zhS98ofLzmDFj0tLSkttuu61yTt31nve8J1dddVWXbb/+MOwvfvGLmTp1aq6//vpUV1enrq4uVVVVXWZra2vLTTfdlLa2towYMSJJMnv27CxZsiQ33XRT/vZv//ZNzQcA9DzRBwB4RzjiiCMq/66vr0+SHH744V22bdmyJR0dHamtrX3d4x1yyCGV4JMkDz/8cDZt2pThw4d3Wbd58+YuHxsbPXp0JfgkyUEHHZT169e/7u+bP39+vv71r6etrS2bN2/Otm3bctRRR73u+17N+PHjX7Htu9/9bubOnZvHH388HR0d2bFjR7Zs2ZIXX3wxAwcO3ONxHnnkkezcuTPvfe97u2zfunXrK/4WAMA7i+gDALwj7LfffpV/V1VVveq2Xbt2vaHjDRo0qMvPmzZtykEHHbTHZ9m8/BuvXv47d//e1/udCxcuzOzZs3P11VensbExQ4YMyZe+9KXcf//9b2jWNzL/008/nY9+9KO58MIL8zd/8zcZNmxY7rnnnpx33nnZtm3bq0afTZs2pW/fvmltbU3fvn277Bs8ePCbng8A6HmiDwBAkqOPPjrt7e3p169fRo8e/aaPU11dnZ07d3bZ9oMf/CDHH398PvWpT1W2vdGHTr9Rra2t2bVrV66++ur06fOrxzb++jOD9jTbBz/4wezcuTPr16/Phz/84b06EwDQszzIGQAgycSJE9PY2JhTTz01d911V55++unce++9+dznPpcHH3zwDR9n9OjRuf/++/P000/n2Wefza5du/Ke97wnDz74YJYuXZqf/OQn+fznP/+GH2D9Rh166KHZvn17/u7v/i4///nP88///M+VBzy/fLZNmzZl+fLlefbZZ/Piiy/mve99b84444xMmTIl3/rWt/LUU09l1apVmTt3bhYvXrxXZwQA3l6iDwBAfvUxrTvvvDMnnHBCzjnnnLz3ve/N6aefnl/84heVZwi9EbNnz07fvn0zbty4HHDAAWlra8snP/nJnHbaafn4xz+eY489Nv/1X//V5a6fveHII4/MNddck//1v/5XPvCBD+SWW27J3Llzu6w5/vjjM3Xq1Hz84x/PAQccUHkQ9E033ZQpU6bkf/7P/5n3ve99OfXUU/PAAw/k4IMP3qszAgBvr6rOzs7Onh4CAAAAgL3LnT4AAAAABRJ9AIDivP/978/gwYP3+Lrlllt6erzX1NbW9qqzDx48OG1tbT09IgDwDuHjXQBAcX7xi19k+/bte9xXX1+fIUOGvM0TvXE7duzI008//ar7R48enX79fAErAPD6RB8AAACAAvl4FwAAAECBRB8AAACAAok+AAAAAAUSfQAAAAAKJPoAAAAAFEj0AQAAACiQ6AMAAABQINEHAAAAoED/HzjmTsfTH8VHAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "df['film_rental_rate'].value_counts().plot(kind='bar', figsize=(14,6))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hIhnn2geAWN9" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### How is the replacement cost distributed?\n", + "\n", + "- Show a box plot of the replacement costs.\n", + "- Show a density plot of the replacement costs.\n", + "- Add a red line on the mean.\n", + "- Add a green line on the median median." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lZvHJPCxAWN-" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "cell_type": "solution", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 408 + }, + "id": "SF6UQxZSAWN-", + "outputId": "0cf64645-8356-4fa7-9d86-cefb1823bce7" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 17 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPcAAAH5CAYAAADtKNsVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoB0lEQVR4nO3deXSV5Z3A8V9Ywh5wYQtLUKgUZXGpxbRqW2GEtm6VqdR6RtCqrRWX2lakVoWxrY5ardvYalXqHHHfqq2KCzjqoLihxSUFJoIOKC4DYQfJO39Y7hjJBibcPOTzOSfnkNz3Pjy5D899ky93KciyLAsAAAAAIDkt8j0BAAAAAGDriHsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUa3yPQHYWpWVlbF48eLo1KlTFBQU5Hs6AAAAAA0iy7JYsWJFFBcXR4sWtT82T9wjWYsXL44+ffrkexoAAAAAjeLtt9+O3r1713qMuEeyOnXqFBGf/EMvKirK82wAAAAAGkZFRUX06dMn1z5qI+6RrE1PxS0qKhL3AAAAgO1OfV6GzBtqAAAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECiWuV7AgCwPSr/YFWsWvdxvqcBADQTHdq0il127pDvaQB5IO4BQAMr/2BVfOPSmfmeBsBmClpVROsuz8WGZcMj+7go39MBGtiMn31d4INmSNwDgAa26RF7vxu7Zwzo1jHPswH4f+UVZfGL2b+J3377+7FL0cB8TwdoIPOXrowzbp/jWQPQTIl7ANBIBnTrGIN7dc73NAByWrT95D8c+nfrGLvv5P4JALYH3lADAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIe5Nma9Rtj7v8sjzXrN+Z7KgAAAJC85vZ7trgHebbg/ZVxyFVPx4L3V+Z7KgAAAJC85vZ7trgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgERtUdzLsixOOumk2HHHHaOgoCC6dOkSZ5xxRu7yfv36xe9+97sGnuK2MX78+DjiiCPyPQ0AAAAAqLctinsPP/xwTJ06NR588MFYsmRJ/P3vf48LLrigseZGI5k5c2YUFBTEsmXL8j2ViIiYPHly7LnnnvmeBgAAAEByWm3JwQsWLIiePXvGV77ylcaazxZZv359FBYW5nsaAAAAAJAX9Y5748ePjz/96U8REVFQUBAlJSXRr1+/2HPPPWt8Km5BQUH8/ve/jwceeCCeeOKJKCkpiRtvvDG6du0aJ5xwQjz//PMxbNiw+I//+I/o379/nXOYPHly3HfffTFhwoT49a9/HQsXLozKyspYtmxZ/OxnP4v7778/1q1bF1/60pfi8ssvj2HDhlW53sknnxy/+tWv4sMPP4xDDjkkrr/++ujcuXO1f9fDDz8cv/rVr2Lu3LnRsmXLKC0tjSuuuKLKPN955534+c9/Ho888kisW7cuBg0aFNdcc00MHz48IiLuv//+mDJlSrz++utRXFwc48aNi3POOSdatWr1uW6f+ox7/fXXx1/+8pd45JFHolevXvHb3/42DjvssHjrrbfiG9/4RkRE7LDDDhERMW7cuJg6dWqtt31lZWVceumlcd1118Xbb78d3bt3jx/+8IdxzjnnRETE3/72tzj99NNj1qxZ0b59+xgzZkxcdtll0bFjx4j45NGCZ511Vrz22mvRunXr2GOPPWLatGkxY8aMmDJlSm7eERE33XRTjB8/frM5rFu3LtatW5f7vKKiotY5p2Ltho0RETF/6co8zwRoKJv286b9DQDQmPxOAVU1t5/H6x33NoWt6667Lp5//vlo2bJlfPe7363zehdccEFcdtllcdlll8XEiRPj+9//fuy6664xadKk6Nu3bxx//PExYcKEeOihh+o1j/nz58fdd98d99xzT7Rs2TIiIr773e9Gu3bt4qGHHorOnTvHH/7whxgxYkT8/e9/jx133DF3vTvuuCMeeOCBqKioiB/84Afx4x//OG655ZZq/55Vq1bFmWeeGUOHDo2VK1fGeeedF9/5zndizpw50aJFi1i5cmV87Wtfi169esWf//zn6NGjR7z00ktRWVkZERFPPfVUHHvssXHllVfGAQccEAsWLIiTTjopIiLOP//8rb596jvulClT4uKLL45LLrkkrrrqqjjmmGNi4cKF0adPn7j77rtjzJgxUVZWFkVFRdGuXbs6b/dJkybF9ddfH5dffnnsv//+sWTJknjzzTdzt9WoUaOitLQ0nn/++Vi6dGmccMIJMWHChJg6dWp8/PHHccQRR8SJJ54Yt956a6xfvz5mz54dBQUFMXbs2Jg7d248/PDD8dhjj0VE1BhcL7zwwlwI3J68879rIiLijNvn5HciQIN753/XxJf65XsWAMD2zu8UUL3m8vN4veNe586do1OnTtGyZcvo0aNHvf+C4447Lo466qiIiJg4cWKUlpbGueeeG6NGjYqIiNNPPz2OO+64eo+3fv36uPnmm6Nr164REfH000/H7NmzY+nSpdGmTZuIiLj00kvjvvvui7vuuisXvtauXRs333xz9OrVKyIirrrqqvj2t78dv/3tb6v9fsaMGVPl802PqHv99ddj8ODBMW3atHj//ffj+eefzwXEAQMG5I6fMmVKnH322TFu3LiIiNh1113jggsuiLPOOqtKhNvS26e+444fPz6OPvroiIj4zW9+E1deeWXMnj07Ro8enZtvt27dokuXLnXe5itWrIgrrrgirr766tzf279//9h///0jImLatGm527dDhw4REXH11VfHoYceGv/2b/8WrVu3juXLl8chhxySewTioEGDcuN37NgxWrVqVee/q0mTJsWZZ56Z+7yioiL69OlT5/ybut47fBJXfzd2zxjQrWOeZwM0hPlLV8YZt8/J7W8AgMbkdwqoqrn9PL5Fr7m3NYYOHZr7c/fu3SMiYsiQIVW+tnbt2qioqIiioqI6xyspKcmFvYiIV155JVauXBk77bRTlePWrFkTCxYsyH3et2/fXNiLiCgtLY3KysooKyurNirNmzcvzjvvvHjuuefigw8+yD0ib9GiRTF48OCYM2dO7LXXXrlQ9lmvvPJKPPPMM/HrX/8697WNGzfG2rVrY/Xq1dG+ffutun22ZtwOHTpEUVFRLF26tNq51uWNN96IdevWxYgRI2q8fNiwYbmwFxHx1a9+NXf7HnjggTF+/PgYNWpU/NM//VOMHDkyjjrqqOjZs+cWzaNNmza5gLs9adv6k0egDujWMQb3qv5Ri0CaNu1vAIDG5HcKqF5z+Xm80eNe69atc3/e9Jpq1X1tUzyry6cDUkTEypUro2fPnjFz5szNjq3Po9Jqcuihh0ZJSUlcf/31UVxcHJWVlTF48OBYv359RESdT2VduXJlTJkyJY488sjNLmvbtm3uz1t6+2zNuJvGqe9t/Fn1edpuXW666aY47bTT4uGHH47bb789fvnLX8ajjz4a++233+ceGwAAAKC5avS419j23nvvePfdd6NVq1bRr1+/Go9btGhRLF68OIqLiyMi4tlnn40WLVrEwIEDNzv2ww8/jLKysrj++uvjgAMOiIhPnv77aUOHDo0//vGP8dFHH1X76L299947ysrKqjxVtyE0xLib3mF448b6vbDkF77whWjXrl08/vjjccIJJ2x2+aBBg2Lq1KmxatWqXHx95plnNrt999prr9hrr71i0qRJUVpaGtOmTYv99tsvCgsL6z0XAAAAAP5fi3xP4PMaOXJklJaWxhFHHBHTp0+Pt956K/7rv/4rzjnnnHjhhRdyx7Vt2zbGjRsXr7zySjz11FNx2mmnxVFHHVXtU3J32GGH2GmnneK6666L+fPnxxNPPFHltd4iIo4++ujo0aNHHHHEEfHMM8/Ef//3f8fdd98ds2bNioiI8847L26++eaYMmVKvPbaa/HGG2/EbbfdFr/85S8/1/fbEOOWlJREQUFBPPjgg/H+++/HypW1v6NS27ZtY+LEiXHWWWfFzTffHAsWLIhnn302brjhhoiIOOaYY3K379y5c2PGjBlx6qmnxr/8y79E9+7do7y8PCZNmhSzZs2KhQsXxvTp02PevHm5193r169flJeXx5w5c+KDDz6o8o64AAAAANQs+bhXUFAQf/3rX+PAAw+M4447Lnbbbbf43ve+FwsXLsy9hl3EJ292ceSRR8a3vvWtOPjgg2Po0KHx7//+79WO2aJFi7jtttvixRdfjMGDB8dPfvKTuOSSS6ocU1hYGNOnT49u3brFt771rRgyZEhcdNFFuXfwHTVqVDz44IMxffr02HfffWO//faLyy+/PEpKSj7X99sQ4/bq1Sv3xhzdu3ePCRMm1Hmdc889N37605/GeeedF4MGDYqxY8fmXsOvffv28cgjj8RHH30U++67b/zzP/9zjBgxIq6++urc5W+++WaMGTMmdttttzjppJPilFNOiR/+8IcR8cmbl4wePTq+8Y1vRNeuXePWW2/dilsGAAAAoPkpyLIsy/ckGtvkyZPjvvvuizlz5uR7KjSgioqK6Ny5cyxfvrxeb8bSVM39n+VxyFVPx4On7u/Fb2E7YV8DTdXrH74eYx8cG7cfcnvsvtPu+Z4O0ED87AFVbQ97YkuaR/KP3AMAAACA5qpJxb099tgjOnbsWO3HLbfcku/pbbcWLVpU4+3esWPHWLRoUb6nCAAAAEA1mtS75f71r3+NDRs2VHvZp18/b0tNnjw5Jk+evNXX394VFxfX+pTlTe8wDAAAAEDT0qTi3ud9swm2TqtWrWLAgAH5ngYAAAAAW6hJPS0XAAAAAKg/cQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStyDPOvftWM8eOr+0b9rx3xPBQAAAJLX3H7PbpXvCUBz166wZQzu1Tnf0wAAAIDtQnP7Pdsj9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABLVKt8TAIDtzZoNGyMiYu7/LM/zTACqKq9YGRERC5aujMq17qNgezF/6cp8TwHII3EPABrYgn/8gH32PX/L80wAqipoVRGtu4yI025ZENnH7+d7OkAD69DGr/jQHNn5ANDADt6jR0RE9O/WMdq1bpnn2QB81rfyPQGgEXRo0yp22blDvqcB5IG4BwANbMcOhfG9L/fN9zQAAIBmwBtqAAAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHgAAAAAkStwDAAAAgESJewAAAACQKHEPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABIlLgHAAAAAIkS9wAAAAAgUeIeAAAAACRK3AMAAACARIl7AAAAAJAocQ8AAAAAEtUq3xOArZVlWUREVFRU5HkmAAAAAA1nU+vY1D5qI+6RrBUrVkRERJ8+ffI8EwAAAICGt2LFiujcuXOtxxRk9UmA0ARVVlbG4sWLo1OnTlFQUJDv6Wy1ioqK6NOnT7z99ttRVFSU7+nQyKx382Gtmw9r3XxY6+bFejcf1rr5sNbNS+rrnWVZrFixIoqLi6NFi9pfVc8j90hWixYtonfv3vmeRoMpKipK8g6HrWO9mw9r3XxY6+bDWjcv1rv5sNbNh7VuXlJe77oesbeJN9QAAAAAgESJewAAAACQKHEP8qxNmzZx/vnnR5s2bfI9FbYB6918WOvmw1o3H9a6ebHezYe1bj6sdfPSnNbbG2oAAAAAQKI8cg8AAAAAEiXuAQAAAECixD0AAAAASJS4BwAAAACJEvcAAAAAIFHiHjSg//zP/4xDDz00iouLo6CgIO67774ql2dZFuedd1707Nkz2rVrFyNHjox58+bVOe4111wT/fr1i7Zt28bw4cNj9uzZjfQdsCVqW+8NGzbExIkTY8iQIdGhQ4coLi6OY489NhYvXlzrmJMnT46CgoIqH1/84hcb+TuhLnXt7fHjx2+2bqNHj65zXHu76alrrT+7zps+LrnkkhrHtK+bpgsvvDD23Xff6NSpU3Tr1i2OOOKIKCsrq3LM2rVr45RTTomddtopOnbsGGPGjIn33nuv1nG39lxP46lrrT/66KM49dRTY+DAgdGuXbvo27dvnHbaabF8+fJax93a+34aV3329te//vXN1u5HP/pRrePa201PXWv91ltv1XjevvPOO2sc195ueq699toYOnRoFBUVRVFRUZSWlsZDDz2Uu9z5WtyDBrVq1aoYNmxYXHPNNdVefvHFF8eVV14Zv//97+O5556LDh06xKhRo2Lt2rU1jnn77bfHmWeeGeeff3689NJLMWzYsBg1alQsXbq0sb4N6qm29V69enW89NJLce6558ZLL70U99xzT5SVlcVhhx1W57h77LFHLFmyJPfx9NNPN8b02QJ17e2IiNGjR1dZt1tvvbXWMe3tpqmutf70Gi9ZsiRuvPHGKCgoiDFjxtQ6rn3d9Dz55JNxyimnxLPPPhuPPvpobNiwIQ4++OBYtWpV7pif/OQn8cADD8Sdd94ZTz75ZCxevDiOPPLIWsfdmnM9jauutV68eHEsXrw4Lr300pg7d25MnTo1Hn744fjBD35Q59hbet9P46vP3o6IOPHEE6us3cUXX1zruPZ201PXWvfp02ez8/aUKVOiY8eO8c1vfrPWse3tpqV3795x0UUXxYsvvhgvvPBCHHTQQXH44YfHa6+9FhHO1xERkQGNIiKye++9N/d5ZWVl1qNHj+ySSy7JfW3ZsmVZmzZtsltvvbXGcb785S9np5xySu7zjRs3ZsXFxdmFF17YKPNm63x2vasze/bsLCKyhQsX1njM+eefnw0bNqxhJ0eDqm6tx40blx1++OFbNI693fTVZ18ffvjh2UEHHVTrMfZ1GpYuXZpFRPbkk09mWfbJObp169bZnXfemTvmjTfeyCIimzVrVrVjbO25nm3rs2tdnTvuuCMrLCzMNmzYUOMxW3Pfz7ZX3Xp/7Wtfy04//fR6j2Fvp6E+e3vPPffMjj/++FrHsbfTsMMOO2R//OMfna//wSP3YBspLy+Pd999N0aOHJn7WufOnWP48OExa9asaq+zfv36ePHFF6tcp0WLFjFy5Mgar0PTtXz58igoKIguXbrUety8efOiuLg4dt111zjmmGNi0aJF22aCfC4zZ86Mbt26xcCBA+Pkk0+ODz/8sMZj7e3tw3vvvRd/+ctf6vXoHvu66dv0FMwdd9wxIiJefPHF2LBhQ5V9+sUvfjH69u1b4z7dmnM9295n17qmY4qKiqJVq1a1jrUl9/3kR03rfcstt8TOO+8cgwcPjkmTJsXq1atrHMPeTkNde/vFF1+MOXPm1Ou8bW83XRs3bozbbrstVq1aFaWlpc7X/1D72QpoMO+++25ERHTv3r3K17t375677LM++OCD2LhxY7XXefPNNxtnojSKtWvXxsSJE+Poo4+OoqKiGo8bPnx4TJ06NQYOHJh76sABBxwQc+fOjU6dOm3DGbMlRo8eHUceeWTssssusWDBgvjFL34R3/zmN2PWrFnRsmXLzY63t7cPf/rTn6JTp051Pu3Dvm76Kisr44wzzoivfvWrMXjw4Ij45LxdWFi42X/I1Hbe3ppzPdtWdWv9WR988EFccMEFcdJJJ9U61pbe97Pt1bTe3//+96OkpCSKi4vj1VdfjYkTJ0ZZWVncc8891Y5jbzd99dnbN9xwQwwaNCi+8pWv1DqWvd00/e1vf4vS0tJYu3ZtdOzYMe69997YfffdY86cOc7XIe4BNLoNGzbEUUcdFVmWxbXXXlvrsZ9+/Y+hQ4fG8OHDo6SkJO644456/S8j+fG9730v9+chQ4bE0KFDo3///jFz5swYMWJEHmdGY7rxxhvjmGOOibZt29Z6nH3d9J1yyikxd+5cr4XYDNS11hUVFfHtb387dt9995g8eXKtY7nvb/pqWu9Ph9shQ4ZEz549Y8SIEbFgwYLo37//tp4mDaCuvb1mzZqYNm1anHvuuXWOZW83TQMHDow5c+bE8uXL46677opx48bFk08+me9pNRmelgvbSI8ePSIiNnvXnvfeey932WftvPPO0bJlyy26Dk3LprC3cOHCePTRR2t91F51unTpErvttlvMnz+/kWZIY9h1111j5513rnHd7O30PfXUU1FWVhYnnHDCFl/Xvm5aJkyYEA8++GDMmDEjevfunft6jx49Yv369bFs2bIqx9e2T7fmXM+2U9Nab7JixYoYPXp0dOrUKe69995o3br1Fo1f130/21Zd6/1pw4cPj4ioce3s7aatPmt91113xerVq+PYY4/d4vHt7aahsLAwBgwYEPvss09ceOGFMWzYsLjiiiucr/9B3INtZJdddokePXrE448/nvtaRUVFPPfcc1FaWlrtdQoLC2Offfapcp3Kysp4/PHHa7wOTcemsDdv3rx47LHHYqeddtriMVauXBkLFiyInj17NsIMaSzvvPNOfPjhhzWum72dvhtuuCH22WefGDZs2BZf175uGrIsiwkTJsS9994bTzzxROyyyy5VLt9nn32idevWVfZpWVlZLFq0qMZ9ujXnehpfXWsd8ck6HXzwwVFYWBh//vOf63xEbnXquu9n26jPen/WnDlzIiJqXDt7u2nakrW+4YYb4rDDDouuXbtu8d9jbzdNlZWVsW7dOufrTfL6dh6wnVmxYkX28ssvZy+//HIWEdlll12Wvfzyy7l3R73ooouyLl26ZPfff3/26quvZocffni2yy67ZGvWrMmNcdBBB2VXXXVV7vPbbrsta9OmTTZ16tTs9ddfz0466aSsS5cu2bvvvrvNvz+qqm29169fnx122GFZ7969szlz5mRLlizJfaxbty43xmfX+6c//Wk2c+bMrLy8PHvmmWeykSNHZjvvvHO2dOnSfHyL/ENta71ixYrsZz/7WTZr1qysvLw8e+yxx7K99947+8IXvpCtXbs2N4a9nYa67sezLMuWL1+etW/fPrv22murHcO+TsPJJ5+cde7cOZs5c2aV++jVq1fnjvnRj36U9e3bN3viiSeyF154ISstLc1KS0urjDNw4MDsnnvuyX1en3M921Zda718+fJs+PDh2ZAhQ7L58+dXOebjjz/OjfPpta7vfT/bXl3rPX/+/Oxf//VfsxdeeCErLy/P7r///mzXXXfNDjzwwCrj2NtNX33ux7Msy+bNm5cVFBRkDz30ULXj2NtN39lnn509+eSTWXl5efbqq69mZ599dlZQUJBNnz49yzLn6yzLMnEPGtCMGTOyiNjsY9y4cVmWffKW2+eee27WvXv3rE2bNtmIESOysrKyKmOUlJRk559/fpWvXXXVVVnfvn2zwsLC7Mtf/nL27LPPbqPviNrUtt7l5eXVXhYR2YwZM3JjfHa9x44dm/Xs2TMrLCzMevXqlY0dOzabP3/+tv/mqKK2tV69enV28MEHZ127ds1at26dlZSUZCeeeOJmkc7eTkNd9+NZlmV/+MMfsnbt2mXLli2rdgz7Og013UffdNNNuWPWrFmT/fjHP8522GGHrH379tl3vvOdbMmSJZuN8+nr1Odcz7ZV11rXtO8jIisvL68yzqbr1Pe+n22vrvVetGhRduCBB2Y77rhj1qZNm2zAgAHZz3/+82z58uWbjWNvN231uR/PsiybNGlS1qdPn2zjxo01jmNvN23HH398VlJSkhUWFmZdu3bNRowYkQt7WeZ8nWVZVpBlWfa5H/4HAAAAAGxzXnMPAAAAABIl7gEAAABAosQ9AAAAAEiUuAcAAAAAiRL3AAAAACBR4h4AAAAAJErcAwAAAIBEiXsAAAAAkChxDwAAAAASJe4BAAAAQKLEPQAAAABI1P8BMcPaIp7kFxAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "df['film_replacement_cost'].plot(kind='box', vert=False, figsize=(14,6))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EPphEpeAAWN-" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "cell_type": "solution", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 442 + }, + "id": "qASuKNDzAWN-", + "outputId": "c1ab2eca-2d83-4953-9f2a-c082ec1fb14d" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 18 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAH5CAYAAAAMQ85EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBQElEQVR4nOzdaXiU5f328XNmsu8kIQshIWENe1gDqMWFCooVxCpqK4rWtlatFrUV22Jb2wfb/rVotVKXurTiggu1qCiiIAqy72sChASyE7JN9pn7eTFJFAkIIck9y/dzHDmEyT2TcxwTkzPX9bsshmEYAgAAAAAAAL7GanYAAAAAAAAAuB9KIwAAAAAAAJyE0ggAAAAAAAAnoTQCAAAAAADASSiNAAAAAAAAcBJKIwAAAAAAAJyE0ggAAAAAAAAn8TM7gDtyOp3Kz89XeHi4LBaL2XEAAAAAAAA6hGEYqqqqUo8ePWS1nn4tEaVRG/Lz85WcnGx2DAAAAAAAgE6Rl5ennj17nvYaSqM2hIeHS3L9C4yIiDA5DQAA8Dl2u9Sjh+vP+flSaGj7H6rBrh6Puh4r/958hQa0/7EAAIDnq6ysVHJycmv3cTqURm1o2ZIWERFBaQQAALqezfbVnyMizqk0sjXYpKCWh4qgNAIAAJJ0RuN4TB+E/dRTTyk1NVVBQUHKzMzU+vXrT3v94sWLlZ6erqCgIA0dOlTvv//+Sdfs2bNHV155pSIjIxUaGqoxY8YoNze3s54CAAAAAACA1zG1NHr99dc1Z84cPfTQQ9q8ebOGDx+uyZMnq7i4uM3r16xZo+uvv1633nqrtmzZounTp2v69OnauXNn6zUHDhzQ+eefr/T0dK1cuVLbt2/Xb3/7WwUFBXXV0wIAAAAAAPB4FsMwDLM+eGZmpsaMGaMnn3xSkuvUsuTkZN1111164IEHTrp+5syZstvtWrp0aett48aNU0ZGhhYuXChJuu666+Tv769///vf7c5VWVmpyMhIVVRUsD0NAAB0PbtdCgtz/bm6+pxnGoXNdz1W9dxqtqcBAODjzqbzMG2lUUNDgzZt2qRJkyZ9FcZq1aRJk7R27do277N27doTrpekyZMnt17vdDr13nvvqX///po8ebLi4uKUmZmpJUuWnDZLfX29KisrT3gDAAAAAADwZaaVRqWlpXI4HIqPjz/h9vj4eBUWFrZ5n8LCwtNeX1xcrOrqaj3yyCOaMmWKPvroI1111VWaMWOGVq1adcos8+fPV2RkZOtbcnLyOT47AAAAAAAAz2b6IOyO5HQ6JUnTpk3TL37xC2VkZOiBBx7QFVdc0bp9rS1z585VRUVF61teXl5XRQYAAAAAAHBLfmZ94NjYWNlsNhUVFZ1we1FRkRISEtq8T0JCwmmvj42NlZ+fnwYNGnTCNQMHDtTnn39+yiyBgYEKDAxsz9MAAAAAAADwSqatNAoICNCoUaO0YsWK1tucTqdWrFih8ePHt3mf8ePHn3C9JC1fvrz1+oCAAI0ZM0b79u074Zr9+/erV69eHfwMAAAAAAAAvJdpK40kac6cObrppps0evRojR07VgsWLJDdbtfs2bMlSbNmzVJSUpLmz58vSbr77rs1ceJEPfroo5o6dapee+01bdy4Uc8880zrY95///2aOXOmvvOd7+iiiy7SsmXL9L///U8rV6404ykCAAAAAAB4JFNLo5kzZ6qkpETz5s1TYWGhMjIytGzZstZh17m5ubJav1oMNWHCBC1atEi/+c1v9OCDD6pfv35asmSJhgwZ0nrNVVddpYULF2r+/Pn6+c9/rgEDBuitt97S+eef3+XPDwAAAAAAwFNZDMMwzA7hbiorKxUZGamKigpFRESYHQcAAPgau10KC3P9ubpaCg1t/0M12BU23/VY1XOrFRrQ/scCAACe72w6D686PQ0AAAAAAAAdg9IIAAAAAAAAJ6E0AgAAAAAAwEkojQAAAAAAAHASSiMAAAAAAACchNIIAAAAAAAAJ/EzOwAAAAC8n8NpaGveca3OKtW+wipV1zfJaRhKiQ5VZlq0LhkYp/Agf7NjAgCAr6E0AgAAQKepa3Ro8aYjevazg8otqznp/V/omF5dn6uQAJtuHNdLP7+kn0ID+RYVAAB3wP+RAQAA0Cm+PHhMD7y1XTnHXGVRRJCfLujfXaNSuikqxF+GIe0vrtLy3UU6WGLXPz87qPd2FOgv3x+mCX1iTU4PAAAojQAAANChmhxOPfLBXj33+SFJUnxEoG6f2EfXjklWSMDJ334+MCVdn+wt1rz/7tKR47X6wXPr9MfpQ/SDzF5dHR0AAHwNpREAAAA6THlNg+5ctEWfZ5dKkm7ITNEDl6Ur4jTziiwWiy4ZGK+xadF66N1denvzUf36nZ0qr2nUHRf17aroAADgGyiNAAAA0CGKq+r0w+fWaX9RtUICbHr0muG6bGjiGd8/PMhfj14zXImRQXrq0wP664f7FBnsrx+OY8URAABmsJodAAAAAJ6voKJW1/3zS+0vqlZ8RKDeun3CWRVGLSwWi+6fnK57JvWTJD307i59nlXa0XEBAMAZoDQCAADAOSmzN+gHz63TwVK7kqKC9cZPxmtgYsQ5Pebdl/TTVSOS5HAauv2VTcpr4+Q1AADQuSiNAAAA0G72+ibNfnGDDpbYlRgZpNd/Mk69YkLP+XEtFoseuXqoRqREqaquSfcu3iaH0+iAxAAA4ExRGgEAAKBdnE5D97y+VdvyyhUV4q9/3zpWPbuFdNjjB/rZtGBmhkICbFp/qEzPf36wwx4bAAB8O0ojAAAAtMsTn2Rp+e4iBdisev6mMeobF97hH6NXTKjmXTFIkvR/H+7XwZLqDv8YAACgbZRGAAAAOGvLdxdpwcdZkqQ/XjVEo3p167SPNXNMsr7Tv7saHE797n+7ZRhsUwMAoCtQGgEAAOCsHCip1pzXt0qSZo3vpWtHJ3fqx7NYLPr9lYMVYLPqs/0lWr67qFM/HgAAcKE0AgAAwBmrb3LozkVbVFXfpLGp0fpt89axzpYWG6pbL0iTJP1h6W7VNTq65OMCAODLKI0AAABwxv66bJ/2FFQqOjRAT94wQv62rvt28s6L+io+IlBHjtfq1fW5XfZxAQDwVZRGAAAAOCOrs0r03OeHJEl/uXqY4iKCuvTjhwb66eeX9JMkPfVptmoamrr04wMA4GsojQAAAPCtyuwNuveNbZKkH45L0aRB8abkuHZ0slKiQ1Ra3aAXvsgxJQMAAL6C0ggAAADfat5/d6q4ql5948L068u7Zo5RW/xtVv3iu67VRv9cdUBVdY2mZQEAwNtRGgEAAOC0PtpVqKXbC2SzWvS3azMUHGAzNc+Vw5PUp3uoKuuatGgds40AAOgslEYAAAA4pYraRv1myU5J0o+/01tDe0aanEiyWS366cQ+kqTnPz+k+iZOUgMAoDNQGgEAAOCU5r+/R8VV9eodG6q7m4dQu4NpGUlKjAxScVW93tl81Ow4AAB4JUojAAAAtGlNdqle25AnSXrk6mEK8jd3W9rXBfhZ9aMLekuS/vnZQTmdhsmJAADwPpRGAAAAOEl9k6N1W9qN43ppbFq0yYlOdt2YZEUE+elQqV2r9peYHQcAAK9DaQQAAICTPLf6kA6W2hUbFqj7pwwwO06bQgP9NHNMsiTppbU55oYBAMALURoBAADgBEfLa/X3T7IkSb+emq6IIH+TE53aD8f1ksUirdxXopxSu9lxAADwKpRGAAAAOMEf/rdLdY1OjU2L1vSMJLPjnFavmFBd2L+7JOnfXx42OQ0AAN6F0ggAAACtVu4r1oe7imSzWvTwtCGyWCxmR/pWsyakSpLe2JinmoYmc8MAAOBFKI0AAAAgSWpyOPXH9/ZIkm6ekKoBCeEmJzozE/t1V6+YEFXVNWnJlnyz4wAA4DUojQAAACBJenVDnrKLq9UtxF8/v6Sf2XHOmNVq0Y3jekmSXl6bI8MwTE4EAIB3oDQCAACAKusa9bfl+yVJv/huf0UGu+/w67ZcMypZQf5W7S2s0ta8crPjAADgFSiNAAAAoKc+zVaZvUF9uofq+rEpZsc5a5Eh/rpsSKIk6Y2NR0xOAwCAd6A0AgAA8HF5ZTV64fMcSdKvpw6Uv80zv0W8dnSyJOl/2/IZiA0AQAfwzO8IAAAA0GEeWbZXDQ6nzu8bq4sGxJkdp90y06KVEh2i6vomfbCj0Ow4AAB4PEojAAAAH7bpcJne214gi8W1yshisZgdqd2sVouuHd1TkvT6xjyT0wAA4PkojQAAAHyUYRj68wf7JEnXjkrWwMQIkxOdu6tH9ZTVIq0/VKZDpXaz4wAA4NEojQAAAHzUyv0lWp9TpgA/q+75bj+z43SIxMhgfad/d0nSYlYbAQBwTiiNAAAAfJDTaegvy1yrjG4a30uJkcEmJ+o4LQOx39p8RA6nYXIaAAA8F6URAACAD1q6o0B7CioVHuinn13Y1+w4HWrSwHhFhfirqLJeaw6Umh0HAACPRWkEAADgYxodTj32kWuV0W3f6a1uoQEmJ+pYAX5WXTEsUZL0zpajJqcBAMBzURoBAAD4mDc25innWI1iQgN06/lpZsfpFFeNSJIkfbizUDUNTSanAQDAM1EaAQAA+JDaBoeeWJElSbrz4r4KDfQzOVHnGJnSTSnRIbI3OLR8d5HZcQAA8EiURgAAAD7kP18eVlFlvZKignVDZorZcTqNxWLR9ObVRmxRAwCgfSiNAAAAfERNQ5P++dkBSdLPL+mrQD+byYk61/SMHpKk1VmlKqmqNzkNzlR1fZOyiqp0sKRaxZV1MgxOwAMAs3jnemQAAACc5PUNeSqtblBKdIhmjOxpdpxO17t7mIYnR2lbXrn+ty1ft3jp/CZP53Aa+mx/id7fUaDPskpUVHliwRcTGqARKVG6YlgPTRmSoCB/7y47AcCdUBoBAAD4iOdWH5Rk050X95W/zTcWnM8YkaRteeVasvUopZGbcToN/W97vh5fkaWDJfYT3hcR5CdDUk2DQ8fsDfp4T7E+3lOsiP/66ScT++iW89IUHEB5BACdjdIIAADAR5TVNCo1Orz1ZDFfcMWwRP1h6W5tP1Kh7OJq9Y0LMzsSJOWU2vXLN7drfU6ZJCky2F/TM3po8uAEDekZqYggf0lSXaNDuwsq9dn+Ei3eeERHy2v11w/36T9fHtb/mzFUFw2IM/NpAIDXozQCAADwIb60ykiSYsICNbF/d32yt1hLthzVfZMHmB3J5729+YgefGeH6hqdCgmw6WcX9tFNE1IV3lwUfV2Qv00jU7ppZEo3/fzifnp3W77++uE+HS2v1ewXNuim8b009/KBbFkDgE7iO98xAAAA+LiU6GDN8KFVRi1aVlYt2XqUocomcjgN/em93ZrzxjbVNTp1Xt8YfXjPd3Tnxf3aLIy+yWp1nYi34t6JuuU811bDl9Ye1g+eW6dj1Qw6B4DOQGkEAADgxWoamlr//JPv9JGfD60yajFpYLxCA2w6crxWmw4fNzuOT2pocurnr23Rs6sPSZLuuriv/n1LppKjQ876sYL8bZr3vUF6cfYYRQT5adPh45r+jy+UU2r/9jsDAM6K733XAADweQ6noZKqeuWU2pVTald+ea3qGh1mxwI6xavrc1v/fOXwHiYmMU9wgE1ThiRKkt7ZctTkNL6nrtGh2/+zSe9tL5C/zaK/Xz9C9146QFar5Zwe98IBcXr7Z+cpJTpEeWW1mvnMWh0sqe6g1AAAiZlGAAAv53Aa2n6kXGsOHNOW3HLtK6rU0eO1craxQyUiyE994sI0MDFC43rHaFzvaMWFB3V9aKCD1DQ06fnPD7X+3RdXGbWYPqKH3tp8RO/tKNBD3xusAD/f/XfRlZocTt316hat2FusQD+r/nnjKF3YgcOr+8aF6a3bJ+gHz32p/UXVuu6ZL/XGT8YrNTa0wz4GAPgySiMAgFfaU1CpNzbm6X/bClTaxqwLi0UK8bfJYrGovsmhRoehyrombckt15bcci1a51qdMSgxQleNSNK0jB6Ki6BAgmd5ee1hHa9plILNTmK+CX1i1T08UCVV9fpsf4kmDYo3O5LXczoN/fKt7Vq+u0gBfla9cPMYTegb2+Efp3t4oBbdNk4/fG6d9hZWada/1uut2yeoe3hgh38sAPA1lEYAAK+yJrtUT63M1hfZx1pviwjy0/g+McpMi9HAxAj16R6q6NCA1lUXhmGour5JR8trlV1crS255Vp74Jj2FFZqd4Hrbf4He3TRgDjdfmEfjU6NNuvpAWfMXt+kZz47aHYMt2GzWnTl8B56/vNDWrL1KKVRF3hs+X69vfmobFaLnrphZKcURi1iwwL171szdfXTa5RbVqPZL67Xaz8er7BAftwBgHPBV1EAgFfYV1il+R/s0cp9JZJcPyBOHhyvq0f21AX9up92K4rFYlF4kL/SE/yVnhChK4a55r6U2Rv0/o4CvbPlqDYdPq4Ve4u1Ym+xxqZG6+5J/XReJ/4ABJyrf395WGX2BvWKDlZerdlp3MP0jCQ9//khLd9dpKq6xjM6sQvt886WI3ry02xJ0iMzhuq7XVDSdQ8P1Eu3jNX3n16jnUcrde8bW/X0D0ad8+wkAPBlbOYGAHg0e32T5v13py57/DOt3FciP6tFN43vpVX3X6h//GCULhkY3+7ZJdGhAfrhuF566/YJWnHvRF0/Nln+NovW55TpB8+t049f3qi8spoOfkbAufv6KqOfTuxrchr3MSQpQr27h6q+yakPdxWZHcdrbTpcpl+9uUOSdPuFfXTN6OQu+9hpsaF69qbRCrBZ9eGuIj3xSVaXfWwA8EZuURo99dRTSk1NVVBQkDIzM7V+/frTXr948WKlp6crKChIQ4cO1fvvv3/C+2+++WZZLJYT3qZMmdKZTwEAYIJ1B4/pssdX6+W1h+U0pMuHJujjORP1+2lD1LPb2R/jfDp9uodp/oxh+uyXF+mm8b1ks1r00e4iTXpslf6+IktNDmeHfjzgXLSsMkqNCdEVwxLNjuM2LBaLpmckSZL+u5VT1DpDfnmtfvzyJjU4nLp0ULzuv3RAl2cYmdJNf7xqiCRpwcdZ+nRvcZdnAABvYXpp9Prrr2vOnDl66KGHtHnzZg0fPlyTJ09WcXHbX9zXrFmj66+/Xrfeequ2bNmi6dOna/r06dq5c+cJ102ZMkUFBQWtb6+++mpXPB0AQBdocjj1yAd7dd2zXyq3rEZJUcH6z62Z+scPRnX6iTmJkcH6/bQhev/nF2h87xjVNzn16PL9uvafa5V7jFVHMF9NQ5OebV5ldOfF/Xz6xLS2tJRGX2SXqriyzuQ03qXJ4dTPX92iY/YGDUyM0N9mZpi2Neza0cmaNb6XJOm+xdt4rQGgnUz/LuKxxx7TbbfdptmzZ2vQoEFauHChQkJC9K9//avN6x9//HFNmTJF999/vwYOHKiHH35YI0eO1JNPPnnCdYGBgUpISGh969atW1c8HQBAJyutrteNz6/XwlUHZBjSzNHJWnbPBTq/X9fOFxqQEK5Ft2VqwcwMhQf6aXNuuS5/YjWrF2C6/3x5WMfsDeoVE6LpGT3MjuN2UmJCNDIlSk5DendbvtlxvMrfPt6vjYePKzzQTwt/OFKhJg+hfvDygRqYGKFj9gbNeWObnE7D1DwA4IlMLY0aGhq0adMmTZo0qfU2q9WqSZMmae3atW3eZ+3atSdcL0mTJ08+6fqVK1cqLi5OAwYM0O23365jx47pVOrr61VZWXnCGwDA/WzLK9cVT3yutQePKSTApqduGKk/f3+YacNsLRaLpo9I0gf3XKCxqdGqrm/S3a9t1V+W7eWHE5iitsHROsvojov6ssroFKaPaNmiRmnUUVZnlegfKw9IkuZfPVS9Yjp31eeZCPK36e/XZyjI36rPs0v17GpOEwSAs2XqdxKlpaVyOByKjz/xNIX4+HgVFha2eZ/CwsJvvX7KlCl6+eWXtWLFCv35z3/WqlWrdNlll8nhcLT5mPPnz1dkZGTrW3Jy1w3rAwCcmY92FWrmM2tVWFmn3t1D9d87ztNUN5nV0rNbiF798TjdcVEfSdI/Vh7Qz17ZrJqGJpOTwde8su6wSqsblBwdrKuaixGcbOrQRNmsFu04WqHs4mqz43i84qo6/eL1rTIM6YbMlNYTKN1B37hwzbtisCTprx/u0678CpMTAYBn8cpfP1133XW68sorNXToUE2fPl1Lly7Vhg0btHLlyjavnzt3rioqKlrf8vLyujYwAOC0Xl6bo5/+Z5PqGp2a2L+7/nvHeeoXH252rBPYrBbdPzldf5s5XAE2q5btKtT1z65TRW2j2dHgI2obHFq4qnmW0UV95c8qo1OKCQvUxP7dJTEQ+1w5nIZ+8fpWlVY3KD0hXPOuGGR2pJNcPzZZkwfHq8lp6IG3dnBwAQCcBVO/m4iNjZXNZlNR0YlHnhYVFSkhIaHN+yQkJJzV9ZLUu3dvxcbGKjs7u833BwYGKiIi4oQ3AID5DMPQXz/cq3n/3SWnIV03JlnP3zTatO1oZ+KqET316o8z1S3EX9vyyvXD59apvKbB7FjwAYvW56q0ul49uwVrxsieZsdxe9Oa5z39d2u+DIPtpO319MpsfZF9TMH+Nj15wwgF+dvMjnQSi8Wih6cNUXiQn3YcrdCLa3LMjgQAHsPU0iggIECjRo3SihUrWm9zOp1asWKFxo8f3+Z9xo8ff8L1krR8+fJTXi9JR44c0bFjx5SY6B7bGAAA384wDP1h6W499alrRsZ9l/bX/BlDPWJGy6he0Xr1x+MUExqgHUcrdMOz61RmpzhC56lrdGjhKtfnyh2sMjoj3x0Ur5AAm3LLarQ5t9zsOB5p/aEyPbZ8vyTpD9MGq2+ce60A/bq4iCD9+vKBkqRHP9qvvDJOuwSAM2H6dxRz5szRs88+q5deekl79uzR7bffLrvdrtmzZ0uSZs2apblz57Zef/fdd2vZsmV69NFHtXfvXv3ud7/Txo0bdeedd0qSqqurdf/99+vLL79UTk6OVqxYoWnTpqlv376aPHmyKc8RAHB2nE5DD76zUy98kSNJenjaYN15cT9ZLOYc3dwe6QkReu3H4xQbFqjdBZW68fl1qq5nxhE6x6vrc1VSVa+kqGBdzSqjMxIS4Kcpg10r1ZdsYYva2Tpub9Ddr22R05BmjEjS90e5/393M8ckKzMtWrWNDj34zg5WmAHAGTC9NJo5c6b+7//+T/PmzVNGRoa2bt2qZcuWtQ67zs3NVUFBQev1EyZM0KJFi/TMM89o+PDhevPNN7VkyRINGTJEkmSz2bR9+3ZdeeWV6t+/v2699VaNGjVKq1evVmBgoCnPEQBw5pocTt23eJteXZ8ri0X6y/eH6cbxqWbHapd+8eHNxVGAduVX6o5XNquRWRroYF9fZXT7hX0U4Gf6t3ceY1rzsPD3dhTwuXkWDMPQfYu3qaCiTr1jQ/Xw9CEeUepbLBbNnzFUAX5Wrc4q1fs72j54BwDwFYtBxX6SyspKRUZGqqKigvlGANCFHE5Dc97Yqv9uzZfNatFj1w7XtAzPPwFqW165rnvmS9U2OnTt6J7689XDPOIHLJjIbpfCwlx/rq6WQk99fPlLa3L00Lu7lBgZpJX3X6hAvxNnytgb7Aqb73qs6rnVCg0w/yh0d9HkcGrc/BUqrW7Qv24erYvT47/9TtBzqw/qj+/tUYCfVe/8bIIG94g0O9JZ+dvy/Xp8RZaSooK14t6JbjmHCQA609l0HvwqCgDgFpxOQw+8tV3/3ZovP6tFT90w0isKI0kanhylJ28YIatFemPjET35SdsHMwBnq77JoadXulYZ/ezCPicVRjg9P5u19Xj4JVvyTU7jGbbllevPy/ZKkn47daDHFUaS9NOJfZQYGaSj5bV6bvVBs+MAgFujNAIAmM4wDM17d6cWbzoiq0V64voRmjLk1KdieqJLBsbrD9NcW6kf+3i/Pt1XbHIieIM3Nh5RYWWdEiKCdO2YZLPjeKSrmreofbS7kLlj36KyrlF3vrpZjQ5Dlw1J0A/H9TI7UrsEB9j0wGXpkqR/rDyg4so6kxMBgPuiNAIAmMowDP3xvT36z5euGUaPXZuhy4d652mXPxzXSz8clyLDkH7x+lYdOc7pPWi/+iaHnv7UtWrtdlYZtduwnpFKiw1VXaNTH+1ixs2pGIahuW/vUF5ZrXp2C9YjHr7N9srhPZSRHKWaBof+zupPADglSiMAgGkMw9BfP9yn5z8/JEl6ZMZQTR/hHVvSTuW3VwzS8J6RKq9p1M9e2az6JofZkeChXt+Qp/yKOsWFB2omq4zazWKxaFqGa4vaO5yidkqvrs/Te9sL5Ge16O/Xj1BksL/Zkc6JxWLRr6a4Vhu9uj5Xucco8QGgLZRGAADT/GPlAf2jeR7LH6YN1swxKSYn6nyBfjY99YORigrx1/YjFfrTe3vMjgQPVPu11RF3XdyXQb7nqGWL2ufZpcovrzU5jfvZW1ip3/9vlyTpl1MGaERKN5MTdYzxfWJ0Qb9YNTkNLVix3+w4AOCWKI0AAKZYtC5Xf/1wnyTp15cP1KzxqeYG6kI9u4VowcwMSdLLaw9r1f4ScwPB47y8NkclVfXq2S3YJ8rWztYrJlSZadEyDOmtTUfMjuNW7PVNuuOVzapvcuqiAd31o/N7mx2pQ90/eYAk1yqz7OIqk9MAgPuhNAIAdLn3dxTo10t2SJLuvKivbvuOd/0QciYuHBCnmyekSpJ++eY2ldc0mBsIHqOqrlFPr3Kt0Lv7kn4K8OPbuY7QssVv8aYjcjoNk9O4B8Mw9Ot3duhAiV3xEYF69NoMWa2eO8eoLcN6Rum7g+JlGGpd+QoA+ArfZQAAutTqrBLd/doWGYZ0Q2aK7r20v9mRTPOrKenq3T1URZX1mvffXWbHgYd4/vNDKq9pVO/uoa3bqnDuLhuSqLBAP+WW1ejLQ8fMjuMWXtuQpyVb82WzWvT360cqOjTA7Eid4o6L+kqS/rs1X3llzDYCgK+jNAIAdJmteeX6yb83qdFhaOrQRD08bYhHn75zroIDbHrs2gzZrBa9uy1f/9uWb3YkuLnj9gY9t9o1OH7Od/vLz8a3ch0lOMCm7w13DcRevJEtarvyK/TQu64y+/7JAzQ2LdrkRJ0nIzlK5/eNlcNp6J+fsdoIAL6O7zQAAF0iu7hKN7+wXjUNDl3QL1aPzRwum5dtc2iPjOSo1t9y/+7dXWxTw2kt/OyAquubNDAxQpcPSTQ7jtdp2aL2/o4CVdQ2mpzGPJV1jbrjlc1qaHLqkvQ4/fgC799C3PJ1+I2NR1RcVWdyGgBwH5RGAIBOd+R4jX743HqV1zRqeHKUFv5wlAL9OO2pxZ0X9VW/uDAdszfokQ/2mh0Hbqqosk4vrcmRJN13aX+vmy3jDob3jFT/+DDVNzl9duWfYRh64K3tyjlWo6SoYD167XCf+G9tXO9oZSRHqaHJqVe+zDU7DgC4DUojAECnOlZdr1nPr1dhZZ36xoXpxZvHKDTQz+xYbiXAz6o/XTVUkmuGyIacMpMTwR099tF+1TU6NapXN12cHmd2HK9ksVh07WjXaqPXNuTKMHxvIPZLa3L0/o5C+dssevKGEYoK8c45Rt9ksVh0y/lpkqRX1h1WfZPD5EQA4B4ojQAAnaa6vkk3v7BBB0vtSooK1r9vHatuXjpI9VyNTYvWzOYfVn/9zg41NDlNTgR3sqegUm9sypMkPXj5QJ+eBdbZZozsqQA/q3YerdSWvHKz43SpjTll+tP7eyS5/jsbkdLN5ERd67IhCUqICFJpdYOWbiswOw4AuAVKIwBAp2hocur2/2zSjqMVig4N0Mu3jlViZLDZsdzaA5elKzo0QPuLqvXc5wfNjgM3Mv+DvTIMaerQRI3q5Vs/yHe16NAAXTHMNS/qP2sPm5ym6xRW1Omn/9ncelDBzRNSzY7U5fxtVt04vpck6YU1h3xypRkAfBOlEQCgwxmGoQfe3q7VWaUKCbDpxdlj1Kd7mNmx3F630AD9+vKBkqQnP8lWUSXDWCF9nlWiz/aXyN9m0S+nDDA7jk+YNT5VkrR0e4GOVdebG6YL1DU69JN/b1Rpdb3SE8L1l+8P89nVbDeMTVGgj640A4C2UBoBADrc/320T29vPiqb1aKnfjBSw3pGmR3JY8wYmaQRKVGqaXDoL8v2mR0HbuCvH7r+O7hxXKp6xYSanMY3ZCRHaVjPSDU4nHp9Y57ZcTqVYRj69Ts7te1IhaJC/PXMjaN9eu5ct9AATW1eafb6eu9+7QHgTFAaAQA61H++PKynPj0gSZp/1VBdNICBvWfDYrHooe8NliS9tfmItvGbbp+3v6haEUF+uuvivmZH8Sk3jnNtU3rly1w5nN67TemlNTl6a/MRWS3Sk9ePVEpMiNmRTHfdmBRJ0v+256u6vsnkNABgLkojAECH+WhXoeb9d6ck6Z5J/XTtmGSTE3mmjOQozRiRJEn6w9LdzNWA7ps8gCHyXex7w3soKsRfR8tr9cneYrPjdIpV+0v08HtfDb4+v1+syYncw5jUburdPVQ1DQ79b1u+2XEAwFSURgCADrE597h+/toWOQ3pujHJuvuSfmZH8mi/nJKuYH+bNh0+rnf5ocWnpSeE6weZvcyO4XOC/G2tJxq+uOaQyWk63t7CSt3xymY5nIZmjEzSrc3HzcO14vO65l96vLY+1+Q0AGAuSiMAwDnLKbXr1hc3qK7RqYsGdNcfpw/x2SGqHSUhMkg/u7CPJNdMm/omh8mJ0JW25R1v/fO87w2Uzcrnkxl+OK6XbFaLvsg+pp1HK8yO02GKK+t0ywsbVF3fpHG9o/XIDN8dfH0qV4/sKX+bRduOVGhfYZXZcQDANJRGAIBzUlHbqFte2qDjNY0a1jNST94wUn42/vfSEX50QW/FhQfqyPFaLVrHb7t9hcNp6OGle1r/PiIl2sQ0vi05OkRTh7qGIj+7+qDJaTpGTUOTbn1po/Ir6tS7e6gW/nCUAvz4mv1NMWGBmtjfNZPvv1uPmpwGAMzD/yEAAO3W5HDqzkWbdbDErsTIID03y7dP3elowQE23TOpvyTp759kq6qu0eRE6ArPrT6oXfmVZsdAsx9/p7ckaen2Ah05XmNymnPT5HDq7te2asfRCkWHBuiFm8coKoRZWacyfUQPSdJ/t+YzWw6Az6I0AgC025/e36PVWaUK8rfq2VmjFRcRZHYkr3Pt6J7qHRuqMnuDnv3MO1Y64NSyi6v16PL9ZsfA1wxJitT5fWPlcBp6brXnzjYyDEO/fmenlu8uUoCfVc/OGqVeMaFmx3JrkwbGKzTApqPltdp0+Pi33wEAvBClEQCgXV5dn6sXvsiRJP3t2gwNSYo0N5CX8rNZ9cspAyRJz64+pOKqOpMTobM4nIZ++eY2NTQ5dR6nWLmVn0x0rTZ6dX2uiis983PwLx/u0+sb82S1SE9cN0KjerHt8dsE+ds0eUiCJNdqIwDwRZRGAICztiGnTL9dslOSNOe7/XVZ88wPdI7JgxOUkRyl2kaH/r4i2+w46CQvfHFIm3PLFRbop4evHGx2HHzN+X1jNTIlSvVNTi1c5Xkr/p5bfVBPrzwgSfp/Vw3VlOYiBN9uekaSJGnp9nw1OpwmpwGArkdpBAA4KyVV9brjlc1qchq6Ylii7rq4r9mRvJ7FYtEDl6VLcq10OFRqNzkROtrewkr99cN9kqRfTx2oxKhgkxPh6ywWi37xXdd8sVfWHfao1UZvbTqiP77nGqx+/+QBum5sismJPMuEPjGKDQvQ8ZpGrTtYZnYcAOhylEYAgDPmcBq6+7UtKq6qV9+4MP35ao5p7irjesfowgHd1eQ09OhH+8yOgw5kr2/SHa9sVn2TUxcO6K7rxiSbHQltOL9vrEb16qb6Jqf+0bxqx90t3Z6v+9/cJkm69fw0/ezCPiYn8jx+Nqu+OyhekrRsV4HJaQCg61EaAQDO2N+W79eaA8cUEmDTwh+O5KS0LvbLya7VRku3F2hXfoXJadARDMPQb5fs1IESu+IjAvXoNcMpYt2UxWLRnObVRv/58rDbr/j7YEeB7n5tq5yGdM2onvr15QP5b6udJg92bef7aFeRnE5OUQPgWyiNAABnZHVWiZ781DVP55Grh6lvXLjJiXzPoB4R+t5w1xHQ//chq428weJNR/T2lqOtw4ljwgLNjoTTOK9vbOuKv0c+2GN2nFP6aFeh7np1ixxOQzNGJOmRq4fJaqUwaq8JfWIVHuin4qp6bckrNzsOAHQpSiMAwLcqr2nQfYtdWxx+kJmiK5uLC3S9Od/tL5vVok/3lWhDDvM1PNnWvPLWgfL3XjpAmb1jTE6EM/Hg5QNltUgf7irSuoPHzI5zkk/2FumORa65c1cO76G/XjNcNgqjcxLgZ9XFA+MkSR/uKjQ5DQB0LUojAMBpGYahXy/ZqaLKevWODdVvpg4yO5JPS4sN1bWjXTNv/rJsrwyDrRKe6Gh5rX700kbVNzl1cXqcbp/IrBlP0T8+vHWY9EPv7nKrE7Xe31Ggn/x7kxodhqYOTdRj11IYdZQpzVvUlu0s5OsuAJ9CaQQAOK13t+Xrve0Fslkt+tvMDAUH2MyO5PN+fklfBfhZtSHnuFbuLzE7Ds5SRU2jbn1xg0qr65WeEK4nrh/B1iEPc+93+6tbiL/2FlbpudWHzI4jSXpjY57uXLTZVRgNS9SC6zLkZ+Nb/Y4ycUB3BfpZlVtWo+ziarPjAECX4f8kAIBTKqyo02+at8/8/OJ+Gp4cZW4gSJISI4N10/heklyzjRjM6jmq65t00wvrtbewSt3DA/X8zWMUxkB5jxMTFqhfN6+6fHzFfh0+Zu5Q7H99fki/fHO7nIZ03ZhkPXHdCPlTGHWokAA/jWveQvrpvmKT0wBA1+H/JgCAU/rD0l2qqmvS8J6RuuMits+4k9sv7KuwQD/tyq/U+zs5BtoTVNc36UcvbdDWvHJFhfjrP7dmKikq2OxYaKerRyZpQp8Y1TU6df/i7WoyYZuaYRj62/L9+sPS3ZKk2y5I0/wZQ9mS1kkuGtBdkvTpXlZ4AvAdlEYAgDZ9urdY7+8olM1q0fwZw9jm4GaiQwP0owvSJEmPfbTflB9YcebKaxr0g+fW6cuDZQoL9NNLs8dqQAInEHoyi8Wi+TOGKizQT+tzyvT3T7K79OPXNzl07xvb9PiKLEmuIfkPXj5QFguFUWe5cIBrGPaGnDJV1TWanAYAugY/AQAATlLb4NC8d13b0m45L1WDekSYnAht+dEFvRUdGqCDpXa9tfmI2XFwCjmldn1/4VptyytXtxB/Lbotk62eXqJXTKj+dNUQSdLfP8nSmgOlXfJxy2sadOPz6/X2lqOyWS36f1cN1c8v6Udh1MlSY0OVFhuqJqehL7K75rUGALNRGgEATvLkp1nKK6tVj8gg3TOpv9lxcAphgX762YWubYMLPs5SXaPD5ET4ps/2l2jaU18ou7haCRFBeuMn4zWsZ5TZsdCBpmUk6ZpRPeU0pJ+9slkHSjp3SPLOoxW68skvtP6Qa9XaCzeP0Q2ZKZ36MfGVC5u3qK3cxxY1AL6B0ggAcIKDJdV65rODkqTfXTlYoQzpdWs/HNdLiZFBKqio03++PGx2HDSrb3LoT+/t1qx/rVdFbaNGpETp3TvPU794tqR5oz9MG6KM5CiV1zRq9guuk/E6mmEYem19rmY8vUa5ZTXq2S1Yb90+Qd/p373DPxZOrWWL2qf7imUYHEIAwPtRGgEATvDnZXvV6DB00YDuunRwgtlx8C2C/G36+SX9JEn/WHlA1fVNJifCmgOlmvrE53q2+Sj2H2Sm6NXbxikuIsjkZOgswQE2PXfTaCVHByu3rEbXP/OlCivqOuzxy+wNuvu1rXrg7R1qaHLqkvQ4Lb3rfOZimSAzLVqBflYVVdYrq7hzV5UBgDugNAIAtFp/qEwf7iqS1SI9ePlAs+PgDF0zqqfSYkNVZm/Q881FBbre3sJK/fTfm3TDs+uUXVyt2LAAPTdrtP501VAF+dvMjodOFhsWqJdmj1VCRJCyiqt1zT/XnPNWNcMwtHR7vr772Cq9uy1fVov0yykD9Oys0YoKCeig5DgbQf42jUmNliStYa4RAB9AaQQAkOT64eT/vb9HknTd2BS20XgQP5tVc77rmj317OqDOm5vMDmR73A4DX26r1g/emmjpixYrWW7CmW1SDeN76UVcy7UpEHxZkdEF+rdPUyLfzpevWJClFdWq+/9/XO9uelIu7Yx7c6v1M0vbNCdi7bomL1BA+LD9fbPztPPLuwrq5WB12aa0DdGkvTFgWMmJwGAzsegCgCAJOmj3UXamleukACb7pnUz+w4OEtThybq6ZUHtLugUk+vOsBKsU7kdBradqRcK/YUa8nWozpyvLb1fVOHJuruSf3Un9LVZyVHh2jxT8fr569u0ZcHy3Tf4m16e/MR3T95gEakdDvtfQ3D0JcHy/TimkP6aHeRDEPyt1n0swv76o6L+irAj9/3uoMJfWIl7dOXB4+pyeGUn43XBYD3ojQCAMgwDD3+cZYk6Zbz0hQXzuwVT2O1WnT/5AGa/eIGvbQmR7ecl6aESF7HjlBaXa+dRyu0K79Su/IrtCHnuEqqvhp0HBHkp++PStYNmSnqGxdmYlK4i7jwIL3yo3F6emW2Hl+RpTUHjumqf6zRoMQIXTYkQUN6RiolOkRWi0XVdU3KLqnSltxyfby7SPlfm4X0veE9dO93+ys1NtTEZ4NvGpoUqfAgP1XVNWlnfqUykqPMjgQAnYbSCACgD3cVaXdBpcIC/XTr+Wlmx0E7XTigu0b36qaNh4/riU+y9P+uGmp2JI9iGIbyK+q+Koia/1lYefJA47BAP00c0F2XDorX5MEJzCzCSWxWi+68uJ+mZSTp8RVZemfLUe0uqNTugsrT3i8kwKarRiTppgmprFhzUzarReN6x2j57iKtOVBKaQTAq1EaAYCPczoNPb7Ctcro5gmp6hbKcFVPZbFY9Msp6br2n2v1xoY8/fiC3qxQOAXDMHTkeK225JW3lkM78ytUXtN40rUWi5QWG6rBPSI1pEeEhvaM1Ohe0WwVwhlJjg7R/10zXA9ePlAf7irU6qwSHSi2K7+8VrJIgX429e4eqgHx4bpwQHed1zeWEtIDnNenuTTKPqafXdjX7DgA0GkojQDAx63cX6w9zauMfnQBq4w83di0aF04oLtW7ivR3z7er8evG2F2JLfgdBramV+hz7NLtflwubbmHVdp9ckDw/2sFvWLD9eQHhEa3CNCQ5IiNTAxQqGBfMuEcxMdGqDrx6bo+rEpZkdBB5jQN1aStCGnTPVNDgX6UfQB8E58BwQAPu6Zzw5Kkm7ITOEIZy9x36UDtHJfid7dlq+ffKePBvWIMDuSKarrm/TJ3mKt3Fusz7JKTiqJ/G0WDUp0rRwa0iNSg3tEqn9CGD/8AfhW/eLCFBMaoGP2Bu08WqFRvaLNjgQAnYLSCAB82PYj5fryYJn8rBbdPCHV7DjoIEOSIjV1WKLe216gh5fu1qLbMmWx+MYR3U0Opz7LKtE7W/K1fHeh6hqdre8LDbBpQt9YZaZFa0RKlAb3iGQbEIB2sVgsGp3aTR/uKtL6Q8cpjQB4LUojAPBhz64+JMl1Qk+PqGCT06AjPTAlXR/vLtLag8f0wc5CXT400exInaq0ul6vb8jTK18ePuH0qdSYEF06OEEX9u+u0anMIQLQccakRuvDXUXamFMmqY/ZcQCgU1AaAYCPyi+v1fs7CiRJt13Q2+Q06GjJ0SH6ycQ+emJFlv703h5dNCBOwQHet6omv7xWT688oNc35KnB4VpV1C3EX9NHJGl6RpKG9Yz0mVVWALrWmFTX6qKNh4/L6TRktfK1BoD3oTQCAB/16vpcOZyGxvWO9tmZN97u9ol99NamIzpaXqunVx3QnO/2NztShzlyvEb/WHlAizfmqdFhSJKG94zUrPGpmjoskW1nADrd4B4RCgmwqaK2UfuLq5SewP9LAXgf1mgDgA9qdDj12oY8SdIPx/UyOQ06S3CATb+eOlCStHDVAeWV1Zic6NxV1jXqT+/t1kX/t1KL1uWq0eEqPl+9bZz+e+f5unpUTwojAF3Cz2bVyJRukqQNOcdNTgMAnYPSCAB80Ee7ilRSVa/YsEBdOijB7DjoRJcNSdD43jFqaHLqwXd2yDAMsyO1i8Np6NX1ubroryv17OpDanQYGt87Rq//eJxe+/F4je8TY3ZEAD5odGpzaXSozOQkANA52J4GAD7oP18eliRdNyaZwcBezmKx6E9XDdFlj6/W6qxSLd54RNeOSTY71lnZlleuB9/ZoV35lZKk3t1D9dsrBumiAXEmJwPg68Y2zzXakENpBMA78ZMCAPiYnFK71h48JqtFuj4zxew46AK9u4fp3ktd84wefm+3Cr92upg7q2lo0h+X7tZV//hCu/IrFRHkp3lXDNKH93yHwgiAW8hIiZLNalFBRZ0KKmrNjgMAHY7SCAB8zNubj0iSLujXXUlRwSanQVe55bw0De8Zqaq6Jv1miftvU/siu1STF3ym5z4/JKchTc/ooU/vu1C3nJ8mfxvfvgBwDyEBfhoQHy5J2ppbbm4YAOgEfNcFAD7E6TT01uajkqSrR/U0OQ26kp/Nqr98f7j8bRZ9vKdYb246YnakNlXWNeqXb27TD55bp7yyWvWIDNILN4/RgutGKCYs0Ox4AHCSjJQoSdKWvHJTcwBAZ6A0AgAfsu5QmY6W1yo80E+XDoo3Ow662ICEcN0zybVNbd5/dym7uMrkRCdanVWiyX/7TG9sPCKLRZo1vpc+mjNRF6WzFQ2A+xqRHCWJlUYAvBOlEQD4kLeat6ZNHZbIseQ+6qcT++i8vjGqbXTojle2qLbBYXYk2etdW+ZufH69CirqlBoTojd+Ml5/mDZEYYGc2QHAvY1oXmm0/Wi5mhxOc8MAQAejNAIAH1Hb4NAHOwoksTXNl9msFv1tZoZiwwK0r6hK97+5zdT5RusPlemyx1frP1/mSpJuGt9L7999gcY0n0gEAO6ud2yYwoP8VNfo1N5C91rBCQDnitIIAHzEyn3Fsjc41LNbsEb36mZ2HJgoLjxIT94wUn5Wi5ZuL9CCj7O6PENdo0N/em+3Zj6zVrllNUqKCtYrP8rU76cNUUgAq4sAeA6r1aKMli1qzDUC4GUojQDARyxtXmU0dViiLBaLyWlgtnG9Y/Snq4ZIkh5fkaXX1ud22cfelleuK/7+uZ5dfUiGIc0cnaxl91yg8/rGdlkGAOhIlEYAvJVblEZPPfWUUlNTFRQUpMzMTK1fv/601y9evFjp6ekKCgrS0KFD9f7775/y2p/+9KeyWCxasGBBB6cGAM9R09CkT/YUS5KuGNrD5DRwFzPHpOinE/tIkua+s6PTT1Srrm/S7/+3S1f94wtlF1ere3ig/nXzaP35+8MUHuTfqR8bADpTS2m0Jfe4uUEAoIOZXhq9/vrrmjNnjh566CFt3rxZw4cP1+TJk1VcXNzm9WvWrNH111+vW2+9VVu2bNH06dM1ffp07dy586Rr33nnHX355Zfq0YMfkAD4tk/3lqi20aGU6BANSYowOw7cyK+mDNBN43vJMKRfvrlNL35xqMM/hmEY+mBHgSY9ukovfJEjpyFNy+ih5b/4ji5O5xQ/AJ6vpTQ6UGJXVV2juWEAoAOZXho99thjuu222zR79mwNGjRICxcuVEhIiP71r3+1ef3jjz+uKVOm6P7779fAgQP18MMPa+TIkXryySdPuO7o0aO666679Morr8jfn99eAvBt7+3Il8TWNJzMYrHooe8N1g/HpchpSL/732499N+damjqmBOA9hRUavaLG3T7K5tVWFmnXjEhevmWsXr8uhGKCgnokI8BAGaLCQtUj8ggSdKu/EqT0wBAxzG1NGpoaNCmTZs0adKk1tusVqsmTZqktWvXtnmftWvXnnC9JE2ePPmE651Op2688Ubdf//9Gjx48LfmqK+vV2Vl5QlvAOAtahqa9Mle1+rNqUMTTU4Dd2S1WvTwtCF64LJ0SdJLaw/rqn98ob2F7f//4eFjdt3z2hZd/sRqrdxXIn+bRXdd3Fcf3vMdfad/946KDgBuY0hSpCRp59EKk5MAQMcx9XiS0tJSORwOxcefuDQ9Pj5ee/fubfM+hYWFbV5fWFjY+vc///nP8vPz089//vMzyjF//nz9/ve/P8v0AOAZPs8qVV2jUz27BWtwD7amoW0Wi0U/ndhHabGheuCt7dqVX6krnvhc14zuqTsu6que3UK+9TGaHE6tPXhM/157WB/vKZLTcN0+dWii7r20v3p3D+vkZwEA5hmaFKmPdhdpB6URAC/idWfabtq0SY8//rg2b958xlsw5s6dqzlz5rT+vbKyUsnJyZ0VEQC61Md7iiRJkwbGszUN32ry4ASNSInSb97ZqY92F+nV9Xl6fUOexvWO0aWD4jUkKVIp0SEK9Lepvsmhoop67Sms1MacMn2yt1il1Q2tj3XhgO6697sDNLRnpInPCAC6xpDmr3WURgC8iamlUWxsrGw2m4qKik64vaioSAkJCW3eJyEh4bTXr169WsXFxUpJSWl9v8Ph0L333qsFCxYoJyfnpMcMDAxUYGDgOT4bAHA/DqehFc2npn13EAOHcWbiwoP0zKzR2pBTpgUf79cX2ce05oDr7dtEhfjrimGJuml8qvrFh3dBWgBwD0Obt6cdKrWrur5JYYFe9/t5AD7I1K9kAQEBGjVqlFasWKHp06dLcs0jWrFihe6888427zN+/HitWLFC99xzT+tty5cv1/jx4yVJN954Y5szj2688UbNnj27U54HALirrXnlOmZvUHiQn8amRZsdBx5mTGq0XvnROOWV1Wjp9gJtyCnTnoJKFVTUSZIsFik2LFBpMaEa2aubxveJ0YQ+MfK3mX7OBgB0udiwQCVGBqmgok67jlYos3eM2ZEA4JyZXn/PmTNHN910k0aPHq2xY8dqwYIFstvtrQXPrFmzlJSUpPnz50uS7r77bk2cOFGPPvqopk6dqtdee00bN27UM888I0mKiYlRTMyJX6D9/f2VkJCgAQMGdO2TAwCTLd/tWpl50YA4fpBHuyVHh+j2C/vodvWRJBmGoUaHIatF8uO/KwBoNSQpUgUVddpBaQTAS5heGs2cOVMlJSWaN2+eCgsLlZGRoWXLlrUOu87NzZXV+tU3pBMmTNCiRYv0m9/8Rg8++KD69eunJUuWaMiQIWY9BQBwW63zjNiahg5ksVgU4Md8LAD4pqFJkVq+u4gT1AB4DdNLI0m68847T7kdbeXKlSfdds011+iaa64548dva44RAHi7vLIaZRdXy2a1aCJHnAMA0Ola5hoxDBuAt2BNOQB4qVX7SyRJI1OiFBnsb3IaAAC83+CkCEnSwVK7ahscJqcBgHNHaQQAXuqz5tKIVUYAAHSNuPAgxYYFyDCkfUVVZscBgHNGaQQAXqjR4Ww9Hv07lEYAAHSZgYmu1UZ7CypNTgIA547SCAC80JbcclXXNyk6NEBDekSaHQcAAJ+RnhAuSdpbyEojAJ6P0ggAvNCq/cWSpPP7xspq5ZQrAAC6SnqCa6XRblYaAfAClEYA4IU+218qiXlGAAB0ta9vTzMMw+Q0AHBuKI0AwMsctzdoZ77rqN8L+sWanAYAAN/SJy5UflaLKuualF9RZ3YcADgnlEYA4GXWHTomw5D6xYUpLiLI7DgAAPiUQD+b+nQPk8QwbACej9IIALzM2uZT08b3iTE5CQAAvmlgomsY9h5KIwAejtIIALzM2oOu0mgCpREAAKZIb55rtIcT1AB4OEojAPAiJVX12l9ULYtFykyjNAIAwAxfH4YNAJ6M0ggAvMiXzauM0hMi1C00wOQ0AAD4poEJru1ph0rtqmt0mJwGANqP0ggAvMiaA2xNAwDAbN3DAxUdGiCnIe0vYosaAM9FaQQAXqRlpdH43pRGAACYxWKxMAwbgFegNAIAL1FSVa9DpXZZLNKYtGiz4wAA4NPSE5qHYRew0giA56I0AgAvselwmSRpQHy4IoP9TU4DAIBvaxmGzUojAJ6M0ggAvMSGnOOSpNGp3UxOAgAA0puHYe8rqpJhGCanAYD2oTQCAC+x8XBzadSLrWkAAJitb1yYLBapvKZRpdUNZscBgHahNAIAL1Db4NCuoxWSpFG9WGkEAIDZgvxtSokOkSRlFTPXCIBnojQCAC+w7Ui5mpyG4iMC1bNbsNlxAACApH5xYZKkrKJqk5MAQPtQGgGAF9j0ta1pFovF5DQAAECS+sW75hqx0giAp6I0AgAvsCHHdXIaW9MAAHAfrDQC4OkojQDAwzmdhjY3rzQak8oQbAAA3EW/ONdKo+xiSiMAnonSCAA8XFZxtSrrmhQSYNPAxHCz4wAAgGZ94kIlScfsDTpWXW9yGgA4e5RGAODhNh52bU3LSI6Sn40v6wAAuIuQAD8lR7sOqMhitREAD8RPFwDg4TbltAzBZp4RAADupmWLGqURAE9EaQQAHm5j8zyjUcwzAgDA7bQMw84u4gQ1AJ6H0ggAPNix6nrlltVIcm1PAwAA7qVfvGul0X5OUAPggSiNAMCDbT9aIUnqHRuqyGB/k9MAAIBvallpxPY0AJ6I0ggAPNj2PFdpNJxVRgAAuKU+zaVRaXW9jtsbTE4DAGeH0ggAPNi2I+WSpGE9I80NAgAA2hQW6KekKNcJatklrDYC4FkojQDAQxmGoe2tpVGUqVkAAMCp9Yt3rTbazzBsAB6G0ggAPFR+RZ1KqxvkZ7VocI8Is+MAAIBTaJ1rxDBsAB6G0ggAPNT2vHJJ0oCEcAX528wNAwAATqlfnOsEtWyGYQPwMJRGAOChth1xDcFmaxoAAO6tb3zLCWpsTwPgWSiNAMBDbWteaTScIdgAALi1PrGu0qiosl7V9U0mpwGAM0dpBAAeyOk0tPMoK40AAPAEkSH+ig0LkCQdKrGbnAYAzhylEQB4oIOldlXVNynI36r+zUveAQCA++rdvNroYClzjQB4DkojAPBA24+US5KG9IiUn40v5QAAuLve3UMlSQcYhg3Ag/CTBgB4oJZ5RmxNAwDAM7SWRqVsTwPgOSiNAMADtZycNjyZIdgAAHiCPt2bt6cx0wiAB6E0AgAP0+Rwak9BpSRpaBKlEQAAnqB3c2l0qLRaTqdhchoAODOURgDgYQ6W2lXf5FRogE2pMaFmxwEAAGcguVuw/G0W1TU6VVBZZ3YcADgjlEYA4GF25bu2pg1MjJDVajE5DQAAOBN+NqtSokMkMQwbgOegNAIAD7PrqGtr2uAeESYnAQAAZ+OruUaURgA8A6URAHiY3QUtpRHzjAAA8CQtc40OcoIaAA9BaQQAHsQwDO3Kd5VGg1hpBACAR+nd3TWLkBPUAHgKSiMA8CBHy2tVUdsoP6tF/eLDzI4DAADOQp/W0ojtaQA8A6URAHiQllVG/eLDFehnMzkNAAA4G71jXb/wya+oU01Dk8lpAODbtas0OnjwYEfnAACcgZbSiCHYAAB4nm6hAYoODZDEFjUAnqFdpVHfvn110UUX6T//+Y/q6uo6OhMA4BR2t8wzSqQ0AgDAE/WObd6ixjBsAB6gXaXR5s2bNWzYMM2ZM0cJCQn6yU9+ovXr13d0NgDAN+zOr5DESiMAADxVb+YaAfAg7SqNMjIy9Pjjjys/P1//+te/VFBQoPPPP19DhgzRY489ppKSko7OCQA+77i9QfkVrtWdAymNAADwSL27u+YasT0NgCc4p0HYfn5+mjFjhhYvXqw///nPys7O1n333afk5GTNmjVLBQUFHZUTAHxeyzyjlOgQRQT5m5wGAAC0R5/m0ugAK40AeIBzKo02btyon/3sZ0pMTNRjjz2m++67TwcOHNDy5cuVn5+vadOmdVROAPB5uwvYmgYAgKdLiw2RJOWU2mUYhslpAOD0/Npzp8cee0wvvPCC9u3bp8svv1wvv/yyLr/8clmtrg4qLS1NL774olJTUzsyKwD4NE5OAwDA8yVHh8hqkewNDpVU1ysuPMjsSABwSu0qjZ5++mndcsstuvnmm5WYmNjmNXFxcXr++efPKRwA4CutJ6dRGgEA4LEC/WzqERWsI8drlVNaQ2kEwK21qzRavny5UlJSWlcWtTAMQ3l5eUpJSVFAQIBuuummDgkJAL6urtHRejTvwERKIwAAPFlabGhzaWTX2LRos+MAwCm1a6ZRnz59VFpaetLtZWVlSktLO+dQAIATZRdXy+E0FBnsr4QIfiMJAIAnS40JlSQdOsYJagDcW7tKo1MNbKuurlZQED/MAEBH21dYJUkakBAui8VichoAAHAuUmNdpVFOKaURAPd2VtvT5syZI0myWCyaN2+eQkJCWt/ncDi0bt06ZWRkdGhAAIC0r8hVGg1MCDc5CQAAOFctJ6gdojQC4ObOaqXRli1btGXLFhmGoR07drT+fcuWLdq7d6+GDx+uF1988axDPPXUU0pNTVVQUJAyMzO1fv36016/ePFipaenKygoSEOHDtX7779/wvt/97vfKT09XaGhoerWrZsmTZqkdevWnXUuAHAXewpcQ7AHJDDPCAAAT9eyPe3wsZpT7uIAAHdwViuNPv30U0nS7Nmz9fjjjysi4tx/eHn99dc1Z84cLVy4UJmZmVqwYIEmT56sffv2KS4u7qTr16xZo+uvv17z58/XFVdcoUWLFmn69OnavHmzhgwZIknq37+/nnzySfXu3Vu1tbX629/+pksvvVTZ2dnq3r37OWcGgK7Wsj0tPZGVRgAAeLrk6BDZrBbVNjpUVFmvhEhGfABwTxbD5Go7MzNTY8aM0ZNPPilJcjqdSk5O1l133aUHHnjgpOtnzpwpu92upUuXtt42btw4ZWRkaOHChW1+jMrKSkVGRurjjz/WJZdc8q2ZWq6vqKjokGIMAM5Fmb1BIx9eLkna+fvJCgts18GXADyJ3S6Fhbn+XF0thYa2/6Ea7Aqb73qs6rnVCg1o/2MB6DgT//qpDh+r0au3jdP4PjFmxwHgQ86m8zjjnzxmzJihF198UREREZoxY8Zpr3377bfP6DEbGhq0adMmzZ07t/U2q9WqSZMmae3atW3eZ+3ata2zlVpMnjxZS5YsOeXHeOaZZxQZGanhw4e3eU19fb3q6+tb/15ZWXlG+QGgK+wtdH1NSo4OpjACAMBLpMaE6vCxGuUcs1MaAXBbZ/zTR2RkZOuJPZGRkR3ywUtLS+VwOBQfH3/C7fHx8dq7d2+b9yksLGzz+sLCwhNuW7p0qa677jrV1NQoMTFRy5cvV2xsbJuPOX/+fP3+978/h2cCAJ1nb0Hz1jTmGQEA4DXSYkO1an8JJ6gBcGtnXBq98MILbf7ZXV100UXaunWrSktL9eyzz+raa6/VunXr2pyTNHfu3BNWL1VWVio5Obkr4wLAKbXOM+LkNAAAvEZqDCeoAXB/Z3V6Wova2lrV1NS0/v3w4cNasGCBPvroo7N6nNjYWNlsNhUVFZ1we1FRkRISEtq8T0JCwhldHxoaqr59+2rcuHF6/vnn5efnp+eff77NxwwMDFRERMQJbwDgLvYWsdIIAABvkxrrmi+Wc4zSCID7aldpNG3aNL388suSpPLyco0dO1aPPvqopk2bpqeffvqMHycgIECjRo3SihUrWm9zOp1asWKFxo8f3+Z9xo8ff8L1krR8+fJTXv/1x/363CIA8AROp6H9zSuNBrDSCAAAr5HWXBodPlYjp9PUs4kA4JTaVRpt3rxZF1xwgSTpzTffVEJCgg4fPqyXX35ZTzzxxFk91pw5c/Tss8/qpZde0p49e3T77bfLbrdr9uzZkqRZs2adMCj77rvv1rJly/Too49q7969+t3vfqeNGzfqzjvvlCTZ7XY9+OCD+vLLL3X48GFt2rRJt9xyi44ePaprrrmmPU8XAEyTW1aj2kaHAv2srcvYAQCA50uKCpaf1aL6JqcKKuvMjgMAbWrXMTw1NTUKD3f9xvujjz7SjBkzZLVaNW7cOB0+fPisHmvmzJkqKSnRvHnzVFhYqIyMDC1btqx12HVubq6s1q+6rQkTJmjRokX6zW9+owcffFD9+vXTkiVLNGTIEEmSzWbT3r179dJLL6m0tFQxMTEaM2aMVq9ercGDB7fn6QKAaVpOTusXHyY/W7t6fgAA4Ib8bFalRIfoYKldOaV2JUUFmx0JAE7SrtKob9++WrJkia666ip9+OGH+sUvfiFJKi4ubtc8oDvvvLN1pdA3rVy58qTbrrnmmlOuGgoKCtLbb7991hkAwB3tLWSeEQAA3io1NlQHS+06VGrXeX3bPukZAMzUrl9bz5s3T/fdd59SU1OVmZnZOk/oo48+0ogRIzo0IAD4sr0FnJwGAIC3So1pHobNCWoA3FS7Vhp9//vf1/nnn6+CggINHz689fZLLrlEV111VYeFAwBft7+IIdgAAHirtFjXvEJOUAPgrtpVGklSQkLCScfcjx079pwDAQBc6pscrd9E9o+nNAIAwNukNp+gdoiVRgDcVLtKI7vdrkceeUQrVqxQcXGxnE7nCe8/ePBgh4QDAF+WU1ojpyGFB/kpLjzQ7DgAAKCDtWxPyyurlcNpyGa1mJwIAE7UrtLoRz/6kVatWqUbb7xRiYmJslj44gYAHS2r2LU1rW9cGF9nAQDwQj2ighVgs6rB4VR+ea2So0PMjgQAJ2hXafTBBx/ovffe03nnndfReQAAzbKKqiVJ/eLCTE4CAAA6g81qUUpMiLKLq3Wo1E5pBMDttOv0tG7duik6OrqjswAAvia7uKU0Yp4RAADeqvUENYZhA3BD7SqNHn74Yc2bN081NTUdnQcA0Kx1e1o8K40AAPBWLSeoMQwbgDtq1/a0Rx99VAcOHFB8fLxSU1Pl7+9/wvs3b97cIeEAwFc1Opyt3zyyPQ0AAO/VcoJaDqURADfUrtJo+vTpHRwDAPB1h4/VqNFhKCTAph6RwWbHAQAAnSSteXva4WPs4gDgftpVGj300EMdnQMA8DXZXzs5zcrxuwAAeK2WlUa5ZTVqcjjlZ2vXBBEA6BTt/opUXl6u5557TnPnzlVZWZkk17a0o0ePdlg4APBVLSen9WVrGgAAXi0hIkgBflY1OQ3ll9eZHQcATtCulUbbt2/XpEmTFBkZqZycHN12222Kjo7W22+/rdzcXL388ssdnRMAfEp2CaURAAC+wGq1qFd0iLKKq5VzzK6UmBCzIwFAq3atNJozZ45uvvlmZWVlKSgoqPX2yy+/XJ999lmHhQMAX9Wy0qhfXLjJSQAAQGfr1TrXiGHYANxLu0qjDRs26Cc/+clJtyclJamwsPCcQwGAL3M4DR0oaSmNWGkEAIC3S4t1rS46VMowbADupV2lUWBgoCorK0+6ff/+/erevfs5hwIAX3bkeI3qm5wK8LMqOZol6gAAeDtWGgFwV+0qja688kr94Q9/UGNjoyTJYrEoNzdXv/rVr3T11Vd3aEAA8DUtW9P6dA+TjZPTAADweqnNpVEOpREAN9Ou0ujRRx9VdXW1unfvrtraWk2cOFF9+/ZVeHi4/vSnP3V0RgDwKVnFbE0DAMCX9Goefp1XViuH0zA5DQB8pV2np0VGRmr58uX64osvtG3bNlVXV2vkyJGaNGlSR+cDAJ+TVVwlidIIAABf0SMqWAE2qxocTuWX17I9HYDbOOvSyOl06sUXX9Tbb7+tnJwcWSwWpaWlKSEhQYZhyGJhKwUAnIvslpVG8ZRGAAD4ApvVouToYB0osevwsRpKIwBu46y2pxmGoSuvvFI/+tGPdPToUQ0dOlSDBw/W4cOHdfPNN+uqq67qrJwA4BMMw2gtjfrGhZucBgAAdBXmGgFwR2e10ujFF1/UZ599phUrVuiiiy464X2ffPKJpk+frpdfflmzZs3q0JAA4CvyK+pU0+CQn9XSOt8AAAB4P05QA+COzmql0auvvqoHH3zwpMJIki6++GI98MADeuWVVzosHAD4mqwi1zyjtNhQ+dvadVYBAADwQGmxrl8WHSqtMTkJAHzlrH4i2b59u6ZMmXLK91922WXatm3bOYcCAF/FPCMAAHwTK40AuKOzKo3KysoUHx9/yvfHx8fr+PHj5xwKAHxVVhHzjAAA8EUtM40Ol9XI6TRMTgMALmdVGjkcDvn5nXoMks1mU1NT0zmHAgBflVXs2p7WL46VRgAA+JIeUUHyt1nU0ORUYWWd2XEAQNJZDsI2DEM333yzAgMD23x/fX19h4QCAF9kGIay2J4GAIBP8rNZldwtRAdL7coptatHVLDZkQDg7Eqjm2666Vuv4eQ0AGif4qp6VdU1yWpxDcIGAAC+pVdMc2l0rEYT+pqdBgDOsjR64YUXOisHAPi8lnlGqTGhCvSzmZwGAAB0Ndcw7BKGYQNwG5znDABuIrt5nlEf5hkBAOCTWlYa51AaAXATlEYA4CZa5xlRGgEA4JN6xYRIknJKa0xOAgAulEYA4CYYgg0AgG9LjXGtNDpcZpfTaZicBgAojQDAbWS3rjQKNzkJAAAwQ1K3YNmsFtU1OlVcxcnUAMxHaQQAbuBYdb3K7A2yWKQ+3VlpBACAL/K3WZXcLViSdKiUuUYAzEdpBABuoGVrWs9uwQoO4OQ0AAB8Va+WLWoMwwbgBiiNAMANZLE1DQAASEptGYZ9jGHYAMxHaQQAbiC7qEoSJ6cBAODrWGkEwJ1QGgGAG2hZadSX0ggAAJ+WFusqjZhpBMAdUBoBgBvIpjQCAACSejVvTzt8rEaGYZicBoCvozQCAJNV1DS2HqtLaQQAgG/r2S1EVotU2+hQSfP3BwBgFkojADBZdolrnlFiZJDCg/xNTgMAAMwU4GdVUrdgSQzDBmA+SiMAMFlWEVvTAADAV1Kbh2HnMNcIgMkojQDAZC1DsPvFhZucBAAAuIPW0ogT1ACYjNIIAEzWWhrFs9IIAACcOAwbAMxEaQQAJssucs006sf2NAAAIFYaAXAflEYAYKKqukblV9RJYqYRAABwSY39aqaRYRgmpwHgyyiNAMBEB0pcv0GMDQtUVEiAyWkAAIA7SI4OlsUi2RscKq1uMDsOAB9GaQQAJspuHYLNKiMAAOAS6GdTj8hgSdJhtqgBMBGlEQCYKKu4eZ4RQ7ABAMDXpMa6hmHnMAwbgIkojQDARNlFrDQCAAAnax2GXcpKIwDmoTQCABNlNW9P6xsXbnISAADgTjhBDYA7oDQCAJPUNjiUd9y15JztaQAA4Ot6xbi2px1mexoAE1EaAYBJDpRUyzCkbiH+ignl5DQAAPCV1NivVhoZhmFyGgC+itIIAEzy1clp4bJYLCanAQAA7iQlOkQWi1RV16Qye4PZcQD4KEojADBJy8lpfRiCDQAAviHI36bEiCBJnKAGwDyURgBgkq9WGlEaAQCAk/VqHoZ9mGHYAExCaQQAJmk5OY0h2AAAoC2psa5h2DmllEYAzEFpBAAmqG9ytJ6G0i8u3OQ0AADAHaXGtAzDZnsaAHNQGgGACXJKa+RwGgoP9FN8RKDZcQAAgBtiexoAs1EaAYAJWoZg940P4+Q0AADQptbtaaw0AmASSiMAMEFWEUOwAQDA6fWKdq00qqht1HF7g8lpAPgiSiMAMMFXJ6cxzwgAALQtOMCmhIggSVIOW9QAmMAtSqOnnnpKqampCgoKUmZmptavX3/a6xcvXqz09HQFBQVp6NChev/991vf19jYqF/96lcaOnSoQkND1aNHD82aNUv5+fmd/TQA4Ix9fXsaAADAqfSKcW1RO8wWNQAmML00ev311zVnzhw99NBD2rx5s4YPH67JkyeruLi4zevXrFmj66+/Xrfeequ2bNmi6dOna/r06dq5c6ckqaamRps3b9Zvf/tbbd68WW+//bb27dunK6+8siufFgCcUpPDqUPNR+f27U5pBAAATu2rE9RYaQSg61kMwzDMDJCZmakxY8boySeflCQ5nU4lJyfrrrvu0gMPPHDS9TNnzpTdbtfSpUtbbxs3bpwyMjK0cOHCNj/Ghg0bNHbsWB0+fFgpKSknvb++vl719fWtf6+srFRycrIqKioUERFxrk8RAE5woKRalzy6SsH+Nu36/WRZrQzCBvANdrsU1lwqV1dLoaHtf6gGu8Lmux6rem61QgPa/1gAut4/VmbrL8v2aXpGDy24boTZcQB4gcrKSkVGRp5R52HqSqOGhgZt2rRJkyZNar3NarVq0qRJWrt2bZv3Wbt27QnXS9LkyZNPeb0kVVRUyGKxKCoqqs33z58/X5GRka1vycnJZ/9kAOAMtQzB7hsXRmEEAABOK611pRHb0wB0PVNLo9LSUjkcDsXHx59we3x8vAoLC9u8T2Fh4VldX1dXp1/96le6/vrrT9mgzZ07VxUVFa1veXl57Xg2AHBmspvnGXFyGgAA+Da9mkujw2xPA2ACP7MDdKbGxkZde+21MgxDTz/99CmvCwwMVGBgYBcmA+DLsppPTutDaQQAAL5FyyDs4zWNqqhpVGSIv8mJAPgSU1caxcbGymazqaio6ITbi4qKlJCQ0OZ9EhISzuj6lsLo8OHDWr58ObOJALiN/c3b0/rHh5ucBAAAuLvQQD/Fhbt+wc0wbABdzdTSKCAgQKNGjdKKFStab3M6nVqxYoXGjx/f5n3Gjx9/wvWStHz58hOubymMsrKy9PHHHysmJqZzngAAnCWH09CBEldpxPY0AABwJjhBDYBZTN+eNmfOHN10000aPXq0xo4dqwULFshut2v27NmSpFmzZikpKUnz58+XJN19992aOHGiHn30UU2dOlWvvfaaNm7cqGeeeUaSqzD6/ve/r82bN2vp0qVyOByt846io6MVEBBgzhMFAEl5ZTVqaHIq0M+q5OgQs+MAAAAP0CsmROtzynSYYdgAupjppdHMmTNVUlKiefPmqbCwUBkZGVq2bFnrsOvc3FxZrV8tiJowYYIWLVqk3/zmN3rwwQfVr18/LVmyREOGDJEkHT16VO+++64kKSMj44SP9emnn+rCCy/skucFAG3ZX+Qagt2ne5hsnJwGAADOQGosK40AmMP00kiS7rzzTt15551tvm/lypUn3XbNNdfommuuafP61NRUGYbRkfEAoMO0DMHuH8/WNAAAcGZat6eVUhoB6FqmzjQCAF+T3Vwa9WMINgAAOEMtJ6ixPQ1AV6M0AoAu1LI9jSHYAADgTLWURsfsDaqsazQ5DQBfQmkEAF3E4TRYaQQAAM5aeJC/YsNcB/rkstoIQBeiNAKALnLkeI3qm5wK8LMqhZPTAADAWWiZa3SIuUYAuhClEQB0kawi1yojTk4DAABnq1dzaXSYE9QAdCFKIwDoIi0npzHPCAAAnK3U5rlGh0rZngag61AaAUAXyWoegt0/ntIIAACcnbTuLdvTqk1OAsCXUBoBQBdpWWnUN44h2AAA4Oz0jnX90ukgM40AdCFKIwDoAs6vnZzGSiMAAHC20mJdK43KaxpVZm8wOQ0AX0FpBABd4Gh5rWobHQqwcXIaAAA4e8EBNiVFBUuSDpawRQ1A16A0AoAukFXsmmfUu3uo/Gx86QUAAGevd/Nco4MlbFED0DX4yQUAusD+ouaT0+KZZwQAANqnd/MWtQMMwwbQRSiNAKALZLWURnHMMwIAAO3Tu7vr+4gDxaw0AtA1KI0AoAtkN29PYwg2AABor9btaaw0AtBFKI0AoJM5nYaymk9O6xvH9jQAANA+LSuNco/VqNHhNDkNAF9AaQQAnSy/olY1DQ752yxKjeHkNAAA0D6JEUEK8reqyWkor6zG7DgAfAClEQB0spZVRr1jwzg5DQAAtJvValFarGu1ESeoAegK/PQCAJ0sq8g1z6gv84wAAMA5Yq4RgK5EaQQAnWw/J6cBAIAO0ie2uTRipRGALkBpBACdbH/zSqP0BIZgAwCAc9MyDJvSCEBXoDQCgE7kcBqtpVH/eEojAABwbtieBqArURoBQCfKLatRXaNTQf5W9YoJNTsOAADwcGnN29NKqxtUUdtochoA3o7SCAA60b5C1yqjfnHhslktJqcBAACeLjzIX3HhgZKkgyWsNgLQuSiNAKATtZRGbE0DAAAdpXWLGnONAHQySiMA6ET7iiolMQQbAAB0nNZh2Mw1AtDJKI0AoBPtbV5pNIDSCAAAdJA+zaVRdjGlEYDORWkEAJ2krtGhnFLXsnFKIwAA0FH6xVEaAegalEYA0Emyi6vlNKSokK8GVgIAAJyrfvGu0ijnWI0ampwmpwHgzSiNAKCTtAzBHhAfLouFk9MAAEDHSIgIUlignxxOQznHGIYNoPNQGgFAJ9lfxDwjAADQ8SwWi/o2b1HLKmKLGoDOQ2kEAJ2EIdgAAKCztMw1yiquMjkJAG9GaQQAnaRle1o6pREAAOhgLXONshiGDaATURoBQCeoqGlUYWWdJKl/PKURAADoWP3iXN9fZLM9DUAnojQCgE6wr3meUVJUsMKD/E1OAwAAvE3LTKODpdVqcnCCGoDOQWkEAJ1gX2GlJOYZAQCAzpEUFaxgf5saHYYOl9WYHQeAl6I0AoBO0DIEm61pAACgM1itnKAGoPNRGgFAJ9hd4FppNKhHhMlJAACAt2o5QS2bE9QAdBJKIwDoYA6nob0Frm/eBiVSGgEAgM7RlxPUAHQySiMA6GA5x+yqbXQoyN+qtNhQs+MAAAAv1XKCGtvTAHQWSiMA6GC7811b09ITImSzWkxOAwAAvFXL9rQDJdVyOA2T0wDwRpRGANDB9jTPMxrI1jQAANCJkqNDFOBnVX2TU0eOc4IagI5HaQQAHYwh2AAAoCvYrBb16c4JagA6D6URAHSwlu1pDMEGAACdrWWLGsOwAXQGSiMA6EAlVfUqrqqXxSKlJ4SbHQcAAHi5ltJof1GVyUkAeCNKIwDoQC3zjNJiQhUa6GdyGgAA4O3Sm1c2t3wPAgAdidIIADpQyzyjgcwzAgAAXWBgomtl84GSajU0OU1OA8DbUBoBQAdinhEAAOhKSVHBCg/0U6PD0MFS5hoB6FiURgDQgTg5DQAAdCWLxaL05tVGewuYawSgY1EaAUAHqW1w6GCJ6zd8rDQCAABdJT2hea5RIXONAHQsSiMA6CD7iqrkNKSY0ADFhQeaHQcAAPgIVhoB6CyURgDQQfZ8bWuaxWIxOQ0AAPAVrSuNOEENQAejNAKADrLzaIUktqYBAICulZ7gWmlUXFWvY9X1JqcB4E0ojQCgg+xoLo2G9ow0OQkAAPAloYF+6hUTIknaV8gWNQAdh9IIADpAfZOjdUn4sKQoc8MAAACf07LaaA+lEYAORGkEAB1gX2GVGh2GokL8lRwdbHYcAADgY1rmGu1lrhGADkRpBAAdYPuR5q1pSZEMwQYAAF1uYMsJaqw0AtCBKI0AoAPsaC6NhveMMjcIAADwSS0rjfYXVanJ4TQ5DQBvQWkEAB1g25FySQzBBgAA5kiJDlFIgE31TU7lHLObHQeAl6A0AoBzVNvgUFZxtSRpGKURAAAwgdVq0YCWYdgFbFED0DEojQDgHO0uqJTDaah7eKASIoLMjgMAAHxUyxa1PQzDBtBBKI0A4Bxtb96aNowh2AAAwESDe7hKo535lEYAOobppdFTTz2l1NRUBQUFKTMzU+vXrz/t9YsXL1Z6erqCgoI0dOhQvf/++ye8/+2339all16qmJgYWSwWbd26tRPTA8BXQ7CZZwQAAMw0JMn1vcjOoxUyDMPkNAC8gaml0euvv645c+booYce0ubNmzV8+HBNnjxZxcXFbV6/Zs0aXX/99br11lu1ZcsWTZ8+XdOnT9fOnTtbr7Hb7Tr//PP15z//uaueBgAft/0oJ6cBAADzpSeEy89qUZm9QfkVdWbHAeAFTC2NHnvsMd12222aPXu2Bg0apIULFyokJET/+te/2rz+8ccf15QpU3T//fdr4MCBevjhhzVy5Eg9+eSTrdfceOONmjdvniZNmtRVTwOAD6uub9KBEtcQbFYaAQAAMwX529Qv3jUMu2UlNACcC9NKo4aGBm3atOmEcsdqtWrSpElau3Ztm/dZu3btSWXQ5MmTT3n9maqvr1dlZeUJbwBwJlzLv6WkqGDFhgWaHQcAAPi4oUnNc42OUhoBOHemlUalpaVyOByKj48/4fb4+HgVFha2eZ/CwsKzuv5MzZ8/X5GRka1vycnJ5/R4AHxHyxDsoUmsMgIAAOZr+Z5kB6URgA5g+iBsdzB37lxVVFS0vuXl5ZkdCYCH2JJbLkkanhxlag4AAABJGswwbAAdyM+sDxwbGyubzaaioqITbi8qKlJCQkKb90lISDir689UYGCgAgPZVgLg7BiGoc25xyVJI1OizA0DAAAgaVBihGxWi47ZG1RYWafEyGCzIwHwYKatNAoICNCoUaO0YsWK1tucTqdWrFih8ePHt3mf8ePHn3C9JC1fvvyU1wNAZzpaXquiynr5WS0axslpAADADQT529QvLkwSw7ABnDvTVhpJ0pw5c3TTTTdp9OjRGjt2rBYsWCC73a7Zs2dLkmbNmqWkpCTNnz9fknT33Xdr4sSJevTRRzV16lS99tpr2rhxo5555pnWxywrK1Nubq7y8/MlSfv27ZPkWqV0riuSAODrNjdvTRvUI0LBATZzwwAAADQbkhSpvYVV2nG0QpcO5mcgAO1n6kyjmTNn6v/+7/80b948ZWRkaOvWrVq2bFnrsOvc3FwVFBS0Xj9hwgQtWrRIzzzzjIYPH64333xTS5Ys0ZAhQ1qveffddzVixAhNnTpVknTddddpxIgRWrhwYdc+OQBeb/Phlq1p3UxOAgAA8JWWWYtb88pNzQHA81kMpqOdpLKyUpGRkaqoqFBERITZcQC4qWlPfq5tRyr0+HUZmpaRZHYcAN7EbpfCXNtLVF0thYa2/6Ea7Aqb73qs6rnVCg1o/2MB8Aw7j1boir9/rvAgP22bd6msVovZkQC4kbPpPDg9DQDaoa7RoV35lZJYaQQAANzLgIRwBflbVVXXpIOl1WbHAeDBKI0AoB22H6lQk9NQ9/BA9ezGqSQAAMB9+NusGpoUKUna0jyDEQDag9IIANphU+s8oyhZLCz5BgAA7mVE80roLcw1AnAOKI0AoB025JRJksakRpucBAAA4GQZLcOwWWkE4BxQGgHAWXI4DW045CqNMtNiTE4DAABwshEpUZKkfUVVqmloMjcMAI9FaQQAZ2lPQaWq6psUFuingYnhZscBAAA4SWJksBIiguRwGtpxpMLsOAA8FKURAJyl9c2rjEandpOfjS+jAADAPbVsUWOuEYD24qcdADhLLaXR2DTmGQEAAPc1OtU1DLtlWz0AnC1KIwA4C4ZhaH1OyzwjSiMAAOC+Wg7s2Hj4uJxOw+Q0ADwRpREAnIUDJdUqszco0M+qoUlRZscBAAA4pcE9IhQSYFNFbaP2F1eZHQeAB6I0AoCz8OVB1yqjkSndFODHl1AAAOC+/GxWjUxhixqA9uMnHgA4C2sOlEqSxvWOMTkJAADAt2vZorY+57jJSQB4IkojADhDDqehNQeOSZLO7xdrchoAAIBvNybtq5VGhsFcIwBnh9IIAM7Q7vxKldc0KizQT8N7RpodBwAA4FuNSO4mf5tFhZV1OnK81uw4ADwMpREAnKHV2SWSXFvT/Gx8+QQAAO4vOMCmoUmuX3atY64RgLPETz0AcIa+yHbNM7qArWkAAMCDZDbPYmyZzQgAZ4rSCADOQF2jQxuaB0ie15fSCAAAeI7zm793+SK7lLlGAM4KpREAnIGNOcfV0ORUQkSQ+nQPNTsOAADAGRvVq5sC/awqqqzXgZJqs+MA8CCURgBwBlbtL5bkWmVksVhMTgMAAHDmgvxtGpMaLUn6PIstagDOHKURAJyBFXtdpdHF6XEmJwEAADh7LdvrP88+ZnISAJ6E0ggAvsXhY3YdLLHLz2rRBf2ZZwQAADxPy1yjLw8eU5PDaXIaAJ6C0ggAvsUnzauMxqRGKyLI3+Q0AAAAZ29QjwhFhfirur5J245UmB0HgIegNAKAb/EJW9MAAICHs1ktmtAnRpK0an+JyWkAeApKIwA4DXt9k9YdLJMkXURpBAAAPNhFA1zfy3yyt8jkJAA8BaURAJzG6qxSNTic6hUToj7dQ82OAwAA0G4XpcfJYpF2Hq1UYUWd2XEAeABKIwA4jQ93FUqSLkmPl8ViMTkNAABA+8WGBSojOUrSV9vvAeB0KI0A4BTqmxz6eLdr+fbUYQkmpwEAADh3kwbGS5JW7GGLGoBvR2kEAKfwRXapquqbFB8RqBHJ3cyOAwAAcM5aDvb4PLtUtQ0Ok9MAcHeURgBwCu/vcG1Nu2xIoqxWtqYBAADPl54QrqSoYNU3OfVFdqnZcQC4OUojAGhDQ5NTH+1qKY3YmgYAALyDxWLRdwe5tqi9v7PA5DQA3B2lEQC04YsDpaqsa1JsWKBGp0abHQcAAKDDTB2WKElavqtI9U1sUQNwapRGANCGJVuOSpIuH5ogG1vTAACAFxmV0k0JEUGqqm/SZ/vZogbg1CiNAOAbquoa9WHz1rQZI3uanAYAAKBjWa0WXT7Utdpo6fZ8k9MAcGeURgDwDe/vKFBdo1N9uodqeM9Is+MAAAB0uJYtah/vLlJdI1vUALSN0ggAvuGtza6taVeP6imLha1pAADA+4xMiVJSVLDsDQ59srfY7DgA3BSlEQB8TV5ZjdYfKpPFIl01IsnsOAAAAJ3CYrHoyowekqQ3NuaZnAaAu6I0AoCveXV9riTpvD6xSowMNjkNAABA57l2dLIk6bP9JSqoqDU5DQB3RGkEAM3qGh16bYPrN20/HNfL5DQAAACdKy02VGPTouU0pDc3HjE7DgA3RGkEAM3e216gMnuDekQGadLAOLPjAAAAdLrrxrhWG72+MU9Op2FyGgDuhtIIAJq9vDZHkvSDcb3kZ+PLIwAA8H6XDUlUeKCfjhyv1RcHSs2OA8DN8FMRAEjakntc245UKMBmbf2NGwAAgLcLDrBpxkjX4R//+vyQyWkAuBtKIwCQ9I+VByRJV2b0UExYoMlpAAAAus7s89JksUif7itRdnGV2XEAuBFKIwA+b09BpZbvLpLFIt1+YR+z4wAAAHSp1NhQfXdgvCTpeVYbAfgaSiMAPu+pT7MlSZcPTVSf7mEmpwEAAOh6t32ntyTprc1HVVpdb3IaAO6C0giAT8surtZ7OwokSXde1NfkNAAAAOYY3aubhidHqaHJqWc+O2h2HABugtIIgE975IO9Mgzpu4PiNTAxwuw4AAAAprBYLLpnUj9J0ktrclRYUWdyIgDugNIIgM9ae+CYPt5TJJvVol9NSTc7DgAAgKku7N9dY1K7qb7Jqb9/kmV2HABugNIIgE9yOg396f3dkqQfZKaobxyzjAAAgG+zWCy6f7LrF2mvb8jToVK7yYkAmI3SCIBPemV9rnYerVR4oJ/uvqSf2XEAAADcwti0aF04oLuanIbm/XenDMMwOxIAE1EaAfA5R8tr9cj7eyRJ917aXzFhgSYnAgAAcB8PfW+wAvysWp1VqqXbC8yOA8BElEYAfIphGJr79g7ZGxwa3aubZo1PNTsSAACAW0mLDdXPLuwjSfrD0t2qqG00OREAs1AaAfApL67J0Wf7SxTgZ9Wfvz9MVqvF7EgAAABu56cT+ygtNlQlVfV68J0dbFMDfBSlEQCfsenwcf3pPde2tLmXpatPd4ZfAwAAtCXI36bHrh0uP6tF720v0Osb8syOBMAElEYAfEJRZZ3ueGWzmpyGpg5L1M0TUs2OBAAA4NZGpHTTfZMHSJJ+979d2nm0wuREALoapREAr1dR06hZz69XYWWd+nQP1Z+vHiaLhW1pAAAA3+bHF/TWxP7dVdfo1OwXN+jI8RqzIwHoQpRGALxaVV2jbnlpg/YVVSkuPFAvzh6rsEA/s2MBAAB4BKvVor/fMELpCeEqqarXzS9sUGl1vdmxAHQRSiMAXqukql7XPfOlNh0+roggP71861glR4eYHQsAAMCjRAT564XZY5QQEaTs4mpd+8+1yi+vNTsWgC5AaQTAK+3Kr9DVT6/RrvxKxYQG6JUfjVN6QoTZsQAAADxSYmSwXv3xOCVFBetgiV3XLFzLjCPAB1AaAfAqTqehf395WFf9Y41yy2qUHB2sN2+foKE9I82OBgAA4NHSYkP1xk/Hq3dsqI6W12rG02u0aF2uDMMwOxqATkJpBMBr7C2s1Mxn1uq3S3aqocmpi9Pj9O4d5ystNtTsaAAAAF4hKSpY7/zsPF2SHqeGJqcefGeHfvj8Oh0qtZsdDUAnYBosAI+3v6hKT36Srf9tz5dhSMH+Nt17aX/dcl6arFZOSQMAAOhIkSH+enbWaD27+qAeW75fX2Qf06V/W6VrRifrZxf2Uc9uzJAEvIVbrDR66qmnlJqaqqCgIGVmZmr9+vWnvX7x4sVKT09XUFCQhg4dqvfff/+E9xuGoXnz5ikxMVHBwcGaNGmSsrKyOvMpAOhix6rr9cbGPF27cK0u/dtnenebqzC6bEiCVtw7UT+6oDeFEQAAQCexWi36ycQ++ugX39HE/t3V6DC0aF2uvvOXT/Wjlzbqo12Fqm1wmB0TwDkyfaXR66+/rjlz5mjhwoXKzMzUggULNHnyZO3bt09xcXEnXb9mzRpdf/31mj9/vq644gotWrRI06dP1+bNmzVkyBBJ0l/+8hc98cQTeumll5SWlqbf/va3mjx5snbv3q2goKCufooAOkCZvUHbjpRrW165Pttfoi155WrZPm+1SJcOStBdl/TV4B7MLgIAAOgqvWJC9dItY7Xu4DE98UmWvsg+po/3FOnjPUUK9LNqQp8YXdCvu4YnR2pQYqSCA2xmRwZwFiyGyVPLMjMzNWbMGD355JOSJKfTqeTkZN1111164IEHTrp+5syZstvtWrp0aett48aNU0ZGhhYuXCjDMNSjRw/de++9uu+++yRJFRUVio+P14svvqjrrrvuWzNVVlYqMjJSFRUViojgtCWgMxiGoUaHofomh2oaHDpe06DymkaV1zToeE2jiirrlFtWo7yyGuWW1aiosv6kxxjcI0KTByfomtE9lRgZbMKzAIBOYrdLYWGuP1dXS6Htn81mb7ArbL7rsarnVis0gDlvADpPdnGVXlufpw92Fupoee0J77NZLUqNCVFydIiSu4UoOTpY8RFBigz2V1RIgOufwf4KDrAp0M8qi4VV40BnOJvOw9SVRg0NDdq0aZPmzp3bepvVatWkSZO0du3aNu+zdu1azZkz54TbJk+erCVLlkiSDh06pMLCQk2aNKn1/ZGRkcrMzNTatWvbLI3q6+tVX//VD6SVlZXn8rTcwiMf7NXGnLKTbj9dQ3i6/vBU7zld5XjKd7Xj45zubsZp7nXK+7Qnt07/7+isM7Qjt+t+p7pPO/69dvC/h9Pdx+E0VN/kVEOTU/VNDtU3OU/7PNvSu3uohveM0ujUbro4PY6iCAAAwM30jQvXb64YpF9PHaj9RdVasbdIm3KOa9uRCpVW1+tAiV0HSs5saHaAzaoAP9dbYPM/bRaLLBbJYrHIapGszcWStfl26zfeb5Eon7qIL/1bHtwjQr+fNsTsGF3C1NKotLRUDodD8fHxJ9weHx+vvXv3tnmfwsLCNq8vLCxsfX/Lbae65pvmz5+v3//+9+16Du4qu7hKGw8fNzsGcEasFikqJEBRIa7fLnULCVBsWKBSYkKUEu16S+seqoggf7OjAgAA4AxYLBYNSAjXgIRwSa5fOhZW1ulAsV15x12ryfOO1+pYdb3KaxpVUet6q65van2MBodTDQ6ndPKCc8BUNh+anWr6TCN3MHfu3BNWL1VWVio5OdnEROfu9gv76vujTv0cTle2n+pdp2voT/cpc9qPddoc7Qj5rVnafm+785/mnu35d/xt72zPx2vPv4/TPd63P+apP1agn1WBfq7lxoH+X/szy48BAAC8msViUWJk8LeuFG90OFXb6FBD8wp11yr15j87HHI4XQWU03D905DkNAwZRvM/1Xy7ITmbb/M0HhhZp99z4H26hQSYHaHLmFoaxcbGymazqaio6ITbi4qKlJCQ0OZ9EhISTnt9yz+LioqUmJh4wjUZGRltPmZgYKACAwPb+zTc0qhe3cyOAAAAAABnxd9mlb/NLQ75BiDJ1M/GgIAAjRo1SitWrGi9zel0asWKFRo/fnyb9xk/fvwJ10vS8uXLW69PS0tTQkLCCddUVlZq3bp1p3xMAAAAAAAAnMj07Wlz5szRTTfdpNGjR2vs2LFasGCB7Ha7Zs+eLUmaNWuWkpKSNH/+fEnS3XffrYkTJ+rRRx/V1KlT9dprr2njxo165plnJLmWPd5zzz364x//qH79+iktLU2//e1v1aNHD02fPt2spwkAAAAAAOBRTC+NZs6cqZKSEs2bN0+FhYXKyMjQsmXLWgdZ5+bmymr9akHUhAkTtGjRIv3mN7/Rgw8+qH79+mnJkiUaMuSryeW//OUvZbfb9eMf/1jl5eU6//zztWzZMgUFBXX58wMAAAAAAPBEFqM9Z4h7ucrKSkVGRqqiokIRERFmxwEAAL7GbpfCwlx/rq6WQkPb/1ANdoXNdz1W9dxqhQa0/7EAAIDnO5vOgwljAAAAAAAAOAmlEQAAAAAAAE5CaQQAAAAAAICTUBoBAAAAAADgJJRGAAAAAAAAOAmlEQAAAAAAAE5CaQQAAAAAAICTUBoBAAAAAADgJJRGAAAAAAAAOAmlEQAAAAAAAE5CaQQAAAAAAICTUBoBAAAAAADgJJRGAAAAAAAAOImf2QHckWEYkqTKykqTkwAAAJ9kt3/158pKyeFo/0M12KW6loeqlCOg/Y8FAAA8X0vX0dJ9nI7FOJOrfMyRI0eUnJxsdgwAAAAAAIBOkZeXp549e572GkqjNjidTuXn5ys8PFwWi8XsOO1WWVmp5ORk5eXlKSIiwuw46ES81r6D19p38Fr7Fl5v38Fr7Tt4rX0Lr7fv8IbX2jAMVVVVqUePHrJaTz+1iO1pbbBard/atnmSiIgIj/2PGWeH19p38Fr7Dl5r38Lr7Tt4rX0Hr7Vv4fX2HZ7+WkdGRp7RdQzCBgAAAAAAwEkojQAAAAAAAHASSiMvFhgYqIceekiBgYFmR0En47X2HbzWvoPX2rfwevsOXmvfwWvtW3i9fYevvdYMwgYAAAAAAMBJWGkEAAAAAACAk1AaAQAAAAAA4CSURgAAAAAAADgJpREAAAAAAABOQmkEAAAAAACAk1AaeamnnnpKqampCgoKUmZmptavX292JHSC3/3ud7JYLCe8paenmx0LHeCzzz7T9773PfXo0UMWi0VLliw54f2GYWjevHlKTExUcHCwJk2apKysLHPC4px822t98803n/R5PmXKFHPC4pzMnz9fY8aMUXh4uOLi4jR9+nTt27fvhGvq6up0xx13KCYmRmFhYbr66qtVVFRkUmK015m81hdeeOFJn9s//elPTUqMc/H0009r2LBhioiIUEREhMaPH68PPvig9f18XnuPb3ut+bz2Xo888ogsFovuueee1tt85XOb0sgLvf7665ozZ44eeughbd68WcOHD9fkyZNVXFxsdjR0gsGDB6ugoKD17fPPPzc7EjqA3W7X8OHD9dRTT7X5/r/85S964okntHDhQq1bt06hoaGaPHmy6urqujgpztW3vdaSNGXKlBM+z1999dUuTIiOsmrVKt1xxx368ssvtXz5cjU2NurSSy+V3W5vveYXv/iF/ve//2nx4sVatWqV8vPzNWPGDBNToz3O5LWWpNtuu+2Ez+2//OUvJiXGuejZs6ceeeQRbdq0SRs3btTFF1+sadOmadeuXZL4vPYm3/ZaS3xee6MNGzbon//8p4YNG3bC7T7zuW3A64wdO9a44447Wv/ucDiMHj16GPPnzzcxFTrDQw89ZAwfPtzsGOhkkox33nmn9e9Op9NISEgw/vrXv7beVl5ebgQGBhqvvvqqCQnRUb75WhuGYdx0003GtGnTTMmDzlVcXGxIMlatWmUYhuvz2N/f31i8eHHrNXv27DEkGWvXrjUrJjrAN19rwzCMiRMnGnfffbd5odCpunXrZjz33HN8XvuAltfaMPi89kZVVVVGv379jOXLl5/w+vrS5zYrjbxMQ0ODNm3apEmTJrXeZrVaNWnSJK1du9bEZOgsWVlZ6tGjh3r37q0f/OAHys3NNTsSOtmhQ4dUWFh4wud5ZGSkMjMz+Tz3UitXrlRcXJwGDBig22+/XceOHTM7EjpARUWFJCk6OlqStGnTJjU2Np7wuZ2enq6UlBQ+tz3cN1/rFq+88opiY2M1ZMgQzZ07VzU1NWbEQwdyOBx67bXXZLfbNX78eD6vvdg3X+sWfF57lzvuuENTp0494XNY8q3/Z/uZHQAdq7S0VA6HQ/Hx8SfcHh8fr71795qUCp0lMzNTL774ogYMGKCCggL9/ve/1wUXXKCdO3cqPDzc7HjoJIWFhZLU5ud5y/vgPaZMmaIZM2YoLS1NBw4c0IMPPqjLLrtMa9eulc1mMzse2snpdOqee+7ReeedpyFDhkhyfW4HBAQoKirqhGv53PZsbb3WknTDDTeoV69e6tGjh7Zv365f/epX2rdvn95++20T06K9duzYofHjx6uurk5hYWF65513NGjQIG3dupXPay9zqtda4vPa27z22mvavHmzNmzYcNL7fOn/2ZRGgAe77LLLWv88bNgwZWZmqlevXnrjjTd06623mpgMQEe57rrrWv88dOhQDRs2TH369NHKlSt1ySWXmJgM5+KOO+7Qzp07mUPnA071Wv/4xz9u/fPQoUOVmJioSy65RAcOHFCfPn26OibO0YABA7R161ZVVFTozTff1E033aRVq1aZHQud4FSv9aBBg/i89iJ5eXm6++67tXz5cgUFBZkdx1RsT/MysbGxstlsJ01tLyoqUkJCgkmp0FWioqLUv39/ZWdnmx0Fnajlc5nPc9/Uu3dvxcbG8nnuwe68804tXfr/27t/l7YWMIzjz6XxiBYNjYTEWhIC6SwY8cdih4DFgqA4iDiIlS6tpVVawUFEELpW/QO6ZRXhLgpqu+kgBJ2EBkFERRCsP1p0yHunGwjHWm7a3tPE7wcOJOec4YGXZ3nDOflbq6urevDgQe58OBzW1dWVTk5O8u6n28Xre7O+TnNzsyTR7SLlOI7i8bgSiYTevXun+vp6zczM0OsS9L1ZX4deF6+NjQ0dHR2poaFBPp9PPp9Pnz590uzsrHw+n0Kh0K3pNkujEuM4jhKJhJaXl3PnstmslpeX8561RWk6Pz9XJpNRbW2t11HwG8ViMYXD4byen56ean19nZ7fAnt7ezo+PqbnRcjMNDw8rPn5ea2srCgWi+VdTyQSKisry+v29va2dnd36XaR+dGsr5NOpyWJbpeIbDary8tLen0L/Dvr69Dr4pVMJrW1taV0Op07Ghsb1d/fn/t8W7rN42klaHR0VAMDA2psbFRTU5Pev3+vi4sLDQ4Oeh0Nv9ibN2/U2dmpaDSq/f19TU5O6s6dO+rr6/M6Gn7S+fl53q9SOzs7SqfTCgQCikQiev36taanp/Xw4UPFYjFNTEzo/v376urq8i40CnLTrAOBgKamptTT06NwOKxMJqOxsTHF43E9fvzYw9QoxIsXL5RKpbSwsKCqqqrcOw/8fr8qKirk9/s1NDSk0dFRBQIBVVdX6+XLl2ptbVVLS4vH6fFf/GjWmUxGqVRKT548UU1NjTY3NzUyMqK2tjbXXzrjzzc+Pq6Ojg5FIhGdnZ0plUrp48ePWlxcpNcl5qZZ0+vSUlVVlfceOkm6e/euampqcudvTbe9/vs2/B5zc3MWiUTMcRxramqytbU1ryPhN+jt7bXa2lpzHMfq6uqst7fXPn/+7HUs/AKrq6smyXUMDAyYmVk2m7WJiQkLhUJWXl5uyWTStre3vQ2Ngtw0669fv1p7e7sFg0ErKyuzaDRqz549s8PDQ69jowDXzVmSffjwIXfPt2/f7Pnz53bv3j2rrKy07u5uOzg48C40CvKjWe/u7lpbW5sFAgErLy+3eDxub9++tS9fvngbHAV5+vSpRaNRcxzHgsGgJZNJW1payl2n16XjplnT69L36NEje/XqVe77ben2X2Zm/+eSCgAAAAAAAH8+3mkEAAAAAAAAF5ZGAAAAAAAAcGFpBAAAAAAAABeWRgAAAAAAAHBhaQQAAAAAAAAXlkYAAAAAAABwYWkEAAAAAAAAF5ZGAAAAAAAAcGFpBAAAAAAAABeWRgAAAAAAAHBhaQQAAAAAAACXfwAkgJlXdnEVsgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "ax = df['film_replacement_cost'].plot(kind='density', figsize=(14,6))\n", + "ax.axvline(df['film_replacement_cost'].mean(), color='red')\n", + "ax.axvline(df['film_replacement_cost'].median(), color='green')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UrcS_e1rAWN_" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### How many films of each rating do we have?\n", + "\n", + "- Show the raw count of each film rating.\n", + "- Show a bar plot with all possible film ratings." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "D5b-SAtmAWN_" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "cell_type": "solution", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "Q4s0pTVmAWOA", + "outputId": "ed3d26e4-13cb-4e92-a4c5-27f24d3b3d2f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "film_rating\n", + "PG-13 3585\n", + "NC-17 3293\n", + "PG 3212\n", + "R 3181\n", + "G 2773\n", + "Name: count, dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
count
film_rating
PG-133585
NC-173293
PG3212
R3181
G2773
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "df['film_rating'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ihGJEKQfAWOA" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "cell_type": "solution", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 488 + }, + "id": "eDBOhVQHAWOA", + "outputId": "37ea2b8e-8ede-40ec-86e7-d4bad0772596" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH0AAAIqCAYAAAC5TTbBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA66ElEQVR4nO3dfbSVdZ3//9fh5hxu5EConAMDAt6EoqBJpqdRFypyVCydWPVFzfubdGHfQSYlHL+G+C0czFDTNPMGWwMqzVcdlRQBRTNRiyRNi4R0sIUHHE2OEvec3x/zY09nBPUouOHi8Vhrr8Xe12fv/b5aXRlPr31dFU1NTU0BAAAAoFBalXsAAAAAALY80QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAAqoTbkH2Fo2bNiQJUuWpFOnTqmoqCj3OAAAAABbRFNTU95999306NEjrVpt/nyewkafJUuWpFevXuUeAwAAAGCreP3119OzZ8/Nbi9s9OnUqVOS//oPoLq6uszTAAAAAGwZjY2N6dWrV6l9bE5ho8/Gn3RVV1eLPgAAAEDhfNjlbFzIGQAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACqhNuQeg5fp8e3q5R6CFXrtqWLlHAAAAYAfjTB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACalH0uemmmzJw4MBUV1enuro6dXV1efjhh0vbBw8enIqKimaP888/v9lnLF68OMOGDUuHDh3SrVu3XHzxxVm3bl2zNXPmzMmBBx6Yqqqq7Lnnnpk8efLH30MAAACAHVCLbtnes2fPXHXVVdlrr73S1NSUO++8MyeccEKef/757LvvvkmSc889N+PHjy+9p0OHDqU/r1+/PsOGDUttbW2efvrpvPHGGznttNPStm3bfO9730uSvPrqqxk2bFjOP//8TJkyJbNnz84555yT7t27p76+fkvsMwAAAEDhVTQ1NTV9kg/o2rVrrr766px99tkZPHhwDjjggFx77bWbXPvwww/n+OOPz5IlS1JTU5MkufnmmzNmzJi8+eabqayszJgxYzJ9+vT87ne/K71vxIgReeedd/LII4985LkaGxvTuXPnLF++PNXV1Z9kF7c5fb49vdwj0EKvXTWs3CMAAABQEB+1eXzsa/qsX78+d999d1asWJG6urrS61OmTMkuu+yS/fbbL2PHjs1f//rX0ra5c+dmwIABpeCTJPX19WlsbMxLL71UWjNkyJBm31VfX5+5c+d+4DyrV69OY2NjswcAAADAjqpFP+9KkhdffDF1dXVZtWpVdtppp9x3333p379/kuTkk09O796906NHj7zwwgsZM2ZMFixYkHvvvTdJ0tDQ0Cz4JCk9b2ho+MA1jY2NWblyZdq3b7/JuSZMmJArrriipbsDAAAAUEgtjj79+vXL/Pnzs3z58vzbv/1bTj/99DzxxBPp379/zjvvvNK6AQMGpHv37jnqqKOyaNGi7LHHHlt08P9p7NixGT16dOl5Y2NjevXqtVW/EwAAAGBb1eKfd1VWVmbPPffMoEGDMmHChOy///657rrrNrn24IMPTpIsXLgwSVJbW5ulS5c2W7PxeW1t7Qeuqa6u3uxZPklSVVVVuqvYxgcAAADAjupjX9Nnow0bNmT16tWb3DZ//vwkSffu3ZMkdXV1efHFF7Ns2bLSmpkzZ6a6urr0E7G6urrMnj272efMnDmz2XWDAAAAAPhgLfp519ixY3Psscdmt912y7vvvpupU6dmzpw5mTFjRhYtWpSpU6fmuOOOy84775wXXnghF110UQ4//PAMHDgwSTJ06ND0798/p556aiZOnJiGhoZcdtllGTlyZKqqqpIk559/fm644YZccsklOeuss/LYY49l2rRpmT7dHasAAAAAPqoWRZ9ly5bltNNOyxtvvJHOnTtn4MCBmTFjRo4++ui8/vrrmTVrVq699tqsWLEivXr1yvDhw3PZZZeV3t+6des89NBDueCCC1JXV5eOHTvm9NNPz/jx40tr+vbtm+nTp+eiiy7Kddddl549e+bWW29NfX39lttrAAAAgIKraGpqair3EFvDR71n/faoz7ed9bS9ee2qYeUeAQAAgIL4qM3jE1/TBwAAAIBtj+gDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAG1KfcAANuaPt+eXu4RaKHXrhpW7hEAAGCb40wfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACalPuAQCAHUufb08v9wi00GtXDSv3CADAx+BMHwAAAIACEn0AAAAACkj0AQAAACgg1/QBAIACcd2s7Y/rZgFbizN9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACalH0uemmmzJw4MBUV1enuro6dXV1efjhh0vbV61alZEjR2bnnXfOTjvtlOHDh2fp0qXNPmPx4sUZNmxYOnTokG7duuXiiy/OunXrmq2ZM2dODjzwwFRVVWXPPffM5MmTP/4eAgAAAOyAWhR9evbsmauuuirz5s3Lr3/96xx55JE54YQT8tJLLyVJLrroojz44IP52c9+lieeeCJLlizJV77yldL7169fn2HDhmXNmjV5+umnc+edd2by5Mm5/PLLS2teffXVDBs2LEcccUTmz5+fUaNG5ZxzzsmMGTO20C4DAAAAFF+bliz+0pe+1Oz5d7/73dx000155pln0rNnz9x2222ZOnVqjjzyyCTJHXfckX322SfPPPNMDjnkkDz66KN5+eWXM2vWrNTU1OSAAw7IlVdemTFjxmTcuHGprKzMzTffnL59++aaa65Jkuyzzz556qmnMmnSpNTX12+h3QYAAAAoto99TZ/169fn7rvvzooVK1JXV5d58+Zl7dq1GTJkSGnN3nvvnd122y1z585NksydOzcDBgxITU1NaU19fX0aGxtLZwvNnTu32WdsXLPxMwAAAAD4cC060ydJXnzxxdTV1WXVqlXZaaedct9996V///6ZP39+Kisr06VLl2bra2pq0tDQkCRpaGhoFnw2bt+47YPWNDY2ZuXKlWnfvv0m51q9enVWr15det7Y2NjSXQMAAAAojBaf6dOvX7/Mnz8/zz77bC644IKcfvrpefnll7fGbC0yYcKEdO7cufTo1atXuUcCAAAAKJsWR5/KysrsueeeGTRoUCZMmJD9998/1113XWpra7NmzZq88847zdYvXbo0tbW1SZLa2tr33c1r4/MPW1NdXb3Zs3ySZOzYsVm+fHnp8frrr7d01wAAAAAK42Nf02ejDRs2ZPXq1Rk0aFDatm2b2bNnl7YtWLAgixcvTl1dXZKkrq4uL774YpYtW1ZaM3PmzFRXV6d///6lNX/7GRvXbPyMzamqqirdSn7jAwAAAGBH1aJr+owdOzbHHntsdtttt7z77ruZOnVq5syZkxkzZqRz5845++yzM3r06HTt2jXV1dX55je/mbq6uhxyyCFJkqFDh6Z///459dRTM3HixDQ0NOSyyy7LyJEjU1VVlSQ5//zzc8MNN+SSSy7JWWedlcceeyzTpk3L9OnTt/zeAwAAABRUi6LPsmXLctppp+WNN95I586dM3DgwMyYMSNHH310kmTSpElp1apVhg8fntWrV6e+vj4/+tGPSu9v3bp1HnrooVxwwQWpq6tLx44dc/rpp2f8+PGlNX379s306dNz0UUX5brrrkvPnj1z6623ul07AAAAQAu0KPrcdtttH7i9Xbt2ufHGG3PjjTdudk3v3r3z85///AM/Z/DgwXn++edbMhoAAAAAf+MTX9MHAAAAgG2P6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUEBtyj0AAAAAbC/6fHt6uUeghV67ali5RygbZ/oAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAXUougzYcKEHHTQQenUqVO6deuWE088MQsWLGi2ZvDgwamoqGj2OP/885utWbx4cYYNG5YOHTqkW7duufjii7Nu3bpma+bMmZMDDzwwVVVV2XPPPTN58uSPt4cAAAAAO6AWRZ8nnngiI0eOzDPPPJOZM2dm7dq1GTp0aFasWNFs3bnnnps33nij9Jg4cWJp2/r16zNs2LCsWbMmTz/9dO68885Mnjw5l19+eWnNq6++mmHDhuWII47I/PnzM2rUqJxzzjmZMWPGJ9xdAAAAgB1Dm5YsfuSRR5o9nzx5crp165Z58+bl8MMPL73eoUOH1NbWbvIzHn300bz88suZNWtWampqcsABB+TKK6/MmDFjMm7cuFRWVubmm29O3759c8011yRJ9tlnnzz11FOZNGlS6uvrW7qPAAAAADucT3RNn+XLlydJunbt2uz1KVOmZJdddsl+++2XsWPH5q9//Wtp29y5czNgwIDU1NSUXquvr09jY2Neeuml0pohQ4Y0+8z6+vrMnTt3s7OsXr06jY2NzR4AAAAAO6oWnenztzZs2JBRo0bl7//+77PffvuVXj/55JPTu3fv9OjRIy+88ELGjBmTBQsW5N57702SNDQ0NAs+SUrPGxoaPnBNY2NjVq5cmfbt279vngkTJuSKK674uLsDAAAAUCgfO/qMHDkyv/vd7/LUU081e/28884r/XnAgAHp3r17jjrqqCxatCh77LHHx5/0Q4wdOzajR48uPW9sbEyvXr222vcBAAAAbMs+1s+7Lrzwwjz00EN5/PHH07Nnzw9ce/DBBydJFi5cmCSpra3N0qVLm63Z+HzjdYA2t6a6unqTZ/kkSVVVVaqrq5s9AAAAAHZULYo+TU1NufDCC3PfffflscceS9++fT/0PfPnz0+SdO/ePUlSV1eXF198McuWLSutmTlzZqqrq9O/f//SmtmzZzf7nJkzZ6aurq4l4wIAAADssFoUfUaOHJl//dd/zdSpU9OpU6c0NDSkoaEhK1euTJIsWrQoV155ZebNm5fXXnstDzzwQE477bQcfvjhGThwYJJk6NCh6d+/f0499dT89re/zYwZM3LZZZdl5MiRqaqqSpKcf/75+dOf/pRLLrkkf/jDH/KjH/0o06ZNy0UXXbSFdx8AAACgmFoUfW666aYsX748gwcPTvfu3UuPe+65J0lSWVmZWbNmZejQodl7773zT//0Txk+fHgefPDB0me0bt06Dz30UFq3bp26urp8/etfz2mnnZbx48eX1vTt2zfTp0/PzJkzs//+++eaa67Jrbfe6nbtAAAAAB9Riy7k3NTU9IHbe/XqlSeeeOJDP6d37975+c9//oFrBg8enOeff74l4wEAAADw//tYF3IGAAAAYNsm+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUUIuiz4QJE3LQQQelU6dO6datW0488cQsWLCg2ZpVq1Zl5MiR2XnnnbPTTjtl+PDhWbp0abM1ixcvzrBhw9KhQ4d069YtF198cdatW9dszZw5c3LggQemqqoqe+65ZyZPnvzx9hAAAABgB9Si6PPEE09k5MiReeaZZzJz5sysXbs2Q4cOzYoVK0prLrroojz44IP52c9+lieeeCJLlizJV77yldL29evXZ9iwYVmzZk2efvrp3HnnnZk8eXIuv/zy0ppXX301w4YNyxFHHJH58+dn1KhROeecczJjxowtsMsAAAAAxdemJYsfeeSRZs8nT56cbt26Zd68eTn88MOzfPny3HbbbZk6dWqOPPLIJMkdd9yRffbZJ88880wOOeSQPProo3n55Zcza9as1NTU5IADDsiVV16ZMWPGZNy4camsrMzNN9+cvn375pprrkmS7LPPPnnqqacyadKk1NfXb6FdBwAAACiuT3RNn+XLlydJunbtmiSZN29e1q5dmyFDhpTW7L333tltt90yd+7cJMncuXMzYMCA1NTUlNbU19ensbExL730UmnN337GxjUbP2NTVq9encbGxmYPAAAAgB3Vx44+GzZsyKhRo/L3f//32W+//ZIkDQ0NqaysTJcuXZqtrampSUNDQ2nN3wafjds3bvugNY2NjVm5cuUm55kwYUI6d+5cevTq1evj7hoAAADAdu9jR5+RI0fmd7/7Xe6+++4tOc/HNnbs2Cxfvrz0eP3118s9EgAAAEDZtOiaPhtdeOGFeeihh/Lkk0+mZ8+epddra2uzZs2avPPOO83O9lm6dGlqa2tLa5577rlmn7fx7l5/u+Z/3vFr6dKlqa6uTvv27Tc5U1VVVaqqqj7O7gAAAAAUTovO9GlqasqFF16Y++67L4899lj69u3bbPugQYPStm3bzJ49u/TaggULsnjx4tTV1SVJ6urq8uKLL2bZsmWlNTNnzkx1dXX69+9fWvO3n7FxzcbPAAAAAOCDtehMn5EjR2bq1Kn593//93Tq1Kl0DZ7OnTunffv26dy5c84+++yMHj06Xbt2TXV1db75zW+mrq4uhxxySJJk6NCh6d+/f0499dRMnDgxDQ0NueyyyzJy5MjSmTrnn39+brjhhlxyySU566yz8thjj2XatGmZPn36Ft59AAAAgGJq0Zk+N910U5YvX57Bgwene/fupcc999xTWjNp0qQcf/zxGT58eA4//PDU1tbm3nvvLW1v3bp1HnroobRu3Tp1dXX5+te/ntNOOy3jx48vrenbt2+mT5+emTNnZv/9988111yTW2+91e3aAQAAAD6iFp3p09TU9KFr2rVrlxtvvDE33njjZtf07t07P//5zz/wcwYPHpznn3++JeMBAAAA8P/72HfvAgAAAGDbJfoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFFCLo8+TTz6ZL33pS+nRo0cqKipy//33N9t+xhlnpKKiotnjmGOOabbm7bffzimnnJLq6up06dIlZ599dt57771ma1544YUcdthhadeuXXr16pWJEye2fO8AAAAAdlAtjj4rVqzI/vvvnxtvvHGza4455pi88cYbpcddd93VbPspp5ySl156KTNnzsxDDz2UJ598Muedd15pe2NjY4YOHZrevXtn3rx5ufrqqzNu3LjccsstLR0XAAAAYIfUpqVvOPbYY3Psscd+4JqqqqrU1tZuctvvf//7PPLII/nVr36Vz3/+80mSH/7whznuuOPy/e9/Pz169MiUKVOyZs2a3H777amsrMy+++6b+fPn5wc/+EGzOAQAAADApm2Va/rMmTMn3bp1S79+/XLBBRfkrbfeKm2bO3duunTpUgo+STJkyJC0atUqzz77bGnN4YcfnsrKytKa+vr6LFiwIH/5y1+2xsgAAAAAhdLiM30+zDHHHJOvfOUr6du3bxYtWpRLL700xx57bObOnZvWrVunoaEh3bp1az5Emzbp2rVrGhoakiQNDQ3p27dvszU1NTWlbZ/5zGfe972rV6/O6tWrS88bGxu39K4BAAAAbDe2ePQZMWJE6c8DBgzIwIEDs8cee2TOnDk56qijtvTXlUyYMCFXXHHFVvt8AAAAgO3JVr9l++67755ddtklCxcuTJLU1tZm2bJlzdasW7cub7/9duk6QLW1tVm6dGmzNRufb+5aQWPHjs3y5ctLj9dff31L7woAAADAdmOrR58///nPeeutt9K9e/ckSV1dXd55553MmzevtOaxxx7Lhg0bcvDBB5fWPPnkk1m7dm1pzcyZM9OvX79N/rQr+a+LR1dXVzd7AAAAAOyoWhx93nvvvcyfPz/z589Pkrz66quZP39+Fi9enPfeey8XX3xxnnnmmbz22muZPXt2TjjhhOy5556pr69Pkuyzzz455phjcu655+a5557LL3/5y1x44YUZMWJEevTokSQ5+eSTU1lZmbPPPjsvvfRS7rnnnlx33XUZPXr0lttzAAAAgAJrcfT59a9/nc997nP53Oc+lyQZPXp0Pve5z+Xyyy9P69at88ILL+TLX/5yPvvZz+bss8/OoEGD8otf/CJVVVWlz5gyZUr23nvvHHXUUTnuuONy6KGH5pZbbilt79y5cx599NG8+uqrGTRoUP7pn/4pl19+udu1AwAAAHxELb6Q8+DBg9PU1LTZ7TNmzPjQz+jatWumTp36gWsGDhyYX/ziFy0dDwAAAIB8Ctf0AQAAAODTJ/oAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBALY4+Tz75ZL70pS+lR48eqaioyP33399se1NTUy6//PJ079497du3z5AhQ/LKK680W/P222/nlFNOSXV1dbp06ZKzzz477733XrM1L7zwQg477LC0a9cuvXr1ysSJE1u+dwAAAAA7qBZHnxUrVmT//ffPjTfeuMntEydOzPXXX5+bb745zz77bDp27Jj6+vqsWrWqtOaUU07JSy+9lJkzZ+ahhx7Kk08+mfPOO6+0vbGxMUOHDk3v3r0zb968XH311Rk3blxuueWWj7GLAAAAADueNi19w7HHHptjjz12k9uamppy7bXX5rLLLssJJ5yQJPnpT3+ampqa3H///RkxYkR+//vf55FHHsmvfvWrfP7zn0+S/PCHP8xxxx2X73//++nRo0emTJmSNWvW5Pbbb09lZWX23XffzJ8/Pz/4wQ+axSEAAAAANm2LXtPn1VdfTUNDQ4YMGVJ6rXPnzjn44IMzd+7cJMncuXPTpUuXUvBJkiFDhqRVq1Z59tlnS2sOP/zwVFZWltbU19dnwYIF+ctf/rLJ7169enUaGxubPQAAAAB2VFs0+jQ0NCRJampqmr1eU1NT2tbQ0JBu3bo1296mTZt07dq12ZpNfcbffsf/NGHChHTu3Ln06NWr1yffIQAAAIDtVGHu3jV27NgsX7689Hj99dfLPRIAAABA2WzR6FNbW5skWbp0abPXly5dWtpWW1ubZcuWNdu+bt26vP32283WbOoz/vY7/qeqqqpUV1c3ewAAAADsqLZo9Onbt29qa2sze/bs0muNjY159tlnU1dXlySpq6vLO++8k3nz5pXWPPbYY9mwYUMOPvjg0ponn3wya9euLa2ZOXNm+vXrl8985jNbcmQAAACAQmpx9Hnvvfcyf/78zJ8/P8l/Xbx5/vz5Wbx4cSoqKjJq1Kj83//7f/PAAw/kxRdfzGmnnZYePXrkxBNPTJLss88+OeaYY3Luuefmueeeyy9/+ctceOGFGTFiRHr06JEkOfnkk1NZWZmzzz47L730Uu65555cd911GT169BbbcQAAAIAia/Et23/961/niCOOKD3fGGJOP/30TJ48OZdccklWrFiR8847L++8804OPfTQPPLII2nXrl3pPVOmTMmFF16Yo446Kq1atcrw4cNz/fXXl7Z37tw5jz76aEaOHJlBgwZll112yeWXX+527QAAAAAfUYujz+DBg9PU1LTZ7RUVFRk/fnzGjx+/2TVdu3bN1KlTP/B7Bg4cmF/84hctHQ8AAACAFOjuXQAAAAD8N9EHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIACEn0AAAAACkj0AQAAACgg0QcAAACggEQfAAAAgAISfQAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIC2ePQZN25cKioqmj323nvv0vZVq1Zl5MiR2XnnnbPTTjtl+PDhWbp0abPPWLx4cYYNG5YOHTqkW7duufjii7Nu3botPSoAAABAYbXZGh+67777ZtasWf/9JW3++2suuuiiTJ8+PT/72c/SuXPnXHjhhfnKV76SX/7yl0mS9evXZ9iwYamtrc3TTz+dN954I6eddlratm2b733ve1tjXAAAAIDC2SrRp02bNqmtrX3f68uXL89tt92WqVOn5sgjj0yS3HHHHdlnn33yzDPP5JBDDsmjjz6al19+ObNmzUpNTU0OOOCAXHnllRkzZkzGjRuXysrKrTEyAAAAQKFslWv6vPLKK+nRo0d23333nHLKKVm8eHGSZN68eVm7dm2GDBlSWrv33ntnt912y9y5c5Mkc+fOzYABA1JTU1NaU19fn8bGxrz00ktbY1wAAACAwtniZ/ocfPDBmTx5cvr165c33ngjV1xxRQ477LD87ne/S0NDQyorK9OlS5dm76mpqUlDQ0OSpKGhoVnw2bh947bNWb16dVavXl163tjYuIX2CAAAAGD7s8Wjz7HHHlv688CBA3PwwQend+/emTZtWtq3b7+lv65kwoQJueKKK7ba5wMAAABsT7b6Ldu7dOmSz372s1m4cGFqa2uzZs2avPPOO83WLF26tHQNoNra2vfdzWvj801dJ2ijsWPHZvny5aXH66+/vmV3BAAAAGA7stWjz3vvvZdFixale/fuGTRoUNq2bZvZs2eXti9YsCCLFy9OXV1dkqSuri4vvvhili1bVlozc+bMVFdXp3///pv9nqqqqlRXVzd7AAAAAOyotvjPu771rW/lS1/6Unr37p0lS5bkO9/5Tlq3bp2TTjopnTt3ztlnn53Ro0ena9euqa6uzje/+c3U1dXlkEMOSZIMHTo0/fv3z6mnnpqJEyemoaEhl112WUaOHJmqqqotPS4AAABAIW3x6PPnP/85J510Ut56663suuuuOfTQQ/PMM89k1113TZJMmjQprVq1yvDhw7N69erU19fnRz/6Uen9rVu3zkMPPZQLLrggdXV16dixY04//fSMHz9+S48KAAAAUFhbPPrcfffdH7i9Xbt2ufHGG3PjjTdudk3v3r3z85//fEuPBgAAALDD2OrX9AEAAADg0yf6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQKIPAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AAABAAYk+AAAAAAUk+gAAAAAUkOgDAAAAUECiDwAAAEABiT4AAAAABST6AAAAABSQ6AMAAABQQNt09LnxxhvTp0+ftGvXLgcffHCee+65co8EAAAAsF3YZqPPPffck9GjR+c73/lOfvOb32T//fdPfX19li1bVu7RAAAAALZ522z0+cEPfpBzzz03Z555Zvr375+bb745HTp0yO23317u0QAAAAC2eW3KPcCmrFmzJvPmzcvYsWNLr7Vq1SpDhgzJ3LlzN/me1atXZ/Xq1aXny5cvT5I0NjZu3WHLYMPqv5Z7BFqoiP89LDLH2PbHMbZ9cYxtfxxj2xfH2PbHMbZ9cYxtf4p4jG3cp6ampg9ct01Gn//8z//M+vXrU1NT0+z1mpqa/OEPf9jkeyZMmJArrrjifa/36tVrq8wILdH52nJPAMXmGIOtyzEGW5djDLauIh9j7777bjp37rzZ7dtk9Pk4xo4dm9GjR5eeb9iwIW+//XZ23nnnVFRUlHEyPorGxsb06tUrr7/+eqqrq8s9DhSOYwy2LscYbF2OMdi6HGPbn6amprz77rvp0aPHB67bJqPPLrvsktatW2fp0qXNXl+6dGlqa2s3+Z6qqqpUVVU1e61Lly5ba0S2kurqav8jA1uRYwy2LscYbF2OMdi6HGPblw86w2ejbfJCzpWVlRk0aFBmz55dem3Dhg2ZPXt26urqyjgZAAAAwPZhmzzTJ0lGjx6d008/PZ///OfzhS98Iddee21WrFiRM888s9yjAQAAAGzzttno87/+1//Km2++mcsvvzwNDQ054IAD8sgjj7zv4s4UQ1VVVb7zne+87yd6wJbhGIOtyzEGW5djDLYux1hxVTR92P29AAAAANjubJPX9AEAAADgkxF9AAAAAApI9AEAAAAoINEHAAAAoIC22bt3AQAAbM7KlSvTvn37co8B252VK1dm9uzZOf7445MkY8eOzerVq0vbW7dunSuvvDLt2rUr14hsQc70AQAAthurV6/ONddck759+5Z7FNgu3Xnnnfnxj39cen7DDTfk6aefzvPPP5/nn38+//qv/5qbbrqpjBOyJYk+lM1bb72Vxx9/PG+//XaS5D//8z/zL//yLxk/fnx+//vfl3k62L5dc801+Y//+I9yjwEAH8vq1aszduzYfP7zn88Xv/jF3H///UmSO+64I3379s21116biy66qLxDwnZqypQpOe+885q9NnXq1Dz++ON5/PHHc/XVV2fatGllmo4traKpqamp3EOw43nuuecydOjQNDY2pkuXLpk5c2a++tWvpk2bNtmwYUOWLFmSp556KgceeGC5R4XtUqtWrdKqVascccQROeecc/IP//APqaysLPdYUBiLFi3Kd7/73dx+++1Jkt122y3vvfdeaXvr1q3z1FNPpV+/fuUaEbZrY8aMyY9//OMMGTIkTz/9dN58882ceeaZeeaZZ3LppZfmq1/9alq3bl3uMWG71L1798ydOzd9+vRJkuy666751a9+VXr+xz/+MQcddFCWL19eviHZYpzpQ1n88z//c7761a9m+fLlufTSS3PiiSfmqKOOyh//+McsXLgwI0aMyJVXXlnuMWG7duutt6Zjx4459dRT06NHj4waNSq/+93vyj0WFMIPf/jD1NTUlJ7/5S9/ydixYzNp0qRMmjQpBx10UCZNmlTGCWH79rOf/Sw//elP82//9m959NFHs379+qxbty6//e1vM2LECMEHPoF33nmn2TV83nzzzVLwSZINGzY02872zZk+lEXXrl3zy1/+Mvvss0/Wrl2bdu3aZe7cufnCF76QJPnNb36TL3/5y/nzn/9c5klh+9SqVas0NDSkW7duWbZsWSZPnpw77rgjf/zjHzNo0KCce+65GTFiRDp16lTuUWG7NGDAgNx2222lf2516tQpv/3tb7P77rsnSZ544omcc845eeWVV8o5Jmy3Kisr8+qrr+bv/u7vkiTt27fPc889lwEDBpR5Mtj+7bXXXrnqqqsyfPjwTW6fNm1aLr300ixcuPBTnoytwZk+lMWaNWtKd1to27ZtOnTokF122aW0fZdddslbb71VrvGgULp165ZLLrkkv//97zNnzpz0798/F110Ubp3717u0WC79dprr6VHjx6l5+ecc046d+5cet6nTx//4gI+gfXr1zf7WXKbNm2y0047lXEiKI7jjjsul19+eVatWvW+bStXrswVV1yRYcOGlWEytga3bKcsevXqlT/96U+l0wjvvvvuZn8BfeONN5pFIKBlKioqNvn6YYcdlsMOOyzXX3997rnnnk95KiiOVq1aZcmSJenZs2eSvO+nXEuXLk3btm3LMRoUQlNTU84444xUVVUlSVatWpXzzz8/HTt2bLbu3nvvLcd4sF279NJLM23atPTr1y8XXnhhPvvZzyZJFixYkBtuuCHr1q3LpZdeWuYp2VJEH8pixIgRWbZsWen5/yzJDzzwQOmUeaDlPuyXu9XV1Tn33HM/pWmgePbdd9/MmjVrs/+smjFjRvbbb79PeSoojtNPP73Z869//etlmgSKp6amJk8//XQuuOCCfPvb3y79/8aKioocffTR+dGPftTsunVs31zTh23SX//617Ru3br0b3cAYFvyk5/8JKNGjcq0adPe9y8uHnzwwYwYMSLXXnutuArANu3tt98uXbtnzz33TNeuXcs8EVua6AMA8DGcdNJJueeee7L33nuXbs2+YMGCLFiwIMOHD8+0adPKPCEAsKNzIWe2Sa+//nrOOuusco8BheUYg0/urrvuyl133ZXPfvazpdiz1157ZcqUKYIPALBNcKYP26Tf/va3OfDAA7N+/fpyjwKF5BiDT2b9+vX5/ve/nwceeCBr1qzJkUcemXHjxpXuTAkAsC1wIWfK4oEHHvjA7X/6058+pUmgmBxjsHV973vfy7hx4zJkyJC0b98+119/fd58883cfvvt5R4NAKDEmT6URatWrVJRUfGBdxiqqKhwFgJ8TI4x2Lr22muvfOtb38o3vvGNJMmsWbMybNiwrFy5Mq1a+fU8ALBt8P9KKIvu3bvn3nvvzYYNGzb5+M1vflPuEWG75hiDrWvx4sU57rjjSs+HDBmSioqKLFmypIxTAQA0J/pQFoMGDcq8efM2u/3DzlAAPphjDLaudevWpV27ds1ea9u2bdauXVumiQAA3s81fSiLiy++OCtWrNjs9j333DOPP/74pzgRFItjDLaupqamnHHGGamqqiq9tmrVqpx//vnp2LFj6bV77723HOMBACRxTR8AgBY788wzP9K6O+64YytPAgCweaIP24y77rorX/7yl5v9G1Jgy3GMAQDAjkX0YZtRXV2d+fPnZ/fddy/3KFBIjjEAANixuJAz2wz9EbYuxxgAAOxYRB8AAACAAhJ92GY8/PDD6dGjR7nHgMJ6+OGH83d/93flHgMAAPiUuKYPQAGtXLkyM2fOzBFHHJFOnTo129bY2Jg5c+akvr6+2e2mAQCAYnGmD2WxaNGinHXWWaXnu+22W7p27Vp67LrrrlmwYEEZJ4Tt2y233JLrrrvufcEn+a8LOl9//fW59dZbyzAZAADwaRF9KIsf/vCHqampKT3/y1/+krFjx2bSpEmZNGlSDjrooEyaNKmME8L2bcqUKRk1atRmt48aNSp33nnnpzcQAADwqWtT7gHYMc2ePTu33XZbs9eGDx9eupV0nz59cs4555RjNCiEV155Jfvvv/9mtw8cODCvvPLKpzgRAADwaXOmD2Xx2muvNbto8znnnJPOnTuXnvfp0yd//vOfyzEaFMK6devy5ptvbnb7m2++mXXr1n2KEwEAAJ820YeyaNWqVZYsWVJ6PmnSpOy8886l50uXLk3btm3LMRoUwr777ptZs2Ztdvujjz6afffd91OcCAAA+LSJPpTFh/2FdMaMGdlvv/0+xYmgWM4666xceeWVeeihh9637cEHH8x3v/vdZhdTBwAAisc1fSiLM888M6NGjcr++++fYcOGNdv24IMP5qqrrsq1115bnuGgAM4777w8+eST+fKXv5y99947/fr1S5L84Q9/yB//+Md87Wtfy3nnnVfmKQEAgK2poqmpqancQ7BjOumkk3LPPfc0+wvpggULsmDBggwfPjzTpk0r84Sw/Zs2bVqmTJmShQsXpqmpKZ/97Gdz8skn52tf+1q5RwMAALYy0Yeyuueee3LXXXflj3/8Y5Jkr732ykknnZQRI0aUeTIAAADYvok+lMX69evz/e9/Pw888EDWrFmTI488MuPGjUv79u3LPRoUQqtWrVJRUfGBayoqKtzBCwAACsw1fSiL733vexk3blyGDBmS9u3b5/rrr8+bb76Z22+/vdyjQSHcd999m902d+7cXH/99dmwYcOnOBEAAPBpc6YPZbHXXnvlW9/6Vr7xjW8kSWbNmpVhw4Zl5cqVadXKTeVga1iwYEG+/e1v58EHH8wpp5yS8ePHp3fv3uUeCwAA2Er87ZqyWLx4cY477rjS8yFDhqSioiJLliwp41RQTEuWLMm5556bAQMGZN26dZk/f37uvPNOwQcAAApO9KEs1q1bl3bt2jV7rW3btlm7dm2ZJoLiWb58ecaMGZM999wzL730UmbPnp0HH3ww++23X7lHAwAAPgWu6UNZNDU15YwzzkhVVVXptVWrVuX8889Px44dS6/de++95RgPtnsTJ07Mv/zLv6S2tjZ33XVXTjjhhHKPBAAAfMpc04eyOPPMMz/SujvuuGMrTwLF1KpVq7Rv3z5DhgxJ69atN7tOWAUAgOJypg9lIebA1nXaaad96C3bAQCAYnOmDwAAAEABuZAzAAAAQAGJPgAAAAAFJPoAAAAAFJDoAwAAAFBAog8AsF1qamrKeeedl65du6aioiJdunTJqFGjStv79OmTa6+9tmzztdQZZ5yRE088sdxjAAAF4pbtAMB26ZFHHsnkyZMzZ86c7L777mnVqlXat29f7rE+1GuvvZa+ffvm+eefzwEHHFB6/brrroubqgIAW5LoAwBslxYtWpTu3bvni1/8YrlHSZKsWbMmlZWVH/v9nTt33oLTAAD4eRcAsB0644wz8s1vfjOLFy9ORUVF+vTpk8GDBzf7edf/VFFRkR//+Mc5/vjj06FDh+yzzz6ZO3duFi5cmMGDB6djx4754he/mEWLFn2kGcaNG5cDDjggt956a/r27Zt27dol+a8zkA499NB06dIlO++8c44//vhmn9m3b98kyec+97lUVFRk8ODBpX362593DR48OP/7f//vXHLJJenatWtqa2szbty4ZjP84Q9/yKGHHpp27dqlf//+mTVrVioqKnL//fd/pH0AAIpN9AEAtjvXXXddxo8fn549e+aNN97Ir371q4/0viuvvDKnnXZa5s+fn7333jsnn3xyvvGNb2Ts2LH59a9/naamplx44YUfeY6FCxfm//2//5d777038+fPT5KsWLEio0ePzq9//evMnj07rVq1yj/8wz9kw4YNSZLnnnsuSTJr1qy88cYbuffeezf7+XfeeWc6duyYZ599NhMnTsz48eMzc+bMJMn69etz4oknpkOHDnn22Wdzyy235J//+Z8/8uwAQPH5eRcAsN3p3LlzOnXqlNatW6e2tvYjv+/MM8/M1772tSTJmDFjUldXl//zf/5P6uvrkyT/+I//mDPPPPMjf96aNWvy05/+NLvuumvpteHDhzdbc/vtt2fXXXfNyy+/nP3226+0duedd/7Q2QcOHJjvfOc7SZK99torN9xwQ2bPnp2jjz46M2fOzKJFizJnzpzS53z3u9/N0Ucf/ZHnBwCKzZk+AMAOY+DAgaU/19TUJEkGDBjQ7LVVq1alsbHxI31e7969mwWfJHnllVdy0kknZffdd091dXX69OmTJFm8ePEnmjdJunfvnmXLliVJFixYkF69ejULR1/4whda/B0AQHE50wcA2GG0bdu29OeKiorNvrbxp1gfpmPHju977Utf+lJ69+6dn/zkJ+nRo0c2bNiQ/fbbL2vWrPlE826c76POBgAg+gAAbCFvvfVWFixYkJ/85Cc57LDDkiRPPfVUszUb7/C1fv36T/Rd/fr1y+uvv56lS5eWzlr6qNc2AgB2DKIPAMAW8pnPfCY777xzbrnllnTv3j2LFy/Ot7/97WZrunXrlvbt2+eRRx5Jz549065du491u/ajjz46e+yxR04//fRMnDgx7777bi677LIk/33GEgCwY3NNHwCALaRVq1a5++67M2/evOy333656KKLcvXVVzdb06ZNm1x//fX58Y9/nB49euSEE074WN/VunXr3H///Xnvvfdy0EEH5ZxzzindvWvj7eMBgB1bRVNTU1O5hwAA4JP75S9/mUMPPTQLFy7MHnvsUe5xAIAyE30AALZT9913X3baaafstddeWbhwYf7xH/8xn/nMZ953HSEAYMfk510AAJuw7777ZqeddtrkY8qUKeUeL0ny7rvvZuTIkdl7771zxhln5KCDDsq///u/l3ssAGAb4UwfAIBN+I//+I+sXbt2k9tqamrSqVOnT3kiAICWEX0AAAAACsjPuwAAAAAKSPQBAAAAKCDRBwAAAKCARB8AAACAAhJ9AAAAAApI9AEAAAAoINEHAAAAoIBEHwAAAIAC+v8AyPnP8SFXN40AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "df['film_rating'].value_counts().plot(kind='bar', figsize=(14,6))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XaZFHg22AWOA" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### Does the film replacement cost vary depending on film rating?\n", + "\n", + "In the United States, film classification is a voluntary process with the ratings issued by the Motion Picture Association of America (MPAA) via the Classification and Rating Administration (CARA).\n", + "\n", + "- G (General Audiences): All Ages are Admitted.\n", + "- PG (Parental Guidance Suggested): Some Material May Not Be Suitable for Children.\n", + "- PG-13 (Parents Strongly Cautioned): Some Material May Be Inappropriate for Children Under 13.\n", + "- R (Restricted): Under 17 Requires Accompanying Parent or Adult Guardian.\n", + "- NC-17 (Adults Only): No One 17 and Under Admitted.\n", + "\n", + "Show a grouped box plot per film rating with the film replacement costs." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Fr3_khyxAWOB" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "cell_type": "solution", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 615 + }, + "id": "SL7O76QjAWOB", + "outputId": "0f43a591-4e4b-4e11-d3a4-e43cc0c412c4" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 21 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAIxCAYAAAAIfKLWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmK0lEQVR4nO3de3zP9f//8ft7Zzs67ZjTkDkM60NJ5BBtVM4VqRwSfYrkoyMfYRKfziqiPh9MoaSiUjHkkEKhFZXFGio2p5htzHvb6/dHv72/vdvM3rzmtb3drpfLLvN6vp6v1+vxfL/eT3u7e71esxmGYQgAAAAAAAAwiYfVBQAAAAAAAMC9EDgBAAAAAADAVAROAAAAAAAAMBWBEwAAAAAAAExF4AQAAAAAAABTETgBAAAAAADAVAROAAAAAAAAMBWBEwAAAAAAAExF4AQAAAAAAABTETgBAIAysdlsmjx5stVluL3169fLZrNp/fr1pfabPHmybDabjh49Wu41Pffcc6pfv748PT0VFxcnSapXr56GDBni6FPWuiuTotcYAAC4jsAJAACLJSUlyWazOX2FhYWpc+fO+uyzz6wu76L9+OOPmjx5svbt22d1KbgAycnJeuyxx9SuXTvNnz9f06ZNs7okU+Xm5mry5MluFZQBAFAReFldAAAA+NOUKVMUHR0twzCUmZmppKQk3XTTTfr44491yy23WF3eBfvxxx+VmJioTp06qV69elaXAxd9/vnn8vDw0Ny5c+Xj4+NoT01NlYdH5f+/y9zcXCUmJkqSOnXq5LRuwoQJeuKJJyyoCgCAyo/ACQCACqJ79+5q3bq1Y3nYsGEKDw/X22+/XakDp0spPz9fhYWFTsEILs7hw4dVpUqVYq+pr6+vRRWVzsz3gJeXl7y8+LgMAMCFqPz/LQUAgJuqWrWqqlSpUuwfvDk5OXr44YdVu3Zt+fr6KiYmRs8//7wMw5AknT59Wo0bN1bjxo11+vRpx3bHjx9XZGSkrrvuOhUUFEiShgwZosDAQP3yyy9KSEhQQECAoqKiNGXKFMf+SvPtt9+qe/fuCg4OVmBgoLp06aItW7Y41iclJem2226TJHXu3Nlxy+D5bl9aunSpmjZtKj8/P8XGxmrZsmUaMmSI0xVS+/btk81m0/PPP68ZM2aoQYMG8vX11Y8//ijpzytzrr/+egUEBKhq1arq1auXfvrpJ6fj/H2fRUp6do/NZtOoUaO0aNEixcTEyM/PT61atdLGjRuLbf/777/rnnvuUXh4uHx9fdWsWTPNmzevWL/ffvtNvXv3VkBAgMLCwvSvf/1LeXl5pb42f3f06FHdfvvtCg4OVo0aNfTQQw/pzJkzjvUdO3ZUy5YtS9w2JiZGCQkJ59y3zWbT/PnzlZOT4zh3SUlJkoo/w6kknTp1UmxsrL7//nt17NhR/v7+atiwod577z1J0oYNG9SmTRtVqVJFMTExWrNmjUtjL+09cPbsWU2cOFGtWrVSSEiIAgICdP3112vdunVO24eGhkqSEhMTHWMselZZae+D5cuXKzY21nF+V65cWay+9evXq3Xr1vLz81ODBg30+uuv81woAMBlg/+yAQCggjh58qSOHj0qwzB0+PBhvfrqq8rOztZdd93l6GMYhnr27Kl169Zp2LBhiouL06pVq/Too4/q999/10svvaQqVapowYIFateunf7973/rxRdflCSNHDlSJ0+eVFJSkjw9PR37LCgoULdu3XTttdfq2Wef1cqVKzVp0iTl5+drypQp56z3hx9+0PXXX6/g4GA99thj8vb21uuvv65OnTo5goQOHTpo9OjReuWVVzR+/Hg1adJEkhzfS/LJJ5+of//+at68uaZPn64//vhDw4YN0xVXXFFi//nz5+vMmTMaMWKEfH19Vb16da1Zs0bdu3dX/fr1NXnyZJ0+fVqvvvqq2rVrpx07dlzwrX0bNmzQkiVLNHr0aPn6+uq1115Tt27d9PXXXys2NlaSlJmZqWuvvdYRTISGhuqzzz7TsGHDlJWVpTFjxkj6Mxjs0qWLDhw4oNGjRysqKkpvvfWWPv/8c5dquv3221WvXj1Nnz5dW7Zs0SuvvKI//vhDb775piTp7rvv1vDhw7Vr1y5HjZL0zTff6Oeff9aECRPOue+33npLb7zxhr7++mv973//kyRdd911LtX3xx9/6JZbbtGAAQN02223afbs2RowYIAWLVqkMWPG6J///KcGDhyo5557Trfeeqt+/fVXBQUFuXSMkt4DWVlZ+t///qc77rhDw4cP16lTpzR37lwlJCTo66+/VlxcnEJDQzV79mzdf//96tOnj/r27StJatGiRanH27Rpkz744AM98MADCgoK0iuvvKJ+/frpwIEDqlGjhqQ/w9hu3bopMjJSiYmJKigo0JQpUxwBFwAAbs8AAACWmj9/viGp2Jevr6+RlJTk1Hf58uWGJGPq1KlO7bfeeqths9mMvXv3OtrGjRtneHh4GBs3bjSWLl1qSDJmzJjhtN3gwYMNScaDDz7oaCssLDRuvvlmw8fHxzhy5IijXZIxadIkx3Lv3r0NHx8fIy0tzdF28OBBIygoyOjQoYOjrejY69atK9Pr0bx5c6NWrVrGqVOnHG3r1683JBl169Z1tKWnpxuSjODgYOPw4cNO+4iLizPCwsKMY8eOOdq+++47w8PDwxg0aJDT+P+6zyKTJk0y/v4xqei8bNu2zdG2f/9+w8/Pz+jTp4+jbdiwYUZkZKRx9OhRp+0HDBhghISEGLm5uYZhGMaMGTMMSca7777r6JOTk2M0bNiwTK9XUY09e/Z0an/ggQcMScZ3331nGIZhnDhxwvDz8zMef/xxp36jR482AgICjOzs7FKPM3jwYCMgIKBYe926dY3Bgwc7ltetW1es7o4dOxqSjMWLFzvadu/ebUgyPDw8jC1btjjaV61aZUgy5s+fX2o9f1XaeyA/P9/Iy8tzavvjjz+M8PBw45577nG0HTlypNh7u8i53gc+Pj5Oc+27774zJBmvvvqqo61Hjx6Gv7+/8fvvvzva9uzZY3h5eRXbJwAA7ohb6gAAqCBmzZql1atXa/Xq1Vq4cKE6d+6se++9Vx988IGjz6effipPT0+NHj3aaduHH35YhmE4/Va7yZMnq1mzZho8eLAeeOABdezYsdh2RUaNGuX4c9GVOWfPnj3nLU4FBQVKTk5W7969Vb9+fUd7ZGSkBg4cqE2bNikrK8vl1+DgwYPauXOnBg0apMDAQEd7x44d1bx58xK36devn9NVI4cOHVJKSoqGDBmi6tWrO9pbtGihG2+8UZ9++qnLdRVp27atWrVq5ViuU6eOevXqpVWrVqmgoECGYej9999Xjx49ZBiGjh496vhKSEjQyZMntWPHDkl/nsvIyEjdeuutjv35+/trxIgRLtU0cuRIp+UHH3zQsX9JCgkJUa9evfT22287bpMsKCjQkiVLHLfzlafAwEANGDDAsRwTE6OqVauqSZMmatOmjaO96M+//PKLy8f4+3tAkjw9PR3PcSosLNTx48eVn5+v1q1bO87BheratasaNGjgWG7RooWCg4MdtRcUFGjNmjXq3bu3oqKiHP0aNmyo7t27X9SxAQCoLAicAACoIK655hp17dpVXbt21Z133qlPPvlETZs2dYQ/krR//35FRUUVu+Wo6Ba1/fv3O9p8fHw0b948paen69SpU5o/f36Jz47x8PBwCo0kqVGjRpL+fMZNSY4cOaLc3FzFxMQUW9ekSRMVFhbq119/Lfvg/7+i+hs2bFhsXUltkhQdHV3iPs5V29GjR5WTk+NybZJ05ZVXFmtr1KiRcnNzdeTIER05ckQnTpzQG2+8odDQUKevoUOHSvrzIdxFdTZs2LDYOSmpbldqatCggTw8PJzO3aBBg3TgwAF98cUXkqQ1a9YoMzNTd999t0vHuhC1atUqNsaQkBDVrl27WJv05y14rvr7e6DIggUL1KJFC/n5+alGjRoKDQ3VJ598opMnT7p8jL+qU6dOsbZq1ao5aj98+LBOnz7t0vsYAAB3wzOcAACooDw8PNS5c2e9/PLL2rNnj5o1a+byPlatWiVJOnPmjPbs2XPOf5hXZlWqVLngbc/18Oaih6q7qrCwUJJ01113afDgwSX2Od/zgS5WSWNKSEhQeHi4Fi5cqA4dOmjhwoWKiIhQ165dy7UWSU7PCytLu1GGh9X/XUnvgYULF2rIkCHq3bu3Hn30UYWFhcnT01PTp09XWlqay8f4KzNrBwDAXRE4AQBQgeXn50uSsrOzJUl169bVmjVrdOrUKaernHbv3u1YX+T777/XlClTNHToUKWkpOjee+/Vzp07HVeSFCksLNQvv/ziuKpJkn7++WdJOufDtUNDQ+Xv76/U1NRi63bv3i0PDw/HFSyu/Eauovr37t1bbF1JbaXt41y11axZ03EbWbVq1XTixIli/f56pdhf7dmzp1jbzz//LH9/f8ctXUFBQSooKDhvmFO3bl3t2rVLhmE4vUYl1V2avweJe/fuVWFhodO58/T01MCBA5WUlKRnnnlGy5cv1/Dhw88ZnLiD9957T/Xr19cHH3zg9PpOmjTJqV95/Ma4sLAw+fn5XdT7GACAyo5b6gAAqKDsdruSk5Pl4+PjuGXupptuUkFBgWbOnOnU96WXXpLNZnM8H8Zut2vIkCGKiorSyy+/rKSkJGVmZupf//pXicf66/4Mw9DMmTPl7e2tLl26lNjf09NT8fHx+vDDD51u3crMzNTixYvVvn17BQcHS5Ij3Ckp2Pm7qKgoxcbG6s0333SEbNKfvx1u586d591e+vM5UnFxcVqwYIHTMXft2qXk5GTddNNNjrYGDRro5MmT+v777x1thw4d0rJly0rc9+bNm52e//Prr7/qww8/VHx8vDw9PeXp6al+/frp/fff165du4ptf+TIEcefb7rpJh08eFDvvfeeoy03N1dvvPFGmcZZZNasWU7Lr776qiQVe1bQ3XffrT/++EP33Xdfsd9+6I6KwrS/XnW0detWbd682amfv7+/pLK9P105dteuXbV8+XIdPHjQ0b53716n56wBAODOuMIJAIAK4rPPPnNcqXT48GEtXrxYe/bs0RNPPOEIb3r06KHOnTvr3//+t/bt26eWLVsqOTlZH374ocaMGeN4kPHUqVOVkpKitWvXKigoSC1atNDEiRM1YcIE3XrrrU6hi5+fn1auXKnBgwerTZs2+uyzz/TJJ59o/Pjxpf4K96lTp2r16tVq3769HnjgAXl5een1119XXl6enn32WUe/uLg4eXp66plnntHJkyfl6+urG264QWFhYSXud9q0aerVq5fatWunoUOH6o8//tDMmTMVGxvrFEKV5rnnnlP37t3Vtm1bDRs2TKdPn9arr76qkJAQTZ482dFvwIABevzxx9WnTx+NHj1aubm5mj17tho1alTig6VjY2OVkJCg0aNHy9fXV6+99pokKTEx0dHnP//5j9atW6c2bdpo+PDhatq0qY4fP64dO3ZozZo1On78uCRp+PDhmjlzpgYNGqTt27crMjJSb731liMAKav09HT17NlT3bp10+bNm7Vw4UINHDhQLVu2dOp31VVXKTY2VkuXLlWTJk30j3/8w6XjVDa33HKLPvjgA/Xp00c333yz0tPTNWfOHDVt2tTpfVSlShU1bdpUS5YsUaNGjVS9enXFxsYqNjb2oo4/efJkJScnq127drr//vsdQXFsbKxSUlIucnQAAFQClv1+PAAAYBiGYcyfP9+Q5PTl5+dnxMXFGbNnzzYKCwud+p86dcr417/+ZURFRRne3t7GlVdeaTz33HOOftu3bze8vLyMBx980Gm7/Px84+qrrzaioqKMP/74wzCM//uV92lpaUZ8fLzh7+9vhIeHG5MmTTIKCgqctlcJvzp+x44dRkJCghEYGGj4+/sbnTt3Nr766qtiY/zvf/9r1K9f3/D09DQkGevWrSv1NXnnnXeMxo0bG76+vkZsbKzx0UcfGf369TMaN27s6JOenm5IMp577rkS97FmzRqjXbt2RpUqVYzg4GCjR48exo8//lisX3JyshEbG2v4+PgYMTExxsKFC41JkyYV+9X1koyRI0caCxcuNK688krD19fXuOqqq0ocS2ZmpjFy5Eijdu3ahre3txEREWF06dLFeOONN5z67d+/3+jZs6fh7+9v1KxZ03jooYeMlStXluk1Kqrxxx9/NG699VYjKCjIqFatmjFq1Cjj9OnTJW7z7LPPGpKMadOmlbrvvyp6j/xd3bp1jcGDBzuW161bV6zujh07Gs2aNStx25tvvrlYe9FrXFalvQcKCwuNadOmGXXr1nWcqxUrVhiDBw826tat69T3q6++Mlq1amX4+Pg4vc9Lex+UNKa/vh6GYRhr1641rrrqKsPHx8do0KCB8b///c94+OGHDT8/vzKPEQCAyspmGDzdEACAy9WQIUP03nvvlfnKISvFxcUpNDRUq1evtuT4NptNI0eOLHY7Y2Xy8ssv61//+pf27dtX4m9aQ/nr3bu3fvjhhxKfBwYAgDvhGU4AAKBCsdvtjoelF1m/fr2+++47derUyZqi3IBhGJo7d646duxI2HSJnD592ml5z549+vTTT3kfAwAuCzzDCQAAVCi///67unbtqrvuuktRUVHavXu35syZo4iICP3zn/+0urxKJycnRx999JHWrVunnTt36sMPP7S6pPMqKChwesB6SQIDAxUYGHiJKrow9evX15AhQ1S/fn3t379fs2fPlo+Pjx577DGrSwMAoNwROAEAgAqlWrVqatWqlf73v//pyJEjCggI0M0336z//Oc/qlGjhtXlVTpHjhzRwIEDVbVqVY0fP149e/a0uqTz+vXXXxUdHV1qn0mTJjk9AL4i6tatm95++21lZGTI19dXbdu21bRp03TllVdaXRoAAOWOZzgBAACgQjlz5ow2bdpUap/69eurfv36l6giAADgKgInAAAAAAAAmIqHhgMAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAABw8s033+i6665TQECAbDabevfuLZvN5tSnXr16GjJkiDUFXgJJSUmy2Wzat2+f1aUAAABUSgROAADAwW6367bbbtPx48f10ksv6a233lLdunWtLgsVyI8//qjJkydXijDuq6++0uTJk3XixAmrSwEA4LJD4AQAABzS0tK0f/9+PfLIIxoxYoTuuusuvfDCCzp9+rTVpaGC+PHHH5WYmFhpAqfExEQCJwAALEDgBAAAHA4fPixJqlq1qqPNy8tLfn5+FlVUutzcXKtLAAAAQAkInAAAgCRpyJAh6tixoyTptttuk81mU6dOnTR58uRiz3D6u6JnHm3atEmjR49WaGioqlatqvvuu09nz57ViRMnNGjQIFWrVk3VqlXTY489JsMwXKqvU6dOio2N1fbt29WhQwf5+/tr/PjxkqS8vDxNmjRJDRs2lK+vr2rXrq3HHntMeXl5Tvuw2WwaNWqUFi1apJiYGPn5+alVq1bauHHjeY//4Ycf6uabb1ZUVJR8fX3VoEEDPfXUUyooKCjWd+vWrbrppptUrVo1BQQEqEWLFnr55Zed+uzevVu33nqrqlevLj8/P7Vu3VofffSR6a9rYWGhZsyYoWbNmsnPz0/h4eG677779Mcffzj1q1evnm655RZt2rRJ11xzjfz8/FS/fn29+eabTvXcdtttkqTOnTvLZrPJZrNp/fr15339ivz+++8aNmyY43WMjo7W/fffr7Nnzzr6/PLLL7rttttUvXp1+fv769prr9Unn3xSbF+vvvqqmjVrJn9/f1WrVk2tW7fW4sWLJUmTJ0/Wo48+KkmKjo521FoZrswCAMAdeFldAAAAqBjuu+8+XXHFFZo2bZpGjx6tq6++WuHh4fryyy/LvI8HH3xQERERSkxM1JYtW/TGG2+oatWq+uqrr1SnTh1NmzZNn376qZ577jnFxsZq0KBBLtV47Ngxde/eXQMGDNBdd92l8PBwFRYWqmfPntq0aZNGjBihJk2aaOfOnXrppZf0888/a/ny5U772LBhg5YsWaLRo0fL19dXr732mrp166avv/5asbGx5zx2UlKSAgMDNXbsWAUGBurzzz/XxIkTlZWVpeeee87Rb/Xq1brlllsUGRmphx56SBEREfrpp5+0YsUKPfTQQ5KkH374Qe3atdMVV1yhJ554QgEBAXr33XfVu3dvvf/+++rTp49pr+t9992npKQkDR06VKNHj1Z6erpmzpypb7/9Vl9++aW8vb0dfffu3atbb71Vw4YN0+DBgzVv3jwNGTJErVq1UrNmzdShQweNHj1ar7zyisaPH68mTZpIkuP7+Rw8eFDXXHONTpw4oREjRqhx48b6/fff9d577yk3N1c+Pj7KzMzUddddp9zcXI0ePVo1atTQggUL1LNnT7333nuO1+a///2vRo8erVtvvVUPPfSQzpw5o++//15bt27VwIED1bdvX/388896++239dJLL6lmzZqSpNDQ0DLVCgAALpIBAADw/61bt86QZCxdutTRNmnSJOPvHxnq1q1rDB482LE8f/58Q5KRkJBgFBYWOtrbtm1r2Gw245///KejLT8/36hVq5bRsWNHl2rr2LGjIcmYM2eOU/tbb71leHh4GF988YVT+5w5cwxJxpdffulok2RIMrZt2+Zo279/v+Hn52f06dOn2HjS09Mdbbm5ucVquu+++wx/f3/jzJkzjrFFR0cbdevWNf744w+nvn99Xbp06WI0b97csV3R+uuuu8648sori9Vxoa/rF198YUgyFi1a5FTLypUri7XXrVvXkGRs3LjR0Xb48GHD19fXePjhhx1tS5cuNSQZ69atK/Z6nM+gQYMMDw8P45tvvim2rmh8Y8aMMSQ5nc9Tp04Z0dHRRr169YyCggLDMAyjV69eRrNmzUo93nPPPVfsPAIAgEuDW+oAAIBphg0b5nT7XZs2bWQYhoYNG+Zo8/T0VOvWrfXLL7+4vH9fX18NHTrUqW3p0qVq0qSJGjdurKNHjzq+brjhBknSunXrnPq3bdtWrVq1cizXqVNHvXr10qpVq0q8Pa5IlSpVHH8+deqUjh49quuvv165ubnavXu3JOnbb79Venq6xowZ4/QcLEmO1+X48eP6/PPPdfvttzv2c/ToUR07dkwJCQnas2ePfv/9d6dtL/R1Xbp0qUJCQnTjjTc6vTatWrVSYGBgsdemadOmuv766x3LoaGhiomJuaBz9XeFhYVavny5evToodatWxdbXzS+Tz/9VNdcc43at2/vWBcYGKgRI0Zo3759+vHHHyX9+Zyx3377Td98881F1wYAAMzHLXUAAMA0derUcVoOCQmRJNWuXbtY+9+fIVQWV1xxhXx8fJza9uzZo59++umct0oVPQi9yJVXXlmsT6NGjZSbm6sjR44oIiKixP388MMPmjBhgj7//HNlZWU5rTt58qSkP3/Ln6RSb83bu3evDMPQk08+qSeffPKcNV9xxRWO5Qt9Xffs2aOTJ08qLCzsnMf5q78fR5KqVat2Qefq744cOaKsrKxSXxtJ2r9/v9q0aVOsvei2vf379ys2NlaPP/641qxZo2uuuUYNGzZUfHy8Bg4cqHbt2l10rQAA4OIROAEAANN4enqWud1w8aHhkvNVRkUKCwvVvHlzvfjiiyVu8/dQ5kKcOHFCHTt2VHBwsKZMmaIGDRrIz89PO3bs0OOPP67CwsIy76uo7yOPPKKEhIQS+zRs2NBp+UJf18LCQoWFhWnRokUlbv/3kO5cx7mQc1XemjRpotTUVK1YsUIrV67U+++/r9dee00TJ05UYmKi1eUBAHDZI3ACAACVWoMGDfTdd9+pS5cu5/1tetKfV/383c8//yx/f/9zXiW1fv16HTt2TB988IE6dOjgaE9PTy9WiyTt2rVLXbt2LXFf9evXlyR5e3ufs49ZGjRooDVr1qhdu3YlhnUXoiyvcUlCQ0MVHBysXbt2ldqvbt26Sk1NLdZedNti3bp1HW0BAQHq37+/+vfvr7Nnz6pv3756+umnNW7cOPn5+V1wrQAA4OLxDCcAAFCp3X777fr999/13//+t9i606dPKycnx6lt8+bN2rFjh2P5119/1Ycffqj4+PjzXkn01yt9zp49q9dee82p3z/+8Q9FR0drxowZOnHihNO6om3DwsLUqVMnvf766zp06FCxYx05cqSU0brm9ttvV0FBgZ566qli6/Lz84vVWBYBAQGS5PK2Hh4e6t27tz7++GNt27at2Pqi1+emm27S119/rc2bNzvW5eTk6I033lC9evXUtGlTSX/+xsK/8vHxUdOmTWUYhux2+0XVCgAALh5XOAEAgErt7rvv1rvvvqt//vOfWrdundq1a6eCggLt3r1b7777rlatWuX0kOrY2FglJCRo9OjR8vX1dYRGpd2Gdd1116latWoaPHiwRo8eLZvNprfeeqvYrWYeHh6aPXu2evToobi4OA0dOlSRkZHavXu3fvjhB61atUqSNGvWLLVv317NmzfX8OHDVb9+fWVmZmrz5s367bff9N1335ny2nTs2FH33Xefpk+frpSUFMXHx8vb21t79uzR0qVL9fLLL+vWW291aZ9xcXHy9PTUM888o5MnT8rX11c33HDDOZ8T9VfTpk1TcnKyOnbsqBEjRqhJkyY6dOiQli5dqk2bNqlq1ap64okn9Pbbb6t79+4aPXq0qlevrgULFig9PV3vv/++PDz+/P/S+Ph4RUREqF27dgoPD9dPP/2kmTNn6uabb1ZQUJAkOR4O/+9//1sDBgyQt7e3evTo4QiiAABA+SFwAgAAlZqHh4eWL1+ul156SW+++aaWLVsmf39/1a9fXw899JAaNWrk1L9jx45q27atEhMTdeDAATVt2lRJSUlq0aLFOY9Ro0YNrVixQg8//LAmTJigatWq6a677lKXLl2KPYcpISFB69atU2Jiol544QUVFhaqQYMGGj58uKNP06ZNtW3bNiUmJiopKUnHjh1TWFiYrrrqKk2cONHU12fOnDlq1aqVXn/9dY0fP15eXl6qV6+e7rrrrgt6wHZERITmzJmj6dOna9iwYSooKNC6devKFDhdccUV2rp1q5588kktWrRIWVlZuuKKK9S9e3f5+/tLksLDw/XVV1/p8ccf16uvvqozZ86oRYsW+vjjj3XzzTc79nXfffdp0aJFevHFF5Wdna1atWpp9OjRmjBhgqPP1Vdfraeeekpz5szRypUrVVhYqPT0dAInAAAuAZtREZ8CCQAAUA5sNptGjhypmTNnWl0KAACAW+MZTgAAAAAAADAVt9QBAABLHT9+XGfPnj3nek9Pz3P+9jhUDNnZ2crOzi61T2ho6Dkfyg4AANwPgRMAALBU3759tWHDhnOur1u3rvbt23fpCoLLnn/++VIfui5J6enpqlev3qUpCAAAWI5nOAEAAEtt375df/zxxznXV6lS5YIebo1L55dfftEvv/xSap/27dvLz8/vElUEAACsRuAEAAAAAAAAU/HQcAAAAAAAAJjKLZ7hVFhYqIMHDyooKEg2m83qcgAAAAAAANyOYRg6deqUoqKi5OFR+jVMbhE4HTx4ULVr17a6DAAAAAAAALf366+/qlatWqX2cYvAKSgoSNKfAw4ODra4GrjKbrcrOTlZ8fHx8vb2troc4LLC/AOsw/wDrMP8A6zD/KvcsrKyVLt2bUcOUxq3CJyKbqMLDg4mcKqE7Ha7/P39FRwczF84wCXG/AOsw/wDrMP8A6zD/HMPZXmcEQ8NBwAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKlcCpxmz56tFi1aKDg4WMHBwWrbtq0+++wzx/ozZ85o5MiRqlGjhgIDA9WvXz9lZmaWuk/DMDRx4kRFRkaqSpUq6tq1q/bs2XNhowEAAAAAAIDlXAqcatWqpf/85z/avn27tm3bphtuuEG9evXSDz/8IEn617/+pY8//lhLly7Vhg0bdPDgQfXt27fUfT777LN65ZVXNGfOHG3dulUBAQFKSEjQmTNnLnxUAAAAAAAAsIyXK5179OjhtPz0009r9uzZ2rJli2rVqqW5c+dq8eLFuuGGGyRJ8+fPV5MmTbRlyxZde+21xfZnGIZmzJihCRMmqFevXpKkN998U+Hh4Vq+fLkGDBhwoeMCAAAAAACARVwKnP6qoKBAS5cuVU5Ojtq2bavt27fLbrera9eujj6NGzdWnTp1tHnz5hIDp/T0dGVkZDhtExISojZt2mjz5s3nDJzy8vKUl5fnWM7KypIk2e122e32Cx0S/r/c3FylpqZesuNln87TVzvTFFR1iwKr+F6y48bExMjf3/+SHQ8oC+YfYB3mH2Ad5h9gHeYfXOFK5uJy4LRz5061bdtWZ86cUWBgoJYtW6amTZsqJSVFPj4+qlq1qlP/8PBwZWRklLivovbw8PAybyNJ06dPV2JiYrH25ORk3kAmSEtL08MPP3zJj/vsJT7eCy+8oAYNGlziowKlY/4B1mH+AdZh/gHWYf7BFbm5uWXu63LgFBMTo5SUFJ08eVLvvfeeBg8erA0bNri6m4sybtw4jR071rGclZWl2rVrKz4+XsHBwZe0FneUm5ur9u3bX7Lj/XzopB5d9qOe69NUjSJDLtlxSbhRETH/AOsw/wDrMP8A6zD/4IqiO8zKwuXAycfHRw0bNpQktWrVSt98841efvll9e/fX2fPntWJEyecrnLKzMxUREREifsqas/MzFRkZKTTNnFxceeswdfXV76+xS+98/b2lre3t6tDwt+EhITommuuuWTH89l/TL6bzyo27h+Kq1vjkh0XqIiYf4B1mH+AdZh/gHWYf3CFK5mLS7+lriSFhYXKy8tTq1at5O3trbVr1zrWpaam6sCBA2rbtm2J20ZHRysiIsJpm6ysLG3duvWc2wAAAAAAAKBic+kKp3Hjxql79+6qU6eOTp06pcWLF2v9+vVatWqVQkJCNGzYMI0dO1bVq1dXcHCwHnzwQbVt29bpgeGNGzfW9OnT1adPH9lsNo0ZM0ZTp07VlVdeqejoaD355JOKiopS7969zR4rAAAAAAAALgGXAqfDhw9r0KBBOnTokEJCQtSiRQutWrVKN954oyTppZdekoeHh/r166e8vDwlJCTotddec9pHamqqTp486Vh+7LHHlJOToxEjRujEiRNq3769Vq5cKT8/PxOGBwAAAAAAgEvNpcBp7ty5pa738/PTrFmzNGvWrHP2MQzDadlms2nKlCmaMmWKK6UAAAAAAACggrroZzgBAAAAAAAAf0XgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwlUuB0/Tp03X11VcrKChIYWFh6t27t1JTUx3r9+3bJ5vNVuLX0qVLz7nfIUOGFOvfrVu3Cx8VAAAAAAAALONS4LRhwwaNHDlSW7Zs0erVq2W32xUfH6+cnBxJUu3atXXo0CGnr8TERAUGBqp79+6l7rtbt25O27399tsXPioAAAAAAABYxsuVzitXrnRaTkpKUlhYmLZv364OHTrI09NTERERTn2WLVum22+/XYGBgaXu29fXt9i2AAAAAAAAqHxcCpz+7uTJk5Kk6tWrl7h++/btSklJ0axZs867r/Xr1yssLEzVqlXTDTfcoKlTp6pGjRol9s3Ly1NeXp5jOSsrS5Jkt9tlt9tdHQYslp+f7/jO+QMuLeYfYB3mH2Ad5h9gHeZf5ebKObvgwKmwsFBjxoxRu3btFBsbW2KfuXPnqkmTJrruuutK3Ve3bt3Ut29fRUdHKy0tTePHj1f37t21efNmeXp6Fus/ffp0JSYmFmtPTk6Wv7//hQ0Ilvk1W5K8tGXLFv2+y+pqgMsL8w+wDvMPsA7zD7AO869yy83NLXPfCw6cRo4cqV27dmnTpk0lrj99+rQWL16sJ5988rz7GjBggOPPzZs3V4sWLdSgQQOtX79eXbp0KdZ/3LhxGjt2rGM5KytLtWvXVnx8vIKDgy9gNLDSdweOSzu36dprr1XLOiVfLQegfDD/AOsw/wDrMP8A6zD/KreiO8zK4oICp1GjRmnFihXauHGjatWqVWKf9957T7m5uRo0aJDL+69fv75q1qypvXv3lhg4+fr6ytfXt1i7t7e3vL29XT4erOXl5eX4zvkDLi3mH2Ad5h9gHeYfYB3mX+XmyjlzKXAyDEMPPvigli1bpvXr1ys6OvqcfefOnauePXsqNDTUlUNIkn777TcdO3ZMkZGRLm8LAAAAAAAAa3m40nnkyJFauHChFi9erKCgIGVkZCgjI0OnT5926rd3715t3LhR9957b4n7ady4sZYtWyZJys7O1qOPPqotW7Zo3759Wrt2rXr16qWGDRsqISHhAocFAAAAAAAAq7gUOM2ePVsnT55Up06dFBkZ6fhasmSJU7958+apVq1aio+PL3E/qampjt9w5+npqe+//149e/ZUo0aNNGzYMLVq1UpffPFFibfNAQAAAAAAoGJz+Za6spg2bZqmTZtWpv1UqVJFq1atcqUMAAAAAAAAVGAuXeEEAAAAAAAAnA+BEwAAAAAAAEzl0i11AAAAAC4P6UdzlJOXb3UZ5SLtSI7je9GvaHc3Ab5eiq4ZYHUZAC5j7vm3KwAAAIALln40R52fX291GeXu4fd2Wl1CuVr3SCdCJwCWIXACAAAA4KToyqYZ/ePUMCzQ4mrMl3M6TyvWb9YtndoqoIr7/WbsvYezNWZJitteoQagciBwAgAAAFCihmGBir0ixOoyTGe325URKv2jbjV5e3tbXQ4AuCUeGg4AAAAAAABTETgBAAAAAADAVAROAAAAAAAAMBWBEwAAAAAAAExF4AQAAAAAAABTETgBAAAAAADAVAROAAAAAAAAMBWBEwAAAAAAAExF4AQAAAAAAABTETgBAAAAAADAVAROAAAAAAAAMBWBEwAAAAAAAExF4AQAAAAAAABTETgBAAAAAADAVAROAAAAAAAAMBWBEwAAAAAAAExF4AQAAAAAAABTeVldAMom/WiOcvLyrS6jXKQdyXF89/Jyz7dkgK+XomsGWF0GAAAAAACXhHv+697NpB/NUefn11tdRrl7+L2dVpdQrtY90onQCQAAAABwWSBwqgSKrmya0T9ODcMCLa7GfDmn87Ri/Wbd0qmtAqr4Wl2O6fYeztaYJSlue4UaAAAAAAB/R+BUiTQMC1TsFSFWl2E6u92ujFDpH3Wrydvb2+pyAAAAAADAReKh4QAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADCVS4HT9OnTdfXVVysoKEhhYWHq3bu3UlNTnfp06tRJNpvN6euf//xnqfs1DEMTJ05UZGSkqlSpoq5du2rPnj2ujwYAAAAAAACWcylw2rBhg0aOHKktW7Zo9erVstvtio+PV05OjlO/4cOH69ChQ46vZ599ttT9Pvvss3rllVc0Z84cbd26VQEBAUpISNCZM2dcHxEAAAAAAAAs5eVK55UrVzotJyUlKSwsTNu3b1eHDh0c7f7+/oqIiCjTPg3D0IwZMzRhwgT16tVLkvTmm28qPDxcy5cv14ABA1wpEQAAAAAAABZzKXD6u5MnT0qSqlev7tS+aNEiLVy4UBEREerRo4eefPJJ+fv7l7iP9PR0ZWRkqGvXro62kJAQtWnTRps3by4xcMrLy1NeXp5jOSsrS5Jkt9tlt9svZkgVUn5+vuO7O46vaEzuODbJ/c/f5WDfsRzl5BVYXUa5+DnjpNN3dxTg66l6NQKsLgMohp8PqMjc/f3J509UdHz+rNzc+fOnK3+nXHDgVFhYqDFjxqhdu3aKjY11tA8cOFB169ZVVFSUvv/+ez3++ONKTU3VBx98UOJ+MjIyJEnh4eFO7eHh4Y51fzd9+nQlJiYWa09OTj5nsFWZ/ZotSV7atGmT9gdaXU35Wb16tdUllIvL5fy5q8OnpadTLiqbrxQeW/aT1SWUq3/H5SusitVVAM6Kfj5s2bJFv++yuhrA2eXy+YXPn6iI+PzpHtz182dubm6Z+17wu3jkyJHatWuXNm3a5NQ+YsQIx5+bN2+uyMhIdenSRWlpaWrQoMGFHs7JuHHjNHbsWMdyVlaWateurfj4eAUHB5tyjIrkh4NZen7nFrVv317NotxvfHa7XatXr9aNN94ob29vq8sxnbufP3f3w8EsKWWLnr+1uRqGut//UuScydPKL75Rt+uvVoCfr9XlmG7vkRw98t5OXd2W+YeK57sDx6Wd23TttdeqZZ3q598AuITc/fMLnz9RkfH5s3Jz98+fRXeYlcUFBU6jRo3SihUrtHHjRtWqVavUvm3atJEk7d27t8TAqehZT5mZmYqMjHS0Z2ZmKi4ursR9+vr6yte3+BvT29vbLX9geHl5Ob674/iKcP5QERWdv8aRIYq9IsTiasxnt9t1dLd0Tf1Qt3x/Mv9QkfH+REV2ubw/+fyJiojPn5Wbu88/V8bk0m+pMwxDo0aN0rJly/T5558rOjr6vNukpKRIklOY9FfR0dGKiIjQ2rVrHW1ZWVnaunWr2rZt60p5AAAAAAAAqABcCpxGjhyphQsXavHixQoKClJGRoYyMjJ0+vRpSVJaWpqeeuopbd++Xfv27dNHH32kQYMGqUOHDmrRooVjP40bN9ayZcskSTabTWPGjNHUqVP10UcfaefOnRo0aJCioqLUu3dv80YKAAAAAACAS8KlW+pmz54tSerUqZNT+/z58zVkyBD5+PhozZo1mjFjhnJyclS7dm3169dPEyZMcOqfmprq+A13kvTYY48pJydHI0aM0IkTJ9S+fXutXLlSfn5+FzgsAAAAAAAAWMWlwMkwjFLX165dWxs2bHB5PzabTVOmTNGUKVNcKQcAAAAAAAAVkEu31AEAAAAAAADnQ+AEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABM5WV1AQAAAOeSfjRHOXn5VpdRLtKO5Di+e3m550eyAF8vRdcMsLoMAABgAff8dAMAACq99KM56vz8eqvLKHcPv7fT6hLK1bpHOhE6AQBwGSJwAgAAFVLRlU0z+sepYVigxdWYL+d0nlas36xbOrVVQBVfq8sx3d7D2RqzJMVtr1ADAAClI3ACAAAVWsOwQMVeEWJ1Gaaz2+3KCJX+UbeavL29rS4HAADAVDw0HAAAAAAAAKYicAIAAAAAAICpCJwAAAAAAABgKgInAAAAAAAAmIrACQAAAAAAAKYicAIAAAAAAICpCJwAAAAAAABgKgInAAAAAAAAmIrACQAAAAAAAKYicAIAAAAAAICpCJwAAAAAAABgKgInAAAAAAAAmIrACQAAAAAAAKYicAIAAAAAAICpCJwAAAAAAABgKgInAAAAAAAAmIrACQAAAAAAAKYicAIAAAAAAICpCJwAAAAAAABgKgInAAAAAAAAmIrACQAAAAAAAKYicAIAAAAAAICpCJwAAAAAAABgKpcCp+nTp+vqq69WUFCQwsLC1Lt3b6WmpjrWHz9+XA8++KBiYmJUpUoV1alTR6NHj9bJkydL3e+QIUNks9mcvrp163ZhIwIAAAAAAIClXAqcNmzYoJEjR2rLli1avXq17Ha74uPjlZOTI0k6ePCgDh48qOeff167du1SUlKSVq5cqWHDhp133926ddOhQ4ccX2+//faFjQgAAAAAAACW8nKl88qVK52Wk5KSFBYWpu3bt6tDhw6KjY3V+++/71jfoEEDPf3007rrrruUn58vL69zH87X11cREREulg8AAAAAAICKxqXA6e+KbpWrXr16qX2Cg4NLDZskaf369QoLC1O1atV0ww03aOrUqapRo0aJffPy8pSXl+dYzsrKkiTZ7XbZ7XZXh1Hh5efnO7674/iKxuSOY5Pc//y5O3c/f8w/VGTufv6Yf6jI3P38Mf9Qkbn7+WP+VW6ujOmCA6fCwkKNGTNG7dq1U2xsbIl9jh49qqeeekojRowodV/dunVT3759FR0drbS0NI0fP17du3fX5s2b5enpWaz/9OnTlZiYWKw9OTlZ/v7+FzagCuzXbEny0qZNm7Q/0Opqys/q1autLqFcXC7nz11dLueP+YeK6HI5f8w/VESXy/lj/qEiulzOH/OvcsrNzS1zX5thGMaFHOT+++/XZ599pk2bNqlWrVrF1mdlZenGG29U9erV9dFHH8nb27vM+/7ll1/UoEEDrVmzRl26dCm2vqQrnGrXrq2jR48qODj4QoZTof1wMEu9Z2/R8vuvVbMo9xuf3W7X6tWrdeONN7r0Pqks3P38uTt3P3/MP1Rk7n7+mH+oyNz9/DH/UJG5+/lj/lVuWVlZqlmzpuNuttJc0BVOo0aN0ooVK7Rx48YSw6ZTp06pW7duCgoK0rJly1x+E9WvX181a9bU3r17SwycfH195evrW6zd29vbLd+wRbcjenl5ueX4inD+UBFdLueP+YeK6HI5f8w/VESXy/lj/qEiulzOH/OvcnJlTC79ljrDMDRq1CgtW7ZMn3/+uaKjo4v1ycrKUnx8vHx8fPTRRx/Jz8/PlUNIkn777TcdO3ZMkZGRLm8LAAAAAAAAa7kUOI0cOVILFy7U4sWLFRQUpIyMDGVkZOj06dOS/i9sysnJ0dy5c5WVleXoU1BQ4NhP48aNtWzZMklSdna2Hn30UW3ZskX79u3T2rVr1atXLzVs2FAJCQkmDhUAAAAAAACXgku31M2ePVuS1KlTJ6f2+fPna8iQIdqxY4e2bt0qSWrYsKFTn/T0dNWrV0+SlJqa6vgNd56envr++++1YMECnThxQlFRUYqPj9dTTz1V4m1zAAAAAAAAqNhcCpzO93zxTp06nbfP3/dTpUoVrVq1ypUyAAAAAAAAUIG5dEsdAAAAAAAAcD4ETgAAAAAAADAVgRMAAAAAAABM5dIznAAAAABcHmxeWUrPSpWHX6DVpZguPz9fB/MP6qfjP8nLy/3+SZSelS2bV5bVZQC4zLnf364AAAAALpp31a0a//U0q8soV6+tfM3qEsqNd9Uukm6yugwAlzECJwAAAADF2E+00Qs3D1SDMPe8wunLTV+qXft2bnmFU9rhbI1elGZ1GQAuc+73tysAAACAi2bkBys6OEZNa4RYXYrp7Ha70r3S1aR6E3l7e1tdjukKz5yUkX/E6jIAXOZ4aDgAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADCVl9UFAEBFZ/PKUnpWqjz8Aq0uxXT5+fk6mH9QPx3/SV5e7vcjIT0rWzavLKvLAAAAcAmfPysvPn/+H/c7uwBgMu+qWzX+62lWl1GuXlv5mtUllBvvql0k3WR1GQAAAGXG58/Kjc+ffyJwAoDzsJ9ooxduHqgGYe75P0xfbvpS7dq3c8v/YUo7nK3Ri9KsLgMAAMAlfP6svPj8+X/c7+wCgMmM/GBFB8eoaY0Qq0sxnd1uV7pXuppUbyJvb2+ryzFd4ZmTMvKPWF0GAACAS/j8WXnx+fP/8NBwAAAAAAAAmIrACQAAAAAAAKYicAIAAAAAAICpCJwAAAAAAABgKgInAAAAAAAAmIrACQAAAAAAAKYicAIAAAAAAICpCJwAAAAAAABgKgInAAAAAAAAmIrACQAAAAAAAKYicAIAAAAAAICpCJwAAAAAAABgKgInAAAAAAAAmMqlwGn69Om6+uqrFRQUpLCwMPXu3VupqalOfc6cOaORI0eqRo0aCgwMVL9+/ZSZmVnqfg3D0MSJExUZGakqVaqoa9eu2rNnj+ujAQAAAAAAgOVcCpw2bNigkSNHasuWLVq9erXsdrvi4+OVk5Pj6POvf/1LH3/8sZYuXaoNGzbo4MGD6tu3b6n7ffbZZ/XKK69ozpw52rp1qwICApSQkKAzZ85c2KgAAAAAAABgGS9XOq9cudJpOSkpSWFhYdq+fbs6dOigkydPau7cuVq8eLFuuOEGSdL8+fPVpEkTbdmyRddee22xfRqGoRkzZmjChAnq1auXJOnNN99UeHi4li9frgEDBlzo2AAAAAAAAGABlwKnvzt58qQkqXr16pKk7du3y263q2vXro4+jRs3Vp06dbR58+YSA6f09HRlZGQ4bRMSEqI2bdpo8+bNJQZOeXl5ysvLcyxnZWVJkux2u+x2+8UMqULKz893fHfH8RWNyR3HJrn/+XN37n7+mH+oyNz9/DH/UJG5+/lj/qEic/fzx/yr3FwZ0wUHToWFhRozZozatWun2NhYSVJGRoZ8fHxUtWpVp77h4eHKyMgocT9F7eHh4WXeZvr06UpMTCzWnpycLH9/f1eHUuH9mi3ZvHK17It3tbmK1dWUnwWfLbC6hHKRcVqyeVXVpk2btD/Q6mrgql+zJcnL7c/f6tWrrS6hXFwu589dXS7nj/mHiuhyOX/MP1REl8v5Y/5VTrm5uWXue8GB08iRI7Vr1y5t2rTpQndxwcaNG6exY8c6lrOyslS7dm3Fx8crODj4ktdT3n44mKVXDj2lDwrWStlWV4ML4V21i9q3f1LNotzv/enufjiYped3blH79u3d8vzZ7XatXr1aN954o7y9va0ux3Tufv7cnbufP+YfKjJ3P3/MP1Rk7n7+mH+VW9EdZmVxQYHTqFGjtGLFCm3cuFG1atVytEdEROjs2bM6ceKE01VOmZmZioiIKHFfRe2ZmZmKjIx02iYuLq7EbXx9feXr61us3dvb2y3fsF5eXrKfaKMXbh6oBmHuF5Hm5+fry01fql37dvLyuqi7PCuktMPZGr0oTV5eXm75/nR3Re9Jdz9/7vz3Z9F3dxyfu7tczh/zDxXR5XL+mH+oiC6X88f8q5xcGZNL/7o3DEMPPvigli1bpvXr1ys6OtppfatWreTt7a21a9eqX79+kqTU1FQdOHBAbdu2LXGf0dHRioiI0Nq1ax0BU1ZWlrZu3ar777/flfLcmpEfrOjgGDWtEWJ1Kaaz2+1K90pXk+pN3HJCFp45KSP/iNVlAAAAAABwyXi40nnkyJFauHChFi9erKCgIGVkZCgjI0OnT5+W9OfDvocNG6axY8dq3bp12r59u4YOHaq2bds6PTC8cePGWrZsmSTJZrNpzJgxmjp1qj766CPt3LlTgwYNUlRUlHr37m3eSAEAAAAAAHBJuHSF0+zZsyVJnTp1cmqfP3++hgwZIkl66aWX5OHhoX79+ikvL08JCQl67bXXnPqnpqY6fsOdJD322GPKycnRiBEjdOLECbVv314rV66Un5/fBQwJAAAAAAAAVnL5lrrz8fPz06xZszRr1qwy78dms2nKlCmaMmWKK+UAAAAAAACgAnLpljoAAAAAAADgfAicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqbysLgAAAOBcbF5ZSs9KlYdfoNWlmC4/P18H8w/qp+M/ycvL/T6SpWdly+aVZXUZAADAIu736QYAALgN76pbNf7raVaXUa5eW/ma1SWUG++qXSTdZHUZAADAAgROAACgwrKfaKMXbh6oBmHueYXTl5u+VLv27dzyCqe0w9kavSjN6jIAAIBF3O/TDQAAcBtGfrCig2PUtEaI1aWYzm63K90rXU2qN5G3t7fV5Ziu8MxJGflHrC4DAABYhIeGAwAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABM5XLgtHHjRvXo0UNRUVGy2Wxavny503qbzVbi13PPPXfOfU6ePLlY/8aNG7s8GAAAAAAAAFjP5cApJydHLVu21KxZs0pcf+jQIaevefPmyWazqV+/fqXut1mzZk7bbdq0ydXSAAAAAAAAUAF4ubpB9+7d1b1793Ouj4iIcFr+8MMP1blzZ9WvX7/0Qry8im0LAAAAAACAyqdcn+GUmZmpTz75RMOGDTtv3z179igqKkr169fXnXfeqQMHDpRnaQAAAAAAACgnLl/h5IoFCxYoKChIffv2LbVfmzZtlJSUpJiYGB06dEiJiYm6/vrrtWvXLgUFBRXrn5eXp7y8PMdyVlaWJMlut8tut5s7iAogPz/f8d0dx1c0Jnccm+T+58/dufv5Y/6hInP388f8Q0Xm7ueP+YeKzN3PH/OvcnNlTOUaOM2bN0933nmn/Pz8Su3311v0WrRooTZt2qhu3bp69913S7w6avr06UpMTCzWnpycLH9//4svvIL5NVuSvLRp0ybtD7S6mvKzevVqq0soF5fL+XNXl8v5Y/6hIrpczh/zDxXR5XL+mH+oiC6X88f8q5xyc3PL3LfcAqcvvvhCqampWrJkicvbVq1aVY0aNdLevXtLXD9u3DiNHTvWsZyVlaXatWsrPj5ewcHBF1xzRfXDwSw9v3OL2rdvr2ZR7jc+u92u1atX68Ybb5S3t7fV5ZjO3c+fu3P388f8Q0Xm7ueP+YeKzN3PH/MPFZm7nz/mX+VWdIdZWZRb4DR37ly1atVKLVu2dHnb7OxspaWl6e677y5xva+vr3x9fYu1e3t7u+Ub1svLy/HdHcdXhPOHiuhyOX/MP1REl8v5Y/6hIrpczh/zDxXR5XL+mH+Vkytjcvmh4dnZ2UpJSVFKSookKT09XSkpKU4P+c7KytLSpUt17733lriPLl26aObMmY7lRx55RBs2bNC+ffv01VdfqU+fPvL09NQdd9zhankAAAAAAACwmMtXOG3btk2dO3d2LBfd2jZ48GAlJSVJkt555x0ZhnHOwCgtLU1Hjx51LP/222+64447dOzYMYWGhqp9+/basmWLQkNDXS0PAAAAAAAAFnM5cOrUqZMMwyi1z4gRIzRixIhzrt+3b5/T8jvvvONqGQAAAAAAAKigXL6lDgAAAAAAACgNgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADAVgRMAAAAAAABMReAEAAAAAAAAUxE4AQAAAAAAwFQETgAAAAAAADCVy4HTxo0b1aNHD0VFRclms2n58uVO64cMGSKbzeb01a1bt/Pud9asWapXr578/PzUpk0bff31166WBgAAAAAAgArA5cApJydHLVu21KxZs87Zp1u3bjp06JDj6+233y51n0uWLNHYsWM1adIk7dixQy1btlRCQoIOHz7sankAAAAAAACwmJerG3Tv3l3du3cvtY+vr68iIiLKvM8XX3xRw4cP19ChQyVJc+bM0SeffKJ58+bpiSeecLVEAAAAAAAAWMjlwKks1q9fr7CwMFWrVk033HCDpk6dqho1apTY9+zZs9q+fbvGjRvnaPPw8FDXrl21efPmErfJy8tTXl6eYzkrK0uSZLfbZbfbTRxJxXDq9J9j/e7AceXn51tcjflyzuRp2xGp5i9HFODna3U5ptt7JEeSlJ+f75bvT3fH/KvcmH+VW9Gcc9fzVzQmdxyb5P7nz93x869y4+df5cb8q9zcff65MibTA6du3bqpb9++io6OVlpamsaPH6/u3btr8+bN8vT0LNb/6NGjKigoUHh4uFN7eHi4du/eXeIxpk+frsTExGLtycnJ8vf3N2cgFcjmTJskT/37wx+tLqUceemtvd9aXUS5+mbzJu2vYnUVcBXzzz0w/yqnX7MlyUubNm3S/kCrqyk/q1evtrqEcnG5nD93xc8/98DPv8qJ+ece3HX+5ebmlrmv6YHTgAEDHH9u3ry5WrRooQYNGmj9+vXq0qWLKccYN26cxo4d61jOyspS7dq1FR8fr+DgYFOOUZFcm3NWzX86rPqhAariXTy0q+x+zjipx5b9pGf7NFGjiBCryykXAb6eqlcjwOoycAGYf5Uf86/y+uFglp7fuUXt27dXsyj3+/lut9u1evVq3XjjjfL29ra6HNO5+/lzd/z8q/z4+Vd5Mf8qP3eef0V3mJVFudxS91f169dXzZo1tXfv3hIDp5o1a8rT01OZmZlO7ZmZmed8DpSvr698fYtfeuft7e2WH9jCq3rrzrbRVpdR7hpFhCiubsm3XgJWYf4B1vHy8nJ8d8ef70Xc9fPL5XL+3BU//wDrMP9QkbnyM93l31Lnqt9++03Hjh1TZGRkiet9fHzUqlUrrV271tFWWFiotWvXqm3btuVdHgAAAAAAAEzmcuCUnZ2tlJQUpaSkSJLS09OVkpKiAwcOKDs7W48++qi2bNmiffv2ae3aterVq5caNmyohIQExz66dOmimTNnOpbHjh2r//73v1qwYIF++ukn3X///crJyXH81joAAAAAAABUHi7fUrdt2zZ17tzZsVz0LKXBgwdr9uzZ+v7777VgwQKdOHFCUVFRio+P11NPPeV0C1xaWpqOHj3qWO7fv7+OHDmiiRMnKiMjQ3FxcVq5cmWxB4kDAAAAAACg4nM5cOrUqZMMwzjn+lWrVp13H/v27SvWNmrUKI0aNcrVcgAAAAAAAFDBlPsznAAAAAAAAHB5IXACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJjKy+oCAAAASnLaXiBJ2vX7SYsrKR85p/O07YgUsf8PBVTxtboc0+09nG11CQAAwEIETgAAoEJK+/+BxRMf7LS4kvLkpbf2fmN1EeUqwJePmwAAXI74BAAAACqk+GYRkqQGYYGq4u1pcTXmSz10Ug+/t1Mv3NpcMZEhVpdTLgJ8vRRdM8DqMgAAgAUInAAAQIVUPcBHA66pY3UZ5SY/P1+S1CA0QLFXuGfgBAAALl88NBwAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJjK5cBp48aN6tGjh6KiomSz2bR8+XLHOrvdrscff1zNmzdXQECAoqKiNGjQIB08eLDUfU6ePFk2m83pq3Hjxi4PBgAAAAAAANZzOXDKyclRy5YtNWvWrGLrcnNztWPHDj355JPasWOHPvjgA6Wmpqpnz57n3W+zZs106NAhx9emTZtcLQ0AAAAAAAAVgJerG3Tv3l3du3cvcV1ISIhWr17t1DZz5kxdc801OnDggOrUqXPuQry8FBER4Wo5AAAAAAAAqGBcDpxcdfLkSdlsNlWtWrXUfnv27FFUVJT8/PzUtm1bTZ8+/ZwBVV5envLy8hzLWVlZkv68pc9ut5tWOy6N/Px8x3fOH3BpMf8A6zD/AOsw/wDrMP8qN1fOWbkGTmfOnNHjjz+uO+64Q8HBwefs16ZNGyUlJSkmJkaHDh1SYmKirr/+eu3atUtBQUHF+k+fPl2JiYnF2pOTk+Xv72/qGFD+fs2WJC9t2bJFv++yuhrg8sL8A6zD/AOsw/wDrMP8q9xyc3PL3LfcAie73a7bb79dhmFo9uzZpfb96y16LVq0UJs2bVS3bl29++67GjZsWLH+48aN09ixYx3LWVlZql27tuLj40sNtlAxfXfguLRzm6699lq1rFPd6nKAywrzD7AO8w+wDvMPsA7zr3IrusOsLMolcCoKm/bv36/PP//c5RCoatWqatSokfbu3Vviel9fX/n6+hZr9/b2lre39wXVDOt4eXk5vnP+gEuL+QdYh/kHWIf5B1iH+Ve5uXLOXP4tdedTFDbt2bNHa9asUY0aNVzeR3Z2ttLS0hQZGWl2eQAAAAAAAChnLgdO2dnZSklJUUpKiiQpPT1dKSkpOnDggOx2u2699VZt27ZNixYtUkFBgTIyMpSRkaGzZ8869tGlSxfNnDnTsfzII49ow4YN2rdvn7766iv16dNHnp6euuOOOy5+hAAAAAAAALikXL6lbtu2bercubNjuehZSoMHD9bkyZP10UcfSZLi4uKctlu3bp06deokSUpLS9PRo0cd63777TfdcccdOnbsmEJDQ9W+fXtt2bJFoaGhrpYHAAAAAAAAi7kcOHXq1EmGYZxzfWnriuzbt89p+Z133nG1DAAAAAAAAFRQpj/DCQAAAAAAAJc3AicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKkInAAAAAAAAGAqAicAAAAAAACYisAJAAAAAAAApiJwAgAAAAAAgKlcDpw2btyoHj16KCoqSjabTcuXL3dabxiGJk6cqMjISFWpUkVdu3bVnj17zrvfWbNmqV69evLz81ObNm309ddfu1oaAAAAAAAAKgCXA6ecnBy1bNlSs2bNKnH9s88+q1deeUVz5szR1q1bFRAQoISEBJ05c+ac+1yyZInGjh2rSZMmaceOHWrZsqUSEhJ0+PBhV8sDAAAAAACAxVwOnLp3766pU6eqT58+xdYZhqEZM2ZowoQJ6tWrl1q0aKE333xTBw8eLHYl1F+9+OKLGj58uIYOHaqmTZtqzpw58vf317x581wtDwAAAAAAABbzMnNn6enpysjIUNeuXR1tISEhatOmjTZv3qwBAwYU2+bs2bPavn27xo0b52jz8PBQ165dtXnz5hKPk5eXp7y8PMdyVlaWJMlut8tut5s1nMtWbm6uUlNTL9nxfj50UnkZe7UrxUdnM0Mu2XFjYmLk7+9/yY4HlAXzD7AO8w+wDvMPsA7zD65wJXMxNXDKyMiQJIWHhzu1h4eHO9b93dGjR1VQUFDiNrt37y5xm+nTpysxMbFYe3JyMm8gE6Slpenhhx++5Me9e8GlPd4LL7ygBg0aXNqDAufB/AOsw/wDrMP8A6zD/IMrcnNzy9zX1MDpUhk3bpzGjh3rWM7KylLt2rUVHx+v4OBgCytzD7m5uWrfvv0lO1726Tyt+uIbJVx/tQKr+F6y45JwoyJi/gHWYf4B1mH+AdZh/sEVRXeYlYWpgVNERIQkKTMzU5GRkY72zMxMxcXFlbhNzZo15enpqczMTKf2zMxMx/7+ztfXV76+xd+Y3t7e8vb2vsDqUSQkJETXXHPNJTue3W7XqRPHdf1113L+cNlj/gHWYf4B1mH+AdZh/sEVrpwzlx8aXpro6GhFRERo7dq1jrasrCxt3bpVbdu2LXEbHx8ftWrVymmbwsJCrV279pzbAAAAAAAAoOJy+Qqn7Oxs7d2717Gcnp6ulJQUVa9eXXXq1NGYMWM0depUXXnllYqOjtaTTz6pqKgo9e7d27FNly5d1KdPH40aNUqSNHbsWA0ePFitW7fWNddcoxkzZignJ0dDhw69+BECAAAAAADgknI5cNq2bZs6d+7sWC56ltLgwYOVlJSkxx57TDk5ORoxYoROnDih9u3ba+XKlfLz83Nsk5aWpqNHjzqW+/fvryNHjmjixInKyMhQXFycVq5cWexB4gAAAAAAAKj4XA6cOnXqJMMwzrneZrNpypQpmjJlyjn77Nu3r1jbqFGjHFc8AQAAAAAAoPIy9RlOAAAAAAAAAIETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwFYETAAAAAAAATEXgBAAAAAAAAFMROAEAAAAAAMBUBE4AAAAAAAAwlZfVBZjBMAxJUlZWlsWV4ELY7Xbl5uYqKytL3t7eVpcDXFaYf4B1mH+AdZh/gHWYf5VbUe5SlMOUxi0Cp1OnTkmSateubXElAAAAAAAA7u3UqVMKCQkptY/NKEssVcEVFhbq4MGDCgoKks1ms7ocuCgrK0u1a9fWr7/+quDgYKvLAS4rzD/AOsw/wDrMP8A6zL/KzTAMnTp1SlFRUfLwKP0pTW5xhZOHh4dq1apldRm4SMHBwfyFA1iE+QdYh/kHWIf5B1iH+Vd5ne/KpiI8NBwAAAAAAACmInACAAAAAACAqQicYDlfX19NmjRJvr6+VpcCXHaYf4B1mH+AdZh/gHWYf5cPt3hoOAAAAAAAACoOrnACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInCCpTIyMvTQQw+pYcOG8vPzU3h4uNq1a6fZs2crNzfX6vKACmvIkCGy2Wz6z3/+49S+fPly2Ww2x7JhGHrjjTfUpk0bBQYGqmrVqmrdurVmzJhR6hzbuHGjevTooaioKNlsNi1fvrxYH5vNVuLXc889Z9o4gcquaK7abDb5+PioYcOGmjJlivLz8yX9OUf/+9//qm3btgoODlZgYKCaNWumhx56SHv37rW4eqDiKc85VZaffZMnT1bjxo0VEBCgatWqqWvXrtq6dWt5DBVwO3+dv97e3oqOjtZjjz2mM2fOWF0aygmBEyzzyy+/6KqrrlJycrKmTZumb7/9Vps3b9Zjjz2mFStWaM2aNVaXCFRofn5+euaZZ/THH3+cs8/dd9+tMWPGqFevXlq3bp1SUlL05JNP6sMPP1RycvI5t8vJyVHLli01a9asc/Y5dOiQ09e8efNks9nUr1+/ixoX4G66deumQ4cOac+ePXr44Yc1efJkPffcczIMQwMHDtTo0aN10003KTk5WT/++KPmzp0rPz8/TZ061erSgQqpvOZUWX72NWrUSDNnztTOnTu1adMm1atXT/Hx8Tpy5IjZwwTcUtH8/eWXX/TSSy/p9ddf16RJk6wuC+XEZhiGYXURuDx169ZNP/zwg3bv3q2AgIBi6w3DcLpSA8D/GTJkiI4dO6a9e/eqR48eevbZZyX9eYVTnz59ZBiG3n33XfXv31/Lly9Xr169nLY3DENZWVkKCQk577FsNpuWLVum3r17l9qvd+/eOnXqlNauXXvB4wLczZAhQ3TixAmnKyXi4+N16tQpPfTQQ7rjjjv04YcfqmfPnsW25ecgUNylmlNl/dlX9LN0zZo16tKliytDAS47Jc3ffv36KT09XTt27LCuMJQbrnCCJY4dO6bk5GSNHDmyxLBJEh+ygfPw9PTUtGnT9Oqrr+q3334rtn7RokWKiYkpFjZJf86vsoRNZZWZmalPPvlEw4YNM22fgLuqUqWKzp49q7ffflsxMTEl/sNY4ucgUFZWzamzZ8/qjTfeUEhIiFq2bGnqvoHLwa5du/TVV1/Jx8fH6lJQTgicYIm9e/fKMAzFxMQ4tdesWVOBgYEKDAzU448/blF1QOXRp08fxcXFlXgp8p49e4rNsfKyYMECBQUFqW/fvpfkeEBlZBiG1qxZo1WrVumGG27Qzz//XGyOjhkzxvFzsFatWhZVClQOVs2pFStWKDAwUH5+fnrppZe0evVq1axZ05R9A+7ur/OnefPmOnz4sB599FGry0I5IXBChfL1118rJSVFzZo1U15entXlAJXCM888owULFuinn35yai/LHdNffPGF44N4YGCgFi1adEE1zJs3T3feeaf8/PwuaHvAnf31w3X37t3Vv39/TZ48ucS+//73v5WSkqKJEycqOzv70hYKVBIXO6cu9mdf586dlZKSoq+++krdunXT7bffrsOHD1/ssIDLQtH82bp1qwYPHqyhQ4fy/E835mV1Abg8NWzYUDabTampqU7t9evXl/TnpdEAyqZDhw5KSEjQuHHjNGTIEEd7o0aNtHv37lK3bd26tVJSUhzL4eHhLh//iy++UGpqqpYsWeLytsDloHPnzpo9e7Z8fHwUFRUlL68/P35deeWVxX4OhoaGKjQ0VGFhYVaUClQKFzunLvZnX0BAgBo2bKiGDRvq2muv1ZVXXqm5c+dq3LhxFz4o4DJRNH+kP//DsmXLlpo7dy6PZXBTXOEES9SoUUM33nijZs6cqZycHKvLASq9//znP/r444+1efNmR9vAgQP1888/68MPPyzW3zAMnTx5UlWqVHF8aG7YsKGCgoJcPvbcuXPVqlUrnl8BnEPRh+s6deo4/mEsSXfccYdSU1NLnKMAzu1i55QZP/v+qrCwkCvzgQvg4eGh8ePHa8KECTp9+rTV5aAcEDjBMq+99pry8/PVunVrLVmyRD/99JNSU1O1cOFC7d69W56enlaXCFQazZs315133qlXXnnF0Xb77berf//+uuOOOzRt2jRt27ZN+/fv14oVK9S1a1etW7funPvLzs5WSkqK43+A09PTlZKSogMHDjj1y8rK0tKlS3XvvfeWy7gAdzZgwADdeuutGjBggKZMmaKtW7dq37592rBhg5YsWcLPQcBFFzunzvezLycnR+PHj9eWLVu0f/9+bd++Xffcc49+//133XbbbeU9PMAt3XbbbfL09NSsWbOsLgXlgMAJlmnQoIG+/fZbde3aVePGjVPLli3VunVrvfrqq3rkkUf01FNPWV0iUKlMmTJFhYWFjmWbzabFixfrxRdf1PLly9WxY0e1aNFCkydPVq9evZSQkHDOfW3btk1XXXWVrrrqKknS2LFjddVVV2nixIlO/d555x0ZhqE77rijfAYFuDGbzaYlS5ZoxowZ+vTTT9WlSxfFxMTonnvuUe3atbVp0yarSwQqlYudU+f72efp6andu3erX79+atSokXr06KFjx47piy++ULNmzcp9fIA78vLy0qhRo/Tss89y54sbshlleaosAAAAAAAAUEZc4QQAAAAAAABTETgBAAAAAADAVAROAAAAAAAAMBWBEwAAAAAAAExF4AQAAAAAAABTETgBAAAAAADAVAROAAAAAAAAMBWBEwAAcEudOnWSzWaTzWZTSkqKJOnLL79U8+bN5e3trd69e2v9+vWy2Ww6ceKEJCkpKUlVq1a1rGZX7du3z2l8Zpk8ebLjtZsxY4ap+wYAAJcHAicAAOC2hg8frkOHDik2NlaSNHbsWMXFxSk9PV1JSUm67rrrdOjQIYWEhFhc6fkNGTJEvXv3dmqrXbu20/jM8sgjj+jQoUOqVauWqfsFAACXDwInAADgtvz9/RURESEvLy9JUlpamm644QbVqlVLVatWlY+PjyIiImSz2Syr0W63X/C2np6eTuMzS2BgoCIiIuTp6WnqfgEAwOWDwAkAALi9olvPjh07pnvuuUc2m01JSUnFbqn7u8mTJysuLk7z5s1TnTp1FBgYqAceeEAFBQV69tlnFRERobCwMD399NNlrsVms2n27Nnq2bOnAgIC9PTTT6ugoEDDhg1TdHS0qlSpopiYGL388stOdSxYsEAffvih41a39evXF7ulrmg8a9euVevWreXv76/rrrtOqampTjVMnTpVYWFhCgoK0r333qsnnnhCcXFxrr6sAAAA50TgBAAA3F7RrWfBwcGaMWOGDh06pP79+5dp27S0NH322WdauXKl3n77bc2dO1c333yzfvvtN23YsEHPPPOMJkyYoK1bt5a5nsmTJ6tPnz7auXOn7rnnHhUWFqpWrVpaunSpfvzxR02cOFHjx4/Xu+++K+nPW9xuv/12devWTYcOHdKhQ4d03XXXnXP///73v/XCCy9o27Zt8vLy0j333ONYt2jRIj399NN65plntH37dtWpU0ezZ88uc+0AAABlYe711wAAABVQ0a1nNptNISEhioiIKPO2hYWFmjdvnoKCgtS0aVN17txZqamp+vTTT+Xh4aGYmBg988wzWrdundq0aVOmfQ4cOFBDhw51aktMTHT8OTo6Wps3b9a7776r22+/XYGBgapSpYry8vLKVPvTTz+tjh07SpKeeOIJ3XzzzTpz5oz8/Pz06quvatiwYY7jT5w4UcnJycrOzi7rSwIAAHBeXOEEAABQinr16ikoKMixHB4erqZNm8rDw8Op7fDhw2XeZ+vWrYu1zZo1S61atVJoaKgCAwP1xhtv6MCBAxdUc4sWLRx/joyMlCRHfampqbrmmmuc+v99GQAA4GIROAEAAJTC29vbadlms5XYVlhYWOZ9BgQEOC2/8847euSRRzRs2DAlJycrJSVFQ4cO1dmzZy+65qIHortSHwAAwMUicAIAALDYl19+qeuuu04PPPCArrrqKjVs2FBpaWlOfXx8fFRQUHDRx4qJidE333zj1Pb3ZQAAgItF4AQAAGCxK6+8Utu2bdOqVav0888/68knnywWAtWrV0/ff/+9UlNTdfToUdnt9gs61oMPPqi5c+dqwYIF2rNnj6ZOnarvv//ecSUUAACAGQicAAAALHbfffepb9++6t+/v9q0aaNjx47pgQcecOozfPhwxcTEqHXr1goNDdWXX355Qce68847NW7cOD3yyCP6xz/+ofT0dA0ZMkR+fn5mDAUAAECSZDMMw7C6CAAAALN16tRJcXFxmjFjhtWlVHg33nijIiIi9NZbbzm116tXT2PGjNGYMWOsKQwAAFRaXOEEAADc1muvvabAwEDt3LnT6lIqjNzcXL344ov64YcftHv3bk2aNElr1qzR4MGDHX2mTZumwMDAC/4teQAAAFzhBAAA3NLvv/+u06dPS5Lq1KkjHx+fcj/mokWLdN9995W4rm7duvrhhx/KvYbzOX36tHr06KFvv/1WZ86cUUxMjCZMmKC+ffs6+hw/flzHjx+XJIWGhiokJMSqcgEAQCVF4AQAAGCSU6dOKTMzs8R13t7eqlu37iWuCAAAwBoETgAAAAAAADAVz3ACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACmInACAAAAAACAqQicAAAAAAAAYCoCJwAAAAAAAJiKwAkAAAAAAACm+n9hIpXJC19dTgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "df[['film_replacement_cost', 'film_rating']].boxplot(by='film_rating', figsize=(14,6))" + ] + }, + { + "cell_type": "code", + "source": [ + "# prompt: 10 random numbers using pandas\n", + "\n", + "s = pd.Series(np.random.randint(0,100,10))\n", + "s" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 398 + }, + "id": "rq351TRgLfJm", + "outputId": "ed0fbefa-a911-48ac-8822-ca8f885475b1" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 39\n", + "1 87\n", + "2 46\n", + "3 88\n", + "4 81\n", + "5 37\n", + "6 25\n", + "7 77\n", + "8 72\n", + "9 9\n", + "dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
039
187
246
388
481
537
625
777
872
99
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UF-aQ9uvAWOB" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### Add and calculate a new `rental_days` column\n", + "\n", + "This numeric column should have the count of days between `rental_date` and `return_date`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gX-Ck56xAWOB" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "MbwHoy_bAWOB" + }, + "outputs": [], + "source": [ + "df['rental_days'] = df[['rental_date', 'return_date']].apply(lambda x: (x[1] - x[0]).days, axis=1)\n", + "\n", + "df['rental_days'].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gzAGGlrlAWOC" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### Analyze the distribution of `rental_days`\n", + "\n", + "- Calculate the mean of `rental_days`.\n", + "- Show a density (KDE) of `rental_days`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "eyUMptT6AWOC" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "AWvavIPIAWOC" + }, + "outputs": [], + "source": [ + "df['rental_days'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mxu4KZHBAWOD" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "PqdOyMUuAWOD" + }, + "outputs": [], + "source": [ + "ax = df['rental_days'].plot(kind='density', figsize=(14,6))\n", + "ax.axvline(df['rental_days'].mean(), color='red')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WNqQVYPtAWOD" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### Add and calculate a new `film_daily_rental_rate` column\n", + "\n", + "This value should be the division of `film_rental_rate` by `film_rental_duration`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZeZxPtOOAWOE" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "TiyOaJn7AWOL" + }, + "outputs": [], + "source": [ + "df['film_daily_rental_rate'] = df['film_rental_rate'] / df['film_rental_duration']\n", + "\n", + "df['film_daily_rental_rate'].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1hHLyDLEAWOL" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### Analyze the distribution of `film_daily_rental_rate`\n", + "\n", + "- Calculate the mean of `film_daily_rental_rate`.\n", + "- Show a density (KDE) of `film_daily_rental_rate`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ztfEtcuvAWOL" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "ryep5wCFAWOL" + }, + "outputs": [], + "source": [ + "df['film_daily_rental_rate'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mRSUUxKBAWOM" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "RjxTclkwAWOM" + }, + "outputs": [], + "source": [ + "ax = df['film_daily_rental_rate'].plot(kind='density', figsize=(14,6))\n", + "ax.axvline(df['film_daily_rental_rate'].mean(), color='red')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ndUs6RGHAWOM" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### List 10 films with the lowest daily rental rate" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uGkpnC9RAWOM" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "tLyXwNIOAWOM" + }, + "outputs": [], + "source": [ + "df.loc[df['film_daily_rental_rate'] == df['film_daily_rental_rate'].min()].head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q3h-WKjdAWON" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### List 10 films with the highest daily rental rate" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "O_lmUkCBAWON" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "jtglP53kAWON" + }, + "outputs": [], + "source": [ + "df.loc[df['film_daily_rental_rate'] == df['film_daily_rental_rate'].max()].head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hMMiFskyAWOO" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### How many rentals were made in Lethbridge city?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "T8KHe-l4AWOO" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "nvZgF7YrAWOO" + }, + "outputs": [], + "source": [ + "df.loc[df['rental_store_city'] == 'Lethbridge'].shape[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eZudSOMnAWOP" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### How many rentals of each film rating were made in Lethbridge city?\n", + "\n", + "Show a bar plot with each film rating count." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "qk572APsAWOP" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "QEV7V95TAWOP" + }, + "outputs": [], + "source": [ + "df.loc[df['rental_store_city'] == 'Lethbridge', 'film_rating'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "T6728dIvAWOQ" + }, + "outputs": [], + "source": [ + "df.loc[df['rental_store_city'] == 'Lethbridge', 'film_rating'].value_counts().plot(kind='bar', figsize=(14,6))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bwxuFimVAWOQ" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### How many rentals were made in Woodridge city with rental duration higher than 5 days?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AzyWh6ObAWOR" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "bMaeo4JTAWOR" + }, + "outputs": [], + "source": [ + "df.loc[(df['rental_store_city'] == 'Woodridge') & (df['film_rental_duration'] > 5)].shape[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Exm79VeIAWOR" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "### How many rentals were made at the store with id 2 or with replacement cost lower than 10.99 USD?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "G2dFsqTBAWOS" + }, + "outputs": [], + "source": [ + "# your code goes here\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cell_type": "solution", + "id": "P-GlK-7NAWOS" + }, + "outputs": [], + "source": [ + "df.loc[(df['store_id'] == 2) | (df['film_replacement_cost'] < 10.99)].shape[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MFRIJocbAWOS" + }, + "source": [ + "![purple-divider](https://user-images.githubusercontent.com/7065401/52071927-c1cd7100-2562-11e9-908a-dde91ba14e59.png)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + }, + "colab": { + "provenance": [], + "include_colab_link": true + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/Lecture_1.ipynb b/Lecture_1.ipynb index d71df93..1c38390 100644 --- a/Lecture_1.ipynb +++ b/Lecture_1.ipynb @@ -1,2519 +1,5062 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![rmotr](https://user-images.githubusercontent.com/7065401/52071918-bda15380-2562-11e9-828c-7f95297e4a82.png)\n", - "
\n", - "\n", - "\n", - "\n", - "# Bike store sales\n", - "\n", - "In this class we'll be analyzing sales made on bike stores.\n", - "\n", - "[Follow this data in a Google Spreadsheet](https://docs.google.com/spreadsheets/d/1NOe_UrPx6ULF2C5MvHmZ9ODuw8t9M77Q1Y64gP-7JHA/edit?usp=sharing)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![purple-divider](https://user-images.githubusercontent.com/7065401/52071927-c1cd7100-2562-11e9-908a-dde91ba14e59.png)\n", - "\n", - "## Hands on! " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "## Loading our data:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date,Day,Month,Year,Customer_Age,Age_Group,Customer_Gender,Country,State,Product_Category,Sub_Category,Product,Order_Quantity,Unit_Cost,Unit_Price,Profit,Cost,Revenue\n", - "2013-11-26,26,November,2013,19,Youth (<25),M,Canada,British Columbia,Accessories,Bike Racks,Hitch Rack - 4-Bike,8,45,120,590,360,950\n", - "2015-11-26,26,November,2015,19,Youth (<25),M,Canada,British Columbia,Accessories,Bike Racks,Hitch Rack - 4-Bike,8,45,120,590,360,950\n", - "2014-03-23,23,March,2014,49,Adults (35-64),M,Australia,New South Wales,Accessories,Bike Racks,Hitch Rack - 4-Bike,23,45,120,1366,1035,2401\n", - "2016-03-23,23,March,2016,49,Adults (35-64),M,Australia,New South Wales,Accessories,Bike Racks,Hitch Rack - 4-Bike,20,45,120,1188,900,2088\n", - "2014-05-15,15,May,2014,47,Adults (35-64),F,Australia,New South Wales,Accessories,Bike Racks,Hitch Rack - 4-Bike,4,45,120,238,180,418\n", - "2016-05-15,15,May,2016,47,Adults (35-64),F,Australia,New South Wales,Accessories,Bike Racks,Hitch Rack - 4-Bike,5,45,120,297,225,522\n", - "2014-05-22,22,May,2014,47,Adults (35-64),F,Australia,Victoria,Accessories,Bike Racks,Hitch Rack - 4-Bike,4,45,120,199,180,379\n", - "2016-05-22,22,May,2016,47,Adults (35-64),F,Australia,Victoria,Accessories,Bike Racks,Hitch Rack - 4-Bike,2,45,120,100,90,190\n", - "2014-02-22,22,February,2014,35,Adults (35-64),M,Australia,Victoria,Accessories,Bike Racks,Hitch Rack - 4-Bike,22,45,120,1096,990,2086\n" - ] - } - ], - "source": [ - "!head data/sales_data.csv" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "sales = pd.read_csv(\n", - " 'data/sales_data.csv',\n", - " parse_dates=['Date'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "## The data at a glance:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DateDayMonthYearCustomer_AgeAge_GroupCustomer_GenderCountryStateProduct_CategorySub_CategoryProductOrder_QuantityUnit_CostUnit_PriceProfitCostRevenue
02013-11-2626November201319Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950
12015-11-2626November201519Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950
22014-03-2323March201449Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike2345120136610352401
32016-03-2323March201649Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike204512011889002088
42014-05-1515May201447Adults (35-64)FAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike445120238180418
\n", - "
" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yPahq8hxqTyx" + }, + "source": [ + "![rmotr](https://user-images.githubusercontent.com/7065401/52071918-bda15380-2562-11e9-828c-7f95297e4a82.png)\n", + "
\n", + "\n", + "\n", + "\n", + "# Bike store sales\n", + "\n", + "In this class we'll be analyzing sales made on bike stores.\n", + "\n", + "[Follow this data in a Google Spreadsheet](https://docs.google.com/spreadsheets/d/1NOe_UrPx6ULF2C5MvHmZ9ODuw8t9M77Q1Y64gP-7JHA/edit?usp=sharing)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vNAsv2iVqTyz" + }, + "source": [ + "![purple-divider](https://user-images.githubusercontent.com/7065401/52071927-c1cd7100-2562-11e9-908a-dde91ba14e59.png)\n", + "\n", + "## Hands on!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "egAAzh4YqTy0" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IqqS6kMJqTy1" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "## Loading our data:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "7jsyBuToqTy2", + "outputId": "dec1baac-867d-49dd-ace6-34a672a0cf30", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Date,Day,Month,Year,Customer_Age,Age_Group,Customer_Gender,Country,State,Product_Category,Sub_Category,Product,Order_Quantity,Unit_Cost,Unit_Price,Profit,Cost,Revenue\n", + "2013-11-26,26,November,2013,19,Youth (<25),M,Canada,British Columbia,Accessories,Bike Racks,Hitch Rack - 4-Bike,8,45,120,590,360,950\n", + "2015-11-26,26,November,2015,19,Youth (<25),M,Canada,British Columbia,Accessories,Bike Racks,Hitch Rack - 4-Bike,8,45,120,590,360,950\n", + "2014-03-23,23,March,2014,49,Adults (35-64),M,Australia,New South Wales,Accessories,Bike Racks,Hitch Rack - 4-Bike,23,45,120,1366,1035,2401\n", + "2016-03-23,23,March,2016,49,Adults (35-64),M,Australia,New South Wales,Accessories,Bike Racks,Hitch Rack - 4-Bike,20,45,120,1188,900,2088\n", + "2014-05-15,15,May,2014,47,Adults (35-64),F,Australia,New South Wales,Accessories,Bike Racks,Hitch Rack - 4-Bike,4,45,120,238,180,418\n", + "2016-05-15,15,May,2016,47,Adults (35-64),F,Australia,New South Wales,Accessories,Bike Racks,Hitch Rack - 4-Bike,5,45,120,297,225,522\n", + "2014-05-22,22,May,2014,47,Adults (35-64),F,Australia,Victoria,Accessories,Bike Racks,Hitch Rack - 4-Bike,4,45,120,199,180,379\n", + "2016-05-22,22,May,2016,47,Adults (35-64),F,Australia,Victoria,Accessories,Bike Racks,Hitch Rack - 4-Bike,2,45,120,100,90,190\n", + "2014-02-22,22,February,2014,35,Adults (35-64),M,Australia,Victoria,Accessories,Bike Racks,Hitch Rack - 4-Bike,22,45,120,1096,990,2086\n" + ] + } ], - "text/plain": [ - " Date Day Month Year Customer_Age Age_Group \\\n", - "0 2013-11-26 26 November 2013 19 Youth (<25) \n", - "1 2015-11-26 26 November 2015 19 Youth (<25) \n", - "2 2014-03-23 23 March 2014 49 Adults (35-64) \n", - "3 2016-03-23 23 March 2016 49 Adults (35-64) \n", - "4 2014-05-15 15 May 2014 47 Adults (35-64) \n", - "\n", - " Customer_Gender Country State Product_Category Sub_Category \\\n", - "0 M Canada British Columbia Accessories Bike Racks \n", - "1 M Canada British Columbia Accessories Bike Racks \n", - "2 M Australia New South Wales Accessories Bike Racks \n", - "3 M Australia New South Wales Accessories Bike Racks \n", - "4 F Australia New South Wales Accessories Bike Racks \n", - "\n", - " Product Order_Quantity Unit_Cost Unit_Price Profit Cost \\\n", - "0 Hitch Rack - 4-Bike 8 45 120 590 360 \n", - "1 Hitch Rack - 4-Bike 8 45 120 590 360 \n", - "2 Hitch Rack - 4-Bike 23 45 120 1366 1035 \n", - "3 Hitch Rack - 4-Bike 20 45 120 1188 900 \n", - "4 Hitch Rack - 4-Bike 4 45 120 238 180 \n", - "\n", - " Revenue \n", - "0 950 \n", - "1 950 \n", - "2 2401 \n", - "3 2088 \n", - "4 418 " + "source": [ + "!head sales_data.csv" ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(113036, 18)" + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "WhhDXUCNqTy3" + }, + "outputs": [], + "source": [ + "sales = pd.read_csv(\n", + " 'sales_data.csv',\n", + " parse_dates=['Date'])" ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 113036 entries, 0 to 113035\n", - "Data columns (total 18 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 Date 113036 non-null datetime64[ns]\n", - " 1 Day 113036 non-null int64 \n", - " 2 Month 113036 non-null object \n", - " 3 Year 113036 non-null int64 \n", - " 4 Customer_Age 113036 non-null int64 \n", - " 5 Age_Group 113036 non-null object \n", - " 6 Customer_Gender 113036 non-null object \n", - " 7 Country 113036 non-null object \n", - " 8 State 113036 non-null object \n", - " 9 Product_Category 113036 non-null object \n", - " 10 Sub_Category 113036 non-null object \n", - " 11 Product 113036 non-null object \n", - " 12 Order_Quantity 113036 non-null int64 \n", - " 13 Unit_Cost 113036 non-null int64 \n", - " 14 Unit_Price 113036 non-null int64 \n", - " 15 Profit 113036 non-null int64 \n", - " 16 Cost 113036 non-null int64 \n", - " 17 Revenue 113036 non-null int64 \n", - "dtypes: datetime64[ns](1), int64(9), object(8)\n", - "memory usage: 15.5+ MB\n" - ] - } - ], - "source": [ - "sales.info()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DayYearCustomer_AgeOrder_QuantityUnit_CostUnit_PriceProfitCostRevenue
count113036.000000113036.000000113036.000000113036.000000113036.000000113036.000000113036.000000113036.000000113036.000000
mean15.6657532014.40173935.91921211.901660267.296366452.938427285.051665469.318695754.370360
std8.7815671.27251011.0219369.561857549.835483922.071219453.887443884.8661181309.094674
min1.0000002011.00000017.0000001.0000001.0000002.000000-30.0000001.0000002.000000
25%8.0000002013.00000028.0000002.0000002.0000005.00000029.00000028.00000063.000000
50%16.0000002014.00000035.00000010.0000009.00000024.000000101.000000108.000000223.000000
75%23.0000002016.00000043.00000020.00000042.00000070.000000358.000000432.000000800.000000
max31.0000002016.00000087.00000032.0000002171.0000003578.00000015096.00000042978.00000058074.000000
\n", - "
" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4qRkJ2GHqTy4" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "## The data at a glance:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7ofrl52uqTy4", + "outputId": "93b8ad98-3beb-4a61-bc22-2e26ffaec87a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 429 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Day Month Year Customer_Age Age_Group \\\n", + "0 2013-11-26 26 November 2013 19 Youth (<25) \n", + "1 2015-11-26 26 November 2015 19 Youth (<25) \n", + "2 2014-03-23 23 March 2014 49 Adults (35-64) \n", + "3 2016-03-23 23 March 2016 49 Adults (35-64) \n", + "4 2014-05-15 15 May 2014 47 Adults (35-64) \n", + "\n", + " Customer_Gender Country State Product_Category Sub_Category \\\n", + "0 M Canada British Columbia Accessories Bike Racks \n", + "1 M Canada British Columbia Accessories Bike Racks \n", + "2 M Australia New South Wales Accessories Bike Racks \n", + "3 M Australia New South Wales Accessories Bike Racks \n", + "4 F Australia New South Wales Accessories Bike Racks \n", + "\n", + " Product Order_Quantity Unit_Cost Unit_Price Profit Cost \\\n", + "0 Hitch Rack - 4-Bike 8 45 120 590 360 \n", + "1 Hitch Rack - 4-Bike 8 45 120 590 360 \n", + "2 Hitch Rack - 4-Bike 23 45 120 1366 1035 \n", + "3 Hitch Rack - 4-Bike 20 45 120 1188 900 \n", + "4 Hitch Rack - 4-Bike 4 45 120 238 180 \n", + "\n", + " Revenue \n", + "0 950 \n", + "1 950 \n", + "2 2401 \n", + "3 2088 \n", + "4 418 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateDayMonthYearCustomer_AgeAge_GroupCustomer_GenderCountryStateProduct_CategorySub_CategoryProductOrder_QuantityUnit_CostUnit_PriceProfitCostRevenue
02013-11-2626November201319Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950
12015-11-2626November201519Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950
22014-03-2323March201449Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike2345120136610352401
32016-03-2323March201649Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike204512011889002088
42014-05-1515May201447Adults (35-64)FAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike445120238180418
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "sales" + } + }, + "metadata": {}, + "execution_count": 11 + } ], - "text/plain": [ - " Day Year Customer_Age Order_Quantity \\\n", - "count 113036.000000 113036.000000 113036.000000 113036.000000 \n", - "mean 15.665753 2014.401739 35.919212 11.901660 \n", - "std 8.781567 1.272510 11.021936 9.561857 \n", - "min 1.000000 2011.000000 17.000000 1.000000 \n", - "25% 8.000000 2013.000000 28.000000 2.000000 \n", - "50% 16.000000 2014.000000 35.000000 10.000000 \n", - "75% 23.000000 2016.000000 43.000000 20.000000 \n", - "max 31.000000 2016.000000 87.000000 32.000000 \n", - "\n", - " Unit_Cost Unit_Price Profit Cost \\\n", - "count 113036.000000 113036.000000 113036.000000 113036.000000 \n", - "mean 267.296366 452.938427 285.051665 469.318695 \n", - "std 549.835483 922.071219 453.887443 884.866118 \n", - "min 1.000000 2.000000 -30.000000 1.000000 \n", - "25% 2.000000 5.000000 29.000000 28.000000 \n", - "50% 9.000000 24.000000 101.000000 108.000000 \n", - "75% 42.000000 70.000000 358.000000 432.000000 \n", - "max 2171.000000 3578.000000 15096.000000 42978.000000 \n", - "\n", - " Revenue \n", - "count 113036.000000 \n", - "mean 754.370360 \n", - "std 1309.094674 \n", - "min 2.000000 \n", - "25% 63.000000 \n", - "50% 223.000000 \n", - "75% 800.000000 \n", - "max 58074.000000 " + "source": [ + "sales.head()" ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "## Numerical analysis and visualization\n", - "\n", - "We'll analyze the `Unit_Cost` column:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "count 113036.000000\n", - "mean 267.296366\n", - "std 549.835483\n", - "min 1.000000\n", - "25% 2.000000\n", - "50% 9.000000\n", - "75% 42.000000\n", - "max 2171.000000\n", - "Name: Unit_Cost, dtype: float64" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JoMHjY5BqTy5", + "outputId": "569492a3-1505-4562-f4eb-c86d9c893657", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(113036, 18)" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ], + "source": [ + "sales.shape" ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales['Unit_Cost'].describe()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "267.296365759581" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Xr8ANxpyqTy5", + "outputId": "17f18855-15db-4422-f835-5b8c7b3187e9", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "RangeIndex: 113036 entries, 0 to 113035\n", + "Data columns (total 18 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Date 113036 non-null datetime64[ns]\n", + " 1 Day 113036 non-null int64 \n", + " 2 Month 113036 non-null object \n", + " 3 Year 113036 non-null int64 \n", + " 4 Customer_Age 113036 non-null int64 \n", + " 5 Age_Group 113036 non-null object \n", + " 6 Customer_Gender 113036 non-null object \n", + " 7 Country 113036 non-null object \n", + " 8 State 113036 non-null object \n", + " 9 Product_Category 113036 non-null object \n", + " 10 Sub_Category 113036 non-null object \n", + " 11 Product 113036 non-null object \n", + " 12 Order_Quantity 113036 non-null int64 \n", + " 13 Unit_Cost 113036 non-null int64 \n", + " 14 Unit_Price 113036 non-null int64 \n", + " 15 Profit 113036 non-null int64 \n", + " 16 Cost 113036 non-null int64 \n", + " 17 Revenue 113036 non-null int64 \n", + "dtypes: datetime64[ns](1), int64(9), object(8)\n", + "memory usage: 15.5+ MB\n" + ] + } + ], + "source": [ + "sales.info()" ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales['Unit_Cost'].mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9.0" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Yzdaegq6qTy6", + "outputId": "040f87a6-cd5d-4d26-f53e-59241c0be7de", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 424 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Day Year \\\n", + "count 113036 113036.000000 113036.000000 \n", + "mean 2014-11-23 12:14:55.063519232 15.665753 2014.401739 \n", + "min 2011-01-01 00:00:00 1.000000 2011.000000 \n", + "25% 2013-12-22 00:00:00 8.000000 2013.000000 \n", + "50% 2014-06-27 00:00:00 16.000000 2014.000000 \n", + "75% 2016-01-09 00:00:00 23.000000 2016.000000 \n", + "max 2016-07-31 00:00:00 31.000000 2016.000000 \n", + "std NaN 8.781567 1.272510 \n", + "\n", + " Customer_Age Order_Quantity Unit_Cost Unit_Price \\\n", + "count 113036.000000 113036.000000 113036.000000 113036.000000 \n", + "mean 35.919212 11.901660 267.296366 452.938427 \n", + "min 17.000000 1.000000 1.000000 2.000000 \n", + "25% 28.000000 2.000000 2.000000 5.000000 \n", + "50% 35.000000 10.000000 9.000000 24.000000 \n", + "75% 43.000000 20.000000 42.000000 70.000000 \n", + "max 87.000000 32.000000 2171.000000 3578.000000 \n", + "std 11.021936 9.561857 549.835483 922.071219 \n", + "\n", + " Profit Cost Revenue \n", + "count 113036.000000 113036.000000 113036.000000 \n", + "mean 285.051665 469.318695 754.370360 \n", + "min -30.000000 1.000000 2.000000 \n", + "25% 29.000000 28.000000 63.000000 \n", + "50% 101.000000 108.000000 223.000000 \n", + "75% 358.000000 432.000000 800.000000 \n", + "max 15096.000000 42978.000000 58074.000000 \n", + "std 453.887443 884.866118 1309.094674 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateDayYearCustomer_AgeOrder_QuantityUnit_CostUnit_PriceProfitCostRevenue
count113036113036.000000113036.000000113036.000000113036.000000113036.000000113036.000000113036.000000113036.000000113036.000000
mean2014-11-23 12:14:55.06351923215.6657532014.40173935.91921211.901660267.296366452.938427285.051665469.318695754.370360
min2011-01-01 00:00:001.0000002011.00000017.0000001.0000001.0000002.000000-30.0000001.0000002.000000
25%2013-12-22 00:00:008.0000002013.00000028.0000002.0000002.0000005.00000029.00000028.00000063.000000
50%2014-06-27 00:00:0016.0000002014.00000035.00000010.0000009.00000024.000000101.000000108.000000223.000000
75%2016-01-09 00:00:0023.0000002016.00000043.00000020.00000042.00000070.000000358.000000432.000000800.000000
max2016-07-31 00:00:0031.0000002016.00000087.00000032.0000002171.0000003578.00000015096.00000042978.00000058074.000000
stdNaN8.7815671.27251011.0219369.561857549.835483922.071219453.887443884.8661181309.094674
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"sales\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"1970-01-01 00:00:00.000113036\",\n \"max\": \"2016-07-31 00:00:00\",\n \"num_unique_values\": 7,\n \"samples\": [\n \"113036\",\n \"2014-11-23 12:14:55.063519232\",\n \"2016-01-09 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Day\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39959.03726151078,\n \"min\": 1.0,\n \"max\": 113036.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 15.665752503627163,\n 23.0,\n 113036.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39360.14470630131,\n \"min\": 1.2725103861597218,\n \"max\": 113036.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 113036.0,\n 2014.4017392689054,\n 2016.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Customer_Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39951.29018022159,\n \"min\": 11.021935623682856,\n \"max\": 113036.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 35.91921157861212,\n 43.0,\n 113036.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Order_Quantity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39959.89523273121,\n \"min\": 1.0,\n \"max\": 113036.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 11.901659648253654,\n 20.0,\n 113036.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Unit_Cost\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39817.368010015874,\n \"min\": 1.0,\n \"max\": 113036.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 267.296365759581,\n 42.0,\n 113036.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Unit_Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39727.3636468028,\n \"min\": 2.0,\n \"max\": 113036.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 452.9384266959199,\n 70.0,\n 113036.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Profit\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39487.26209608101,\n \"min\": -30.0,\n \"max\": 113036.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 285.0516649562971,\n 358.0,\n 113036.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cost\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 40545.2636088292,\n \"min\": 1.0,\n \"max\": 113036.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 469.3186949290492,\n 432.0,\n 113036.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Revenue\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 42014.99902765207,\n \"min\": 2.0,\n \"max\": 113036.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 754.3703598853463,\n 800.0,\n 113036.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 14 + } + ], + "source": [ + "sales.describe()" ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales['Unit_Cost'].median()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NoO2vKI4qTy6" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "## Numerical analysis and visualization\n", + "\n", + "We'll analyze the `Unit_Cost` column:" ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAFlCAYAAADhxtk7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAQB0lEQVR4nO3dX4yld13H8c+XbjEoTf+kpBpsncb0gipaa1MbRbMYU0p7UbnQ4AVtiKaaFLFGEhe9KGCMS1RMmlRIiYUS0QaUItpGqYRWvUC6q7V/A1TcRmql1mItkVSoPy/Oszisszvz3Zkz58zM65VM5sxz/jy/c85vnnPeO89ztsYYAQAAYONetOgBAAAA7DRCCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACa9i16AIty9tlnj5WVlUUPAwAAWFKHDx9+eozxsrXO27MhtbKykkOHDi16GAAAwJKqqsePd55d+wAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANAkpAAAAJqEFAAAQJOQAgAAaBJSAAAATUIKAACgSUgBAAA0CSkAAIAmIQUAANC0b9EDYOZ73/7xPPuVr+a0VxzIc48e3NB1Tn/JqfmHGy+f88gAAIBjCakl8exXvpojB6/KK287kCMHr9rQdVYO3DnnUQEAAGuxax8AAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUkugqpbytgAAgLUJKQAAgCYhBQAA0CSkAAAAmoQUAABAk5ACAABoElIAAABNQgoAAKBJSAEAADQJKQAAgKZ1Q6qqVqrqoWOWva2q3nKC61xSVTdNp/dX1Q9uYD3XVNVDVfVgVf39iW7/BLexoXVBklTVhr4619+OMW7F9bZj7LvBvB5/lsduf642s43ba7qPzbwvz3LZ7HsG1rcTH8+5/EVqjHFojPHm6cf9SU4YN1X12iQ3JLl8jPHKJJclefYkVr3uuiBJ65dzrcse7/pb+Ut/sutY73rbMfbdYF6PP8tjtz9XnfDf67pzYd7LWS6bfc/A+nbq78imQqqq7qmqd1bVp6vqs1X1w9Py/VX1Z1W1kuTnkvxiVd1/9Pw1vDXJW8YY/5IkY4znxxjvnW7roqr6VFU9UFV3VNWZ0/I3V9Uj0/LbG+uCrxtjfP3rRMs619+OMW7F9bZj7LvBvB5/lsduf67Wum+7+f5uRncuzPvyLJfNvmdgfTvt8dy3Fbcxxri0qq5McmOSHzt6xhjjSFW9J8mXxxi/dYLb+O4kh49z3geS/PwY496qese0jhuSHEhy/hjj+ao6Y4zxH+utq6quS3Jdkpx33nnNu7mcVg7cueghAADAnrORkDpeEh5d/pHp++EkK5sd0GpVdXqSM8YY906Lbkvy4en0A0k+WFUfTfLRjdzeGOOWJLckySWXXLIzUncdRw5e9Q0/1zsXNBAAANhDNrJr378nOfOYZWcleXo6/fz0/YWc/F+4Hk7y/c3rXJXk5iQXJ7mvqrbir2vsMWsd0Ng5yHE7Dog82XWsd72ddDDnIs3r8Wd57Pbnaq37tpvv72Z058K8L89y2ex7Bta30x7PdUNqjPHlJE9W1Y8mSVWdleSKJH+zwXU8l+S0dS7zG0l+s6q+dVrHi6vqZ8YYzyb50qrjnd6Q5N6qelGSc8cYn0zyy0lOT/LSDa4LWvvernXZEx13tFVOdh3rXW87xr4bzOvxZ3ns9ueqc9zOXtedC/NeznLZ7HsG1rdTf0c2+leca5LcXFXvmn5++xjjHzdYi3+a5I+q6urMjnX662MvMMa4q6rOSfKXNbvRkeTW6exrk7ynqr45yeeTvDHJKUl+f9r1r5LcNB0jte664KjN/nJuxy/3ya7jZN/s843m9fizPHb7c7Xb799WOpkPlJnn5Vkunr/524mP8YZCaozxSJJXr7F8/6rTT2c6RmqMcU+Se6bTn03yPRtYx/uSvG+N5fdn9nHox3rVGpfd0LoAAAA2Yy7/jxQAAMButq0f0FBVv5rkJ45Z/OExxq9v5zgAAAA2Y1tDagom0QQAAOxodu0DAABoElIAAABNQgoAAKBJSAEAADQJqSWwlf8B2U78z8wAAGCnEVIAAABNQgoAAKBJSAEAADQJKQAAgCYhBQAA0CSkAAAAmoQUAABAk5ACAABoElIAAABNQgoAAKBp36IHwP9ZOXBnTnvF7PtGnP6SU+c8IgAAYC1CakkcOXjVdOqqE14OAABYPLv2AQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANAkpAACAJiEFAADQJKQAAACahBQAAECTkAIAAGgSUgAAAE1CCgAAoElIAQAANNUYY9FjWIiq+rckjy96HJOzkzy96EHAxHxkWZiLLBPzkWVhLm6v7xhjvGytM/ZsSC2Tqjo0xrhk0eOAxHxkeZiLLBPzkWVhLi4Pu/YBAAA0CSkAAIAmIbUcbln0AGAV85FlYS6yTMxHloW5uCQcIwUAANDkL1IAAABNQmqBquqKqvpMVT1WVQcWPR72hqo6UlUPVtX9VXVoWnZWVd1dVZ+bvp85La+qummaow9U1cWLHT07XVXdWlVPVdVDq5a1519VXTtd/nNVde0i7gs723Hm4tuq6olp+3h/VV256ry3TnPxM1X1mlXLvZazaVV1blV9sqoeqaqHq+oXpuW2j0tMSC1IVZ2S5OYkr01yYZKfqqoLFzsq9pBXjzEuWvXxqQeSfGKMcUGST0w/J7P5ecH0dV2Sd2/7SNlt3p/kimOWteZfVZ2V5MYkP5Dk0iQ3Hn1zAQ3vz/+fi0nyO9P28aIxxl1JMr0+vz7Jd03X+d2qOsVrOVvoa0l+aYxxYZLLklw/zSXbxyUmpBbn0iSPjTE+P8b47yS3J7l6wWNi77o6yW3T6duS/Piq5R8YM59KckZVfdsiBsjuMMb4qyTPHLO4O/9ek+TuMcYzY4wvJbk7a78hhuM6zlw8nquT3D7GeH6M8U9JHsvsddxrOVtijPHkGOPvptPPJXk0yctj+7jUhNTivDzJP6/6+QvTMpi3keTjVXW4qq6blp0zxnhyOv2vSc6ZTpunbIfu/DMvmac3TbtK3brqX/LNRbZNVa0k+b4kfxvbx6UmpGDvedUY4+LMdgu4vqp+ZPWZY/ZRnj7Ok4Uw/1iwdyf5ziQXJXkyyW8vdjjsNVX10iR/nOSGMcZ/rj7P9nH5CKnFeSLJuat+/vZpGczVGOOJ6ftTSe7IbNeULx7dZW/6/tR0cfOU7dCdf+YlczHG+OIY44Uxxv8keW9m28fEXGQbVNWpmUXUB8cYH5kW2z4uMSG1OPcluaCqzq+qF2d2EOvHFjwmdrmq+paqOu3o6SSXJ3kos7l39JN9rk3yJ9PpjyW5Zvp0oMuSPLtqFwPYKt359xdJLq+qM6ddry6flsGmHHMM6Osy2z4ms7n4+qr6pqo6P7MD/D8dr+VskaqqJL+X5NExxrtWnWX7uMT2LXoAe9UY42tV9abMJvcpSW4dYzy84GGx+52T5I7Z9jr7kvzBGOPPq+q+JB+qqp9O8niSn5wuf1eSKzM7sPq/krxx+4fMblJVf5hkf5Kzq+oLmX261ME05t8Y45mq+rXM3sQmyTvGGBv90ABIcty5uL+qLsps96kjSX42ScYYD1fVh5I8ktmnq10/xnhhuh2v5WyFH0ryhiQPVtX907Jfie3jUqvZ7pYAAABslF37AAAAmoQUAABAk5ACAABoElIAAABNQgoAAKBJSAEAADQJKQAAgCYhBQAA0PS/QrPppBO2FpYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kGul3bdeqTy6", + "outputId": "d86528f1-4ac8-4205-83d6-601d79161bef", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 335 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "count 113036.000000\n", + "mean 267.296366\n", + "std 549.835483\n", + "min 1.000000\n", + "25% 2.000000\n", + "50% 9.000000\n", + "75% 42.000000\n", + "max 2171.000000\n", + "Name: Unit_Cost, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unit_Cost
count113036.000000
mean267.296366
std549.835483
min1.000000
25%2.000000
50%9.000000
75%42.000000
max2171.000000
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "sales['Unit_Cost'].describe()" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sales['Unit_Cost'].plot(kind='box', vert=False, figsize=(14,6))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TcxzE-mYqTy7", + "outputId": "31081c2b-1b3a-436f-9649-367c75d2b3a5", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "267.296365759581" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "sales['Unit_Cost'].mean()" ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAFlCAYAAADYoWhgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzde3ycZZ3///cnM8nknDRtei600FJoOVNARI6KFFDxAAquu7jLyldFXXVdv6Cuuu7irnvAdf2Jqyv8FsEFAUEry4qcFRco5dwDpaWFnpM0aQ6TZM7X94+5J6RtJpmkc57X8/HgweSe+77nGphO73euz/W5zTknAAAAAMDBqgo9AAAAAAAoVgQmAAAAAEiDwAQAAAAAaRCYAAAAACANAhMAAAAApEFgAgAAAIA0/IUeQD7MmDHDLVy4sNDDAAAAAFCknnvuub3OufYDt1dEYFq4cKHWrFlT6GEAAAAAKFJm9uZY2ynJAwAAAIA0CEwAAAAAkAaBCQAAAADSIDABAAAAQBoEJgAAAABIg8AEAAAAAGkQmAAAAAAgDQITAAAAAKRBYAIAAACANAhMAAAAAJAGgQkAAAAA0iAwAZi0LV1Bbe4cKPQwAAAAco7ABGBS1rzRo/P/5Qmt/NffqzsYLvRwAAAAcorABGBS7nx2uyQplnC657kdBR4NAABAbhGYAGQskXB6cN0efejk+Tp+fose2dBZ6CEBAADkFIEJQMa29QxpIBTTaYum6aQFrVq3q0+JhCv0sAAAAHKGwAQgY+t390uSls1p0fJ5LRqMxLVl72CBRwUAAJA7/kIPAEDpWL+rX74q05JZjfL7TJK0blefFs9sLPDIAAAAcoMZJgAZe61jQItmNKi22qcj2htkJm1lhgkAAJQxAhOAjG3fN6zD2+olSQG/T3Oaa7WtZ6jAowIAAMgdAhOAjDjntKNnSAu8wCRJC9rqtZ3ABAAAyhiBCUBG+oajGgjHNH9a3ci2w9rqmWECAABljcAEICPbe4YlSfOnvTXDdFhbvTr6wwpF44UaFgAAQE4RmABkZMe+5EzSgra3Zpjme4939g4XZEwAAAC5RmACkJHdfSFJ0tyWtwLTrKZaSVJnf7ggYwIAAMg1AhOAjHQOhFXjq1JrffXItpnNXmAaCBVqWAAAADlFYAKQkc6BkNqbAjKzkW2zmgOSpI5+AhMAAChPBCYAGensD6u9KbDftsaAX/U1PnVQkgcAAMoUgQlARjoHQpp5QGAyM81qrmWGCQAAlC0CE4CMdA6ENbM5cND2mU0Bmj4AAICyRWACMKFQNK7eoehIV7zR2psCNH0AAABli8AEYEI9gxFJ0vTGg2eYZjQG1O09DwAAUG4ITAAmtG8oGYjaGqoPeq6toUYDoZgisUS+hwUAAJBzBCYAE9o3GJUkTauvOei5tobkth5mmQAAQBkiMAGYUGqGaVrDwYFpRmNyW/cgjR8AAED5ITABmFCvF5ha68cqyUuua2KGCQAAlCMCE4AJ9WRQktcdJDABAIDyQ2ACMKF9QxE1Bfyq9h38lfFWSR6BCQAAlB8CE4AJ9Q5F1DpGhzxJaq6tlq/K1MMaJgAAUIYITAAmtG8oOmY5niRVVZla6qrVOxTN86gAAAByj8AEYEL7hiJpA5MktdZVq2+YwAQAAMpPTgOTma00s41mttnMrhvj+YCZ/dx7/hkzWzjqueu97RvN7MJR298ws1fM7EUzW5PL8QNISgamsUvyJKmZwAQAAMqUP1cnNjOfpB9IukDSDknPmtkq59z6UbtdLWmfc26xmV0h6TuSPmJmyyRdIWm5pLmSHjazo5xzce+485xze3M1dgD76x2MqnW8Gab6atqKAwCAspTLGabTJG12zm1xzkUk3Snp0gP2uVTSrd7jeyS908zM236ncy7snNsqabN3PgB5FoklNBCOjbQPH0sLM0wAAKBM5TIwzZO0fdTPO7xtY+7jnItJ6pM0fYJjnaTfmtlzZnZNuhc3s2vMbI2Zrenq6jqkNwJUst7h5MzReCV5NH0AAADlqhSbPrzDOXeypIskXWtmZ4+1k3Pux865Fc65Fe3t7fkdIVBGUkFo3JK8umr1h6JKJFy+hgUAAJAXuQxMOyUtGPXzfG/bmPuYmV9Si6Tu8Y51zqX+3SnpPlGqB+RUam3SeCV5zXXVck4aCMfyNSwAAIC8yGVgelbSEjNbZGY1SjZxWHXAPqskXeU9vkzSo845522/wuuit0jSEkmrzazBzJokycwaJL1b0tocvgeg4vUOJQNT6wQleZLUR1keAAAoMznrkueci5nZZyQ9KMkn6Rbn3Doz+5akNc65VZJulnSbmW2W1KNkqJK3312S1kuKSbrWORc3s1mS7kv2hZBf0n85536Tq/cAIHnTWknj34fJe47GDwAAoNzkLDBJknPuAUkPHLDt66MehyRdnubYGyTdcMC2LZJOyP5IAaSzbyjV9GH8LnkSgQkAAJSfUmz6ACCP+oajqvFXqa7Gl3afVGBKddQDAAAoFwQmAOPqH46puTb9+iXprfVNzDABAIByQ2ACMK6BUFTNteNX71KSBwAAyhWBCcC4BkIxNU0QmGqrfarxV9ElDwAAlB0CE4Bx9Yeiaq4bvyRPSt68lhkmAABQbghMAMaVyQyTlCzLIzABAIByQ2ACMK7+4eiETR+kZGDqpSQPAACUGQITgHFlOsPUWs8MEwAAKD8EJgBpReMJDUfjaspghqmZkjwAAFCGCEwA0hoIxSRpwrbiEmuYAABAeSIwAUhrIJQMQBnNMNVWKxiOKZ5wuR4WAABA3hCYAKTVP+zNMGXQVjy1zmkwEsvpmAAAAPKJwAQgrbdmmCYuyUvtkyrjAwAAKAcEJgBp9XvhJ5PA1BhIzkIFCUwAAKCMEJgApNXvzTBlch+mt2aYaPwAAADKB4EJQFpvdcmbODA1pgJTmBkmAABQPghMANLq99qEN2ZQktfMGiYAAFCGCEwA0hoIxdQY8MtXZRPum2o9zhomAABQTghMANIaCEUzavggSY0B1jABAIDyQ2ACkFZ/KJrR+iVJqq/xqcqkIGuYAABAGSEwAUhrIBTLeIbJzNQY8LOGCQAAlBUCE4C0+kNRNddlNsMkJdcx9VOSBwAAygiBCUBak5lhkpL3YqLpAwAAKCcEJgBpTSUwUZIHAADKCYEJQFrBUEyNgcxL8hoDfpo+AACAskJgAjCmSCyhSDyhxoAv42OaaqtpKw4AAMoKgQnAmAa9maKGQOYleY21zDABAIDyQmACMKbgFAJTU61f/axhAgAAZYTABGBMg5Fk8GmcRGBqrq1WJJZQOBbP1bAAAADyisAEYExTKsnz9qW1OAAAKBcEJgBjCoaTs0STa/rgBSbWMQEAgDJBYAIwpkOZYeJeTAAAoFwQmACMaaTpQ81kmj4k79nUT2txAABQJghMAMaUmmGaTNOHkZI8ZpgAAECZIDABGNNUSvJSgYmSPAAAUC4ITADGFAzHVeOrUo0/86+JVLhKtSQHAAAodQQmAGMaDMfUMIkOedKotuJ0yQMAAGWCwARgTMnAlHk5niQF/FXyVdlIOR8AAECpIzABGFMwHJtUwwdJMjM11Pg06N3DCQAAoNQRmACMaTAy+RkmKVmWR0keAAAoFwQmAGMKhuNTCkwNAT8leQAAoGwQmACMaTAcU+Mkmz5IycDEDBMAACgXBCYAYxoMx9RQM7WSPGaYAABAuSAwARhTcApd8iSpIeBjhgkAAJSNnAYmM1tpZhvNbLOZXTfG8wEz+7n3/DNmtnDUc9d72zea2YUHHOczsxfM7P5cjh+oVM45ryRvKjNM1XTJAwAAZSNngcnMfJJ+IOkiScskXWlmyw7Y7WpJ+5xziyV9V9J3vGOXSbpC0nJJKyXd5J0v5S8kbcjV2IFKF4omlHCaYpc8ZpgAAED5yOUM02mSNjvntjjnIpLulHTpAftcKulW7/E9kt5pZuZtv9M5F3bObZW02TufzGy+pEsk/SSHYwcqWirwTLXpw2A4JudctocFAACQd7kMTPMkbR/18w5v25j7OOdikvokTZ/g2H+V9GVJifFe3MyuMbM1Zramq6trqu8BqEippg1TbSseSziFY+P+EQUAACgJJdX0wczeI6nTOffcRPs6537snFvhnFvR3t6eh9EB5SN4CIEpte6JTnkAAKAc5DIw7ZS0YNTP871tY+5jZn5JLZK6xzn2TEnvM7M3lCzxO9/Mbs/F4IFK9lZJ3tRmmCTR+AEAAJSFXAamZyUtMbNFZlajZBOHVQfss0rSVd7jyyQ96pILH1ZJusLrordI0hJJq51z1zvn5jvnFnrne9Q597EcvgegIh1KSV5q3RONHwAAQDmY/NVQhpxzMTP7jKQHJfkk3eKcW2dm35K0xjm3StLNkm4zs82SepQMQfL2u0vSekkxSdc65/h1NZAnh9r0QZIGIwQmAABQ+nIWmCTJOfeApAcO2Pb1UY9Dki5Pc+wNkm4Y59yPS3o8G+MEsL9UOd1Umz5IzDABAIDyUFJNHwDkx6GV5NH0AQAAlA8CE4CDjHTJqzmUpg8EJgAAUPoITAAOMhiOqa7aJ1+VTfrYxppUSR7LDgEAQOkjMAE4yGAkNqVyPElq8BpFMMMEAADKAYEJwEGC4fiUOuRJkt9XpYC/isAEAADKAoEJwEEGw1OfYZKSjR/okgcAAMoBgQnAQYKHGJgaAn5mmAAAQFkgMAE4yGA4NtIefCoaAn6aPgAAgLJAYAJwkEMvyfMxwwQAAMoCgQnAQQ6l6YPkleRFCEwAAKD0EZgAHGQwHJvSTWtTGgN+BUMEJgAAUPoITAD2E084DUfjaqylSx4AAACBCcB+UqV0h9r0gTVMAACgHBCYAOwnFXQOua14JK5EwmVrWAAAAAVBYAKwn2wEplTDiKEorcUBAEBpIzAB2E/q/kmH2iVPEmV5AACg5BGYAOxnZIbpELvkSaLxAwAAKHkEJgD7CWZjDVMNM0wAAKA8EJgA7CcVcg61S57EDBMAACh9BCYA+8lO04fUDBNNHwAAQGkjMAHYz1tNHw5lhinZMIKSPAAAUOoITAD2MxiOqcqk2uqpfz3Q9AEAAJQLAhOA/QTDMTUE/DKzKZ+DtuIAAKBcEJgA7GcwHDukcjxJqq/xyYzABAAASh+BCcB+BiOxQ2r4IElmpoYa/8h6KAAAgFJFYAKwn2A4fsiBSUo2fmCGCQAAlDoCE4D9BENRNXpd7g5FQ8CvYITABAAAShuBCcB+BsNxNdQc+gxTY8DPDBMAACh5BCYA+wlmoemDRGACAADlgcAEYD/ZaPogJUvyBkIEJgAAUNoITAD2MxjOTmBqDPg1yBomAABQ4ghMAEaEY3FF4y5LTR98GqStOAAAKHEEJgAjUgEnWyV5QdYwAQCAEkdgAjAi1aQhKyV5NX5FYglF44lDPhcAAEChEJgAjEjNCGWjS14qdNEpDwAAlDICE4ARWZ1h8s5BWR4AAChlBCYAI96aYcpG04fUDBONHwAAQOkiMAEYkd2mD8nQxQwTAAAoZQQmACNGSvJqsleSxxomAABQyghMAEZks+lDYy2BCQAAlD4CE4AR2Wz6kJqlGiAwAQCAEpZRYDKze83sEjMjYAFlLBiJqcZXpRr/of9RpyQPAACUg0yvim6S9FFJm8zsH8xsaQ7HBKBABsOxkWYNh4r7MAEAgHKQUWByzj3snPsjSSdLekPSw2b2v2b2p2ZWncsBAsifwXA8K+V4klTjT85UUZIHAABKWcZ1N2Y2XdLHJf25pBckfU/JAPXQOMesNLONZrbZzK4b4/mAmf3ce/4ZM1s46rnrve0bzexCb1utma02s5fMbJ2Z/U2m4wcwsWA4lpWGDymNAT8zTAAAoKRldGVkZvdJWirpNknvdc7t9p76uZmtSXOMT9IPJF0gaYekZ81slXNu/ajdrpa0zzm32MyukPQdSR8xs2WSrpC0XNJcJWe0jpIUlnS+cy7ozWw9aWb/45x7epLvG8AYkiV52Q5M3LgWAACUrkxnmP7DObfMOff3qbBkZgFJcs6tSHPMaZI2O+e2OOciku6UdOkB+1wq6Vbv8T2S3mlm5m2/0zkXds5tlbRZ0mkuKejtX+394zJ8DwAmkO3A1BDwayDEDBMAAChdmQamvxtj21MTHDNP0vZRP+/wto25j3MuJqlP0vTxjjUzn5m9KKlT0kPOuWfGenEzu8bM1pjZmq6urgmGCkBKleRlp+mDJDUGfJTkAQCAkjbur5LNbLaSQaXOzE6SZN5TzZLqczy2MTnn4pJONLNWSfeZ2bHOubVj7PdjST+WpBUrVjALBWRgMBwfuX9SNjQE/OoZjGTtfAAAAPk20ZXRhUo2epgv6cZR2wckfWWCY3dKWjDq5/netrH22WFmfkktkrozOdY512tmj0laKemgwARg8nKxhmlbz1DWzgcAAJBv45bkOedudc6dJ+njzrnzRv3zPufcvROc+1lJS8xskZnVKNnEYdUB+6ySdJX3+DJJjzrnnLf9Cq+L3iJJSyStNrN2b2ZJZlanZEOJVyfxfgGk4ZzTYCT7XfKCrGECAAAlbKKSvI85526XtNDMvnjg8865G8c4LPVczMw+I+lBST5Jtzjn1pnZtyStcc6tknSzpNvMbLOkHiVDlbz97pK0XlJM0rXOubiZzZF0q9eBr0rSXc65+6fwvgEcYDgaV8Ip600fWMMEAABK2URXRg3evxuncnLn3AOSHjhg29dHPQ5JujzNsTdIuuGAbS9LOmkqYwEwvqAXbLLb9MGvwUhciYRTVZVNfAAAAECRGTcwOed+5P2bG8QCZS51v6Rsr2GSpMFITE211Vk7LwAAQL5k1FbczP7RzJrNrNrMHjGzLjP7WK4HByB/UqVz2S7JS56bm9cCAIDSlOl9mN7tnOuX9B5Jb0haLOmvcjUoAPmXusFsU20WZ5i8cwVZxwQAAEpUpoEpdQV1iaS7nXN9ORoPgAJ5aw1TNkvyfPudGwAAoNRkemV0v5m9KmlY0qfMrF1SKHfDApBvgzkITKmb4NIpDwAAlKqMZpicc9dJerukFc65qKRBSZfmcmAA8msgF4EpQEkeAAAobZO5MjpayfsxjT7mp1keD4ACSd1gtjGLa5hS66G4eS0AAChVGV0Zmdltko6U9KKkVLsrJwITUDYGwzFVmVRXnb37MDWMaisOAABQijL9VfIKScuccy6XgwFQOMFwTA0Bv8yyd4PZRkryAABAicu0S95aSbNzORAAhRUMx9SUxfVLkhTwV8lfZTR9AAAAJSvTq6MZktab2WpJ4dRG59z7cjIqAHkXDMWyun5JksxMDQE/a5gAAEDJyvTq6Ju5HASAwkuV5GVbY8CvYDg+8Y4AAABFKKOrI+fcE2Z2uKQlzrmHzaxeUvZWhgMouGA4NtLVLpsaA35K8gAAQMnKaA2TmX1C0j2SfuRtmifpl7kaFID8y1Vgagj4aPoAAABKVqZNH66VdKakfklyzm2SNDNXgwKQf8FQTA01uQhMfgITAAAoWZkGprBzLpL6wbt5LS3GgTIyGM5+0weJkjwAAFDaMg1MT5jZVyTVmdkFku6W9OvcDQtAPiUSTsFI9tuKS6mmDwQmAABQmjINTNdJ6pL0iqT/I+kBSV/L1aAA5NdQNC7nlJMueZTkAQCAUpZpl7yEmf1S0i+dc105HhOAPEuVzOWyJM85JzPL+vkBAAByadwZJkv6ppntlbRR0kYz6zKzr+dneADyYcC7sWxjLkryav1KOCkUTWT93AAAALk2UUneF5Tsjneqc67NOdcm6XRJZ5rZF3I+OgB5kSqZy0VgSpX5DYSjWT83AABArk0UmP5Y0pXOua2pDc65LZI+JulPcjkwAPkzmMPA1Bjwea8Rz/q5AQAAcm2iwFTtnNt74EZvHVN1boYEIN9SJXm5aPrQGEh+VdBaHAAAlKKJAlNkis8BKCGpkrymHDR9aPBmmFKhDAAAoJRMdHV0gpn1j7HdJNXmYDwACiC3JXn+/V4DAACglIx7deSc8+VrIAAKJzXDlJuSPP9+rwEAAFBKMr1xLYAyNhCKqdpnCviz/5WQurfTAIEJAACUIAITAA2GY2oM+HNyY9nm2mTTh4EQbcUBAEDpITABUDAcy0k5niQF/FXyV5mCNH0AAAAliMAEQAOhWE4aPkiSmamp1k+XPAAAUJIITAA0GI7lpKV4SlNtNSV5AACgJBGYAOS0JE9KdsqjSx4AAChFBCYAI00fcqWp1q9+SvIAAEAJIjAB0EBeSvIITAAAoPQQmAAoGIqpoSa3M0zBMGuYAABA6SEwARUunnAajsZHbjCbC3TJAwAApYrABFS4VDOGXK9hGgjF5JzL2WsAAADkAoEJqHD5CEyNgWrFE06haCJnrwEAAJALBCagwg2mAlOOS/IkcS8mAABQcghMQIVLrS3KdUmeJFqLAwCAkkNgAipcvtYwjX4tAACAUkFgAipcMJSPkrxqSZTkAQCA0kNgAipcKsQ0e6EmF0ZmmCjJAwAAJYbABFS4fi8wNeVwhilV7se9mAAAQKnJaWAys5VmttHMNpvZdWM8HzCzn3vPP2NmC0c9d723faOZXehtW2Bmj5nZejNbZ2Z/kcvxA5VgIBRTlUkNNbkvyeunJA8AAJSYnAUmM/NJ+oGkiyQtk3SlmS07YLerJe1zzi2W9F1J3/GOXSbpCknLJa2UdJN3vpikv3TOLZP0NknXjnFOAJPQPxxVY8CvqirL2WukZpho+gAAAEpNLmeYTpO02Tm3xTkXkXSnpEsP2OdSSbd6j++R9E4zM2/7nc65sHNuq6TNkk5zzu12zj0vSc65AUkbJM3L4XsAyt5AKKbmutytX5IkX5WpocZHSR4AACg5uQxM8yRtH/XzDh0cbkb2cc7FJPVJmp7JsV753kmSnhnrxc3sGjNbY2Zrurq6pvwmgHLXH4qOlMzlUlNtNV3yAABAySnJpg9m1ijpF5I+75zrH2sf59yPnXMrnHMr2tvb8ztAoIT0h2JqzmHDh5TGWj8leQAAoOTkMjDtlLRg1M/zvW1j7mNmfkktkrrHO9bMqpUMSz9zzt2bk5EDFaR/OF8zTH5K8gAAQMnJZWB6VtISM1tkZjVKNnFYdcA+qyRd5T2+TNKjzjnnbb/C66K3SNISSau99U03S9rgnLsxh2MHKkZyDVPuZ5iaaqvVP0xJHgAAKC05u0pyzsXM7DOSHpTkk3SLc26dmX1L0hrn3Colw89tZrZZUo+SoUrefndJWq9kZ7xrnXNxM3uHpD+W9IqZvei91Feccw/k6n0A5a4/FM3pTWtTWuqqtb1nKOevAwAAkE05/bWyF2QeOGDb10c9Dkm6PM2xN0i64YBtT0rKXe9joMIkEk7BcH7WMDXX+plhAgAAJackmz4AyI5gJCbnlJc1TC111eobjipZdQsAAFAaCExABUs1YcjHGqbmumrFEk7D0XjOXwsAACBbCExABUuVyOVrhkmS+ijLAwAAJYTABFSwkRmmPASm1Gv0D9NaHAAAlA4CE1DBUjNM+SjJY4YJAACUIgITUMEGwvkryUuFMgITAAAoJQQmoIKlyuPy0VY8NcNEa3EAAFBKCExABRsI5XGGqZaSPAAAUHoITEAF6w/FVFtdpRp/7r8KmlMzTCECEwAAKB0EJqCCDYSieZldkiRflakp4GeGCQAAlBQCE1DB+odjeVm/lNJcV01bcQAAUFIITEAF68/jDJOUDEzMMAEAgFJCYAIqWP9wVK31eQxMtX7WMAEAgJJCYAIqWO9wdKTddz601FXTVhwAAJQUAhNQwXqHomrNY2CiJA8AAJQaAhNQoeIJp/5QVC31NXl7TWaYAABAqSEwARVqIBSVc8rvDFNttQYjcUXjiby9JgAAwKEgMAEVqncoOdOTz6YPLXXJFuYDIVqLAwCA0kBgAipU73ABApP3WqxjAgAApYLABFSo3qGIJKmlLr9rmCQCEwAAKB0EJqBC9RVghqnVazCxzwtrAAAAxY7ABFSokTVMeWz6MC0VmAYJTAAAoDQQmIAKlQpM+bxx7TRvNmvfECV5AACgNBCYgArVOxxRU8Avvy9/XwPNtdWqMmaYAABA6SAwARWqbyiq5jzOLklSVZWptb6GNUwAAKBkEJiACtU3HM1rw4eUafXVI+WAAAAAxY7ABFSo3oIFphr1UJIHAABKBIEJqFC9QxG15vEeTCmU5AEAgFJCYAIqVN9wVC0FmGFqa6AkDwAAlA4CE1CBnHPqHYrm9R5MKdPqa9QzFJFzLu+vDQAAMFkEJqACDUbiiiVcQdYwtdbXKBJLaDgaz/trAwAATBaBCahAvd4aokKsYWprSIY0Gj8AAIBSQGACKtC+weQaokKsYWqtT4Y01jEBAIBSQGACKlD3YFiSNKMx/zNM07zARKc8AABQCghMQAXqDibDyvSGQN5fm5I8AABQSghMQAVKhZW2AswwUZIHAABKCYEJqEDdgxFV+0xNAX/eXzvVypySPAAAUAoITEAF6g6GNb0hIDPL+2v7fVVqrvVrHyV5AACgBBCYgArUMxhRW0P+y/FS2hpq1E1gAgAAJYDABFSgvYMRTS/A+qWU9qaA9gbDBXt9AACATBGYgArUMxjW9ALOMM1oDKhrgMAEAACKH4EJqEA9wYimN+a/pXhKcoaJkjwAAFD8CExAhQlF4xqMxAu6hmlGY0B9w1GFY/GCjQEAACATBCagwqSaLcwo4BqmGd7sVjezTAAAoMjlNDCZ2Uoz22hmm83sujGeD5jZz73nnzGzhaOeu97bvtHMLhy1/RYz6zSztbkcO1Cuur1mC20NhS3Jk0TjBwAAUPRyFpjMzCfpB5IukrRM0pVmtuyA3a6WtM85t1jSdyV9xzt2maQrJC2XtFLSTd75JOk/vW0ApiA1w1TILnmp2S0aPwAAgGKXyxmm0yRtds5tcc5FJN0p6dID9rlU0q3e43skvdOSd9K8VNKdzrmwc26rpM3e+eSc+52knhyOGyhrqTK4QnbJY4YJAACUilwGpnmSto/6eYe3bcx9nHMxSX2Spmd47LjM7BozW2Nma7q6uiY5dKB89QymSvIKv4aJTnkAAKDYlW3TB+fcj51zK5xzK9rb2ws9HLfuei0AAB8qSURBVKBodA9GVOOvUmPAX7Ax1Fb71BTwU5IHAACKXi4D005JC0b9PN/bNuY+ZuaX1CKpO8NjAUxB10BY7Y0BJatfC6e9KaAuSvIAAECRy2VgelbSEjNbZGY1SjZxWHXAPqskXeU9vkzSo845522/wuuit0jSEkmrczhWoGJ09Ic0q7lwHfJSZjQGtJcZJgAAUORyFpi8NUmfkfSgpA2S7nLOrTOzb5nZ+7zdbpY03cw2S/qipOu8Y9dJukvSekm/kXStcy4uSWZ2h6SnJC01sx1mdnWu3gNQjvb0hTSrubbQw2CGCQAAlIScLmJwzj0g6YEDtn191OOQpMvTHHuDpBvG2H5llocJVJTO/rDOWlL4dX0zGmuYYQIAAEWvbJs+ADjYYDimgXCsaGaY+kMxhaLxQg8FAAAgLQITUEE6+kOSpNkthV/DlAptqTEBAAAUIwITUEH2eOFkVlPhZ5jmttZJknb2Dhd4JAAAAOkRmIAKkprNmdVSPIFpdy8zTAAAoHgRmIAK0tGfbLJQDGuY5nihbXcfM0wAAKB4EZiACrKnL6TGgF+NgZw2yMxIbbVPbQ012tXHDBMAACheBCagghTLTWtT5rTUahdrmAAAQBEjMAEVJBmYCl+OlzK3tY41TAAAoKgRmIAK0tEf1uxiCkwttdrFGiYAAFDECExAhUgknDoHQppZRIFpTmudBkIxDYSihR4KAADAmAhMQIXoGAgpGneaP62u0EMZ8VanPMryAABAcSIwARViW/eQJOmwtvoCj+Qt87x7MdH4AQAAFCsCE1AhtvUUX2Cak7p5LTNMAACgSBGYgAqxvWdIVZbsTFcsZjUF5K+ykTAHAABQbAhMQIXY1jOkOS11qvEXzx97v69Kh7XV6429g4UeCgAAwJiK58oJQE5t6xkqqnK8lEUzGrSVwAQAAIoUgQmoENt6hosyMC2c0aA3ugeVSLhCDwUAAOAgBCagAgxFYtobDOuw6cUXmBbNaFAomtCefho/AACA4kNgAirA9p5k2+4FRTjDdMSMBkliHRMAAChKBCagAhRjS/GUhV5g2kJgAgAARYjABFSAN7uTYaQYA9Ps5lrVVlfR+AEAABQlAhNQAV7dM6AZjQG1NdQUeigHqaoyLZzeQEkeAAAoSgQmoAJs3DOgo2c3FXoYaS2a0UBJHgAAKEoEJqDMxRNOmzoHtLSIA9PS2U16o3tQQ5FYoYcCAACwHwITUOa29QwpFE0UdWBaPrdFzkkbdvcXeigAAAD78Rd6AABya+OeZAgp5pK8Y+c1S5LW7uzXKYe3FXg0QHZ09If0w8df14Pr9qhzIKwF0+r0vhPn6ZPnHKH6Gv76BYBSwTc2UOZe3TMgM2nJzOINTLObazW9oUZrd/YVeihAVjz2aqe+eNeLCoZjumDZLC2c3qB1u/r1b49s0qoXd+r7V56s4+a3FHqYAIAMEJiAMrdxz4AWTm9QXY2v0ENJy8y0fF6L1u6iJA+l75cv7NQX7npRR89u1v/30ZN0ZHvjyHNPvd6tL939kj76H0/rP//sNJ1y+LQCjhQAkAnWMAFl7tU9A1o6q3hnl1KOndusTR0DCkXjhR4KMGUPre/QF+96UW9bNF33furt+4UlSTrjyOm6+5NnaHpjja66ZbU2dQwUaKQAgEwRmIAytm8woq17B3XCgtZCD2VCx85rUSzh9BoXkChRW7qC+sLPX9Rx81p088dXpJ3Vndtap5994m2qra7Sn/90jXqHInkeKQBgMghMQBl7Yfs+SdJJhxV/YEqFujVv7CvwSIDJG4rE9Knbn1e1z3TTx06ZsKnDvNY6/eiPT9Gu3mF9+Z6X5ZzL00gBAJNFYALK2PNv9spXZTq+BBaXz2ut06IZDfrD5r2FHgowKc45ffW+tXqtc0Dfu+IkzWuty+i4Uw5v05cvPFq/Xd+hO1Zvz/EoAQBTRWACythTW7p17LyWkmlhfObi6Xp6S7ei8UShhwJk7GfPbNN9L+zU5995lM4+qn1Sx179jkU6a8kMfev+ddrcGczRCAEAh6I0rqIATFowHNNL23t1zdlHFHooGXvH4hm6/elteml7r1YszN/9mAZCUf12XYee2tKt9bv6tac/pGg8IZPUUl+t2c21mtVcqzkttZrbWqc5LXWa21qrOS11amuoka/K8jZWFJeXtvfqW79er3OXtuuz5y+e9PFVVaZ/ufwErfze7/W5O17Qfde+XQF//jpahqJxPb6xS89s7dbmzqCC4Zjqqn2aP61OKw5v0/nHzNSMxkDexgMAxYjABJSpp1/vVizh9PYjZxR6KBk744gZqjLpyc178xKYtvcM6d+feF33PLdD4VhC0+qrdfz8Vp14WKtqfFVyzql3OKo9fSGt3dmn367vUCS2/+xXlUltDQHNaKzR9MYazWgMaHpDQDOaanTM7GadsnCammurc/5ekH/7BiP69M+eV3tTQN/98ImqmmJwntlcq3/80PH685+u0T/+ZqP++j3LsjzSg3UOhPST32/Vfz2zTcFwTLXVVTpqVpNa6qo1FInr4Q2dumvNDvmrTBcun63PvXOJlhbxza8rTUd/SHuDYdX4qrRwRoOqfRQMAblEYALK1MMbOtQY8OvURaVzn5cWL7A8sqFTn3/XUTl7nVA0rn9/4nXd9PjrkpM+ePI8ffjUBTppQavM0l/0OufUMxjR7r6QdvUOa3df8qJlbzCivcGwuoNhvbi9V3sHwhqMJNujm0mnHt6mD50yTxcfN0dNhKeyEIkl9Mnbn1PXQFj3fOoMTWuoOaTzvWvZLF11xuG6+cmtOnPxdJ1/9KwsjXR/kVhCt/7vG/reI5s0HI3rkuPm6MMrFuhtR7TJP+qi2zmnV/cM6N7nd+jO1dv1wNrd+sBJ8/SVi49hxqlAOvpDuu2pN3XfCzu1s3d4ZHuNv0rnHNWuPzr9MJ1zVPu432EApsYqoTPPihUr3Jo1awo9DCBv4gmn07/9iE4/ok0/+OjJhR7OpNzy5FZ96/71evDzZ+fkN9rrdvXps3e8oC1dg3rP8XP0lYuP0dwMF+lPRjAc08vbe/X01h7d//IubekaVHOtX39+1hH6+JkLi2bWKZFw6hgIqW84qlq/T/Om1fHb6gk45/Tle17W3c/t0L9+5ES9/6R5WTlvKBrXB276X3X0h/Q/f3GWZjXXZuW8KZs6BvS5O1/Uht39Om9pu77+3uVaNKNhwuP2DUb0wyde13/+4Q01BHz65vuW630nzOXCPE8isYR++Pjr+uETmxWJJXTu0pl6x+IZmttap+FoTC9t79P9L+/W3mBYpy9q0w0fOE6LZzZOfGIABzGz55xzKw7aTmACys/vXuvSn9yyWjf90cm6+Lg5hR7OpHQHwzr924/oz96xSF+5+Jisndc5p9ueflN/d/8GTWuo1j9ffoLOWjK5BfqH8trPb+vVvz/xuh5a36Fp9dW6/uJjdPkp8wty0RmNJ/SbtXv0qxd36qnXu0dmwySp2mc6YX6rVh47W5edMl+t9Yc2c1JunHP67sOb9G+PbNLn3rlEX7wguzOhr3cF9Z5/e1InLmjVbVeftt+sz1Q55/TTp97Utx/YoMaAX9/+4HG6cPnsSZ9nU8eA/uqel/Xi9l5dfNxs3fD+4w55Zg3je2PvoD57xwt6ZWefLjlujv7vyqN12PT6g/aLxhO6c/U23fjQaxqKxHXdRUfrqjMWTrlMFKhUBCYCEyrIZ+94QU9s7NSzX3tXXheQZ8s1P12j57f16qnrz8/KbEffUFRf/sVLenBdh85b2q5/vvwETS9QWdHanX365qp1WvPmPp26cJpu+MBxOmpWftaGxOIJ/eyZbfr3J17X7r6Q5rXW6dyl7Vo2t1nT6ms0FIlrU+eAnty0V+t29auu2qePnLpAnz7vSM1syu5sRylKJJz+6bcb9cPHX9dlp8zXP112fE4C7z3P7dCX7n5JH3/7Qn3zfcsP6VzdwbD+6p6X9eirnTrnqHb90+XHH9L/y3jC6ce/26IbH9qoafU1+qfLT9A5k+wMiMz88oWd+up9r8jvq9J3PnS8Vh47ccjtHAjp/97zsh7b2KVzl7brXwr4XQeUIgITgQkVYnffsM76zmP6kzMW6uvvzf3i8Vx4ZEOHrr51jW788An64MnzD+lcz725T5+74wV19Id03UVH68/OXFTw37omEk53P7ddf/8/r2owHNOnz12sT593ZE7D7dNbuvXNVev06p4Bnb6oTZ846widd/TMtB3+Nuzu109+v1W/enGnaqt9uva8xfrTMxeqtrr0Ang2dPaH9OVfvKzHN3bpytMO0w3vPzann6O/u3+9fvLkVn3tkmP052dNrdPl7zd16Yt3vaS+oaiuv/hoffztC7MW8Nbu7NMXfv6iNnUGddUZh+u6i45RXU1lfjayLRSN629+vV53rN6mUxdO079O4t5eUnJG8fan39TferPp37/yZJ22KH9dR4FSRmAiMKFCfONXa3X7M9v0+JfO1YK2g0s3SkEi4XTJ95/UYDim337h7CldpEfjCX3/0c36wWObNbe1Vt+/8mSduKA1B6Oduu5gWH97/3r98sVdWjKzUf/woeN1yuHZbdKxu29Y337gVf36pV2a11qnv37PMl24fFbGF85b9w7qhv/eoIc3dGhBW52+evHkji8Gzjlt6xnSht0DerN7UN2DEcUTTn6faWZTrWY1BzS7uVazW2o1s6lWNf7krGY0ntCruwe06qWduv3pbYonnP76vcv0sdMPy/n7jyecPnfHC/rvV3brqxcfo09M4vYAoWhc333oNf3od1u0eGajvn/lSTpmTnPWxxiKxvWPv9moW/6wVUe2N+hfP3KSjiuBm2QXs+09Q/r0z57XKzv79Klzj9RfXnDUlMsy1+7s02f+63lt6xnSFy84Sp8+d3HBf1kEFDsCE4EJFWBz54Au+t7vddkpC/T3Hzyu0MM5JL/f1KU/vnm1Pnv+Yv3lu5dO6tjXu4L64l0v6aXtvfrgSfP0zUuXF02ThbE89mqnvnrfK9rdH9JVZyzUX124VA2BQ2tiOhyJ6+Ynt+imx19XLOH0qXOO1CfPOXLKswC/39Slv71/vV7rCOrMxdP1jfcuz1sp4VQ45/Tcm/t07ws79cTGrv26igX8VfJXmaJxp8gBN0k2k6Y31MjM1DsUUTTu5KsyXXTsbH3p3Uu1MIMmCdkSjSf0F3e+oAde2aMrTl2gb75v+bi/PHDO6bGNnfrGqnXa3jOsj55+mP76kmU5n/n5w+a9+su7XtLeYFiff9cSffKcI7Oy9qrSPLhuj758z8tKOKcbP3yiLlh26J0Sg+GYvnLvK1r10i6dtWSGbvzwiWpvokQPSIfARGBCmQvH4vrwj57Wm92DeugL55TFX4pfuvsl/eL5HfrRx07RuzNYpB4Mx/T9Rzfplie3qr7Gr29/4DhdcnxpNL0IhmP6x9+8qtueflMzGgP6/LuW6MMrFkx6DVci4XTfCzv1z7/dqN19Ib172Sx97ZJlYy4Un6xYPKHbn35TNz70mgYjcf3x2w7XZ89fXFRrJLb3DOne53fq3hd26M3uIdXX+HT2knaduXi6TlwwTYfPqB8Jz8459Q1H1dEf1u6+YXX0h7S7L6SO/rAkp9b6Gh01q1HnHDVTbQVqbhBPON340Eb94LHXNa+1Tl+44Chdctyc/ULQcCSuhzd06P//w1Y9v61Xi2c26m8vPVZnHDk9b+PsG4rqa79aq1+/tEunHD5N/3z5CRl14EOyC+Hf/HqdfvniLi2b06wffuxkHT49e//tnHO689nt+uaqdWquq9a/XH6CzmbdGTAmAhOBCWUsFI3rc3e8oN+u79C/f+xkrTy2NELCRIYiMV35H89o3c4+fenCpfrEWUeMueZmT19Itz39hn72zDb1DkV12Snz9eWVS0uyUcHz2/bp7x/YoGff2Kf50+r00dMP04dXLJjw3jf7BiO674WduvWpN/Rm95COn9+ir158jE4/IvsXzT2DEf3LbzfqjtXbFPD79NHTD9OfnrlQ86cVpgR0IBTV/7yyR/c8v0Ort/bITDrjiOn60MnztfLY2Yc8W1cMRq9Bq62u0tJZTWqqrda+oYg2dQQViSc0r7VOnzznCH3k1MNGygrz7Vcv7tTXfrlWw5G4Ljtlvq49b3HJlgbn2nAkrv/83zf0w8c3aygS12fOX6xPn7s4Z//vNuzu17X/9by2dA3qXcfM1HUXHa3FM4t3lhgohIIEJjNbKel7knySfuKc+4cDng9I+qmkUyR1S/qIc+4N77nrJV0tKS7pc865BzM551gITChnr+7p11fufUUvbO/VN96zTB8/c1Ghh5RVfcNRXfeLl/U/a/doXmudLjl+jg6fXq+ES84mPPfmPj2/bZ8k6d3LZunT5y7WCUW2VmmynHN69NVO/eT3W/XUlm6ZScfPa9Hbjpyuw9saNLslIJOpayCsrd2DWvNGj557c58STjr5sFZd/Y4jdNGxs3O+XmFzZ1A3Pb5Zv3pxlxLO6R2LZ+i9J8zVuUvbcx5WO/pDenxjpx7f2KXHNnYqFE3oiBkN+uDJ8/SBk+dPapF8qUgknFa/0aPfruvQax0DGo7G1RDw65g5TTr3qJk6bVFb2iYe+dTZH9IPHtusO1ZvVzSR0NlL2nXZKfN19lHtaqkrXGmsc057gxHt6QupcyA5k9jRH1LPYEShaFzhWEJx51Tr96m2ukrNddVqbwyovSmgmU0BzW5JrnM7lOYsiYTT+t39uvf5nbrvhR3aNxTV+UfP1JdXLtXRs7O/zuxAoWhct/xhq2567HUFwzGd7d3w9uwl7TTtAFSAwGRmPkmvSbpA0g5Jz0q60jm3ftQ+n5Z0vHPuk2Z2haQPOOc+YmbLJN0h6TRJcyU9LCl1s4txzzkWAhPKhXNOwXBMr3cNau3OPj28oUO/e61LzXXV+rv3H6v3HD+30EPMCeecfrN2j25/5k2t3tqjaDz5vVXjr9Ixs5t07tKZ+uDJ87JaxlIsNnUM6L9f2a0nN+3Vi9t7FUvs/53trzIdPadJ5y2dqQuXz9ax8/K/6H5n77DuXrNdd6/ZMbJW6KhZjVo+t0XL5zZr0YyG5MVmc62aaqsz+g26c06haEL9oah294W0q3dYb3QPat2ufq3b2ac3uockSbOba3XBsln64MnzdOKC1pJqRlHudvcN647V23X3mu3a3ReSr8p0wvwWLZ/boqPnNGlxe6NmNtdqZlPgkGYBnXMajsbVMxgZ+ac7GNHuvmHt7B3Wjn3D2rkv+TgcSxx0fGt9teqqfQr4q1RlpnAsoVA0rv5QdOS7ZrTpDTWa3VKrOS11muOFqLmttWprCKjGV6VAdZVqfFUajsYVDMW0byiiN/YOalNnUKu39qh7MKJqn+ndy2br42cu1KkL89/BrjsY1u1Pb9N/rX5THf1hBfxVOv2I6TpxfouOntOs+dPqNLu5VtMbA0URwoF8KURgOkPSN51zF3o/Xy9Jzrm/H7XPg94+T5mZX9IeSe2Srhu9b2o/77BxzzmWYglM//Tgq/rf17sP2j7e/4K0T41zULpnxn+dcc6X5qmpjHsqn7epjDvbY0v//yE/r+OcNByNjyxCT5nXWqf3nzRXnzjriIq5wWgsnlBXMCxflWlafU1W7tNUKmLxhDoHkr8Vl6S2hhrNa60rmgX2ziV/e/7Yq516fluv1u3q89YD7a/aZ6qr9qm+xj9yMeacU8Il/0yHogkFwzHFEwf/iVjQVqdj57bohAWtOueodh09u4mQVOTiCafnt+3TExu79PSWbr26Z0DBcGy/fap9lpzZqUnO7tT4qsb8/+pcslFHOJoMNaFYQpExQlDKjMbkn5F50+qS/26t05zWOs3ygtqMxkDaAJ9IJNe4dQWTf+b29CXXuO3uC2lP3/DI477h6IT/DapMWtBWr1MOm6a3HTld7zpmVsHWxY0WjSf01Ovdemxjp/6wea82dwY1+o+dmVRX7VNdtU+11T7V1fjkM5OZZGYyb5+q1DZ52/kjiUm4+/+cUTR/j6ULTLks7J4nafuon3dIOj3dPs65mJn1SZrubX/6gGPneY8nOqckycyukXSNJB122GFTewdZVuv3qTHNb9HG+ws/3TPjfSGlP2byrzP+a41zvjRPTeV1bCqvM+5/n8kPLpv/Tafy/6622qfW+hq11ldr4fQGLZ+b/C1gpV0s+n1VmtNSfuVWmfD7qjS3tU5zi7TczMy8WaW3Zrn2BsPa3jM0csE5EIppKBrXcCSuoUhMsYSTyVRl8i64TLXVVWqs9asxUK2mWr9mN9dqrnfRW8iSLkyNr8p06sK2kZkU55x27BvW1r2D2hsMq2sgrN7haDIAeUEoHIun/Z6u8VeptrpKAb9Pgeoq1fqTF/Jt9TWa1lCjNu+f2c21h1RmVlVlmtaQPOd4HSEHwzHt6Q+pdyiisBfgIrGE6mqSf+c311Vr/rS6oryJeLWvSmcf1T7SBCIUjWtTR3CkCUrXQFjD0biGo3ENReIKReOKJ5yckxesko+dpIRLbS//tfHIrlK4jin9lbBpOOd+LOnHUnKGqcDDkSR99p1LCj0EAMirGY2BCRtWoLKYmRa01ZdNM4iGgF9HtjcWehhZUVvt03HzW7ifFnCAXM5/7ZS0YNTP871tY+7jleS1KNn8Id2xmZwTAAAAALIil4HpWUlLzGyRmdVIukLSqgP2WSXpKu/xZZIedckFHqskXWFmATNbJGmJpNUZnhMAAAAAsiJnJXnemqTPSHpQyRbgtzjn1pnZtyStcc6tknSzpNvMbLOkHiUDkLz97pK0XlJM0rXOubgkjXXOXL0HAAAAAJWNG9cCAAAAqHjpuuQVRw8/AAAAAChCBCYAAAAASIPABAAAAABpEJgAAAAAIA0CEwAAAACkQWACAAAAgDQITAAAAACQBoEJAAAAANIgMAEAAABAGuacK/QYcs7MuiS9WehxHKIZkvYWehCA+CyiuPB5RDHh84hiwWdxag53zrUfuLEiAlM5MLM1zrkVhR4HwGcRxYTPI4oJn0cUCz6L2UVJHgAAAACkQWACAAAAgDQITKXjx4UeAODhs4hiwucRxYTPI4oFn8UsYg0TAAAAAKTBDBMAAAAApEFgKgJmdrmZrTOzhJmtOOC5681ss5ltNLMLR21f6W3bbGbXjdq+yMye8bb/3Mxq8vleUN7Sfe6AbDKzW8ys08zWjtrWZmYPmdkm79/TvO1mZv/mfSZfNrOTRx1zlbf/JjO7qhDvBaXNzBaY2WNmtt77e/ovvO18HpF3ZlZrZqvN7CXv8/g33vYxr/3MLOD9vNl7fuGoc415fYmxEZiKw1pJH5T0u9EbzWyZpCskLZe0UtJNZuYzM5+kH0i6SNIySVd6+0rSdyR91zm3WNI+SVfn5y2g3E3wuQOy6T+V/M4b7TpJjzjnlkh6xPtZSn4el3j/XCPph1LyglbSNySdLuk0Sd9IXdQCkxCT9JfOuWWS3ibpWu97j88jCiEs6Xzn3AmSTpS00szepvTXfldL2udt/663X9rry7y+kxJDYCoCzrkNzrmNYzx1qaQ7nXNh59xWSZuV/KI9TdJm59wW51xE0p2SLjUzk3S+pHu842+V9P7cvwNUiDE/dwUeE8qQc+53knoO2Hypkt9p0v7fbZdK+qlLelpSq5nNkXShpIeccz3OuX2SHtLBIQwYl3Nut3Puee/xgKQNkuaJzyMKwPtcBb0fq71/nNJf+43+nN4j6Z3etWK660ukQWAqbvMkbR/18w5vW7rt0yX1OudiB2wHsiHd5w7Ih1nOud3e4z2SZnmPJ/s9CUyJV850kqRnxOcRBeJVGr0oqVPJ4P260l/7jXzuvOf7lLxW5PM4Sf5CD6BSmNnDkmaP8dRXnXO/yvd4AKBUOeecmdHiFXljZo2SfiHp8865/uQv6ZP4PCKfnHNxSSeaWauk+yQdXeAhVQQCU5445941hcN2Slow6uf53jal2d6t5PS/3/tNwuj9gUM13ucRyLUOM5vjnNvtlTh1etvTfS53Sjr3gO2P52GcKDNmVq1kWPqZc+5ebzOfRxSUc67XzB6TdIbSX/ulPo87zMwvqUXJa0X+Pp8kSvKK2ypJV3hdThYpuYh0taRnJS3xuqLUKLlwb5VL3lTrMUmXecdfJYnZK2TLmJ+7Ao8JlWOVkt9p0v7fbask/YnXnextkvq8UqkHJb3bzKZ5i+vf7W0DMuat97hZ0gbn3I2jnuLziLwzs//Xzh27YhRGcRz//pjsDP4Ws5RNSRaDjOzKiMFupmSgd8boX6D0mizKbDSpY3juIHkYKIbvZ77d6fR0fvfc58wMkyWSTAHztHt1vd7vfZ0uA9dDr9jrL9XhhOkfSLIEHAIzwGWS26paqKpxkhFwT9vUszmMYkmyRTtsJ4HjqhoPr9sGzpPsAze0g176sap6/aLupF+T5Iz2NX46yRNtu9gBMEqyATwCK8PjV8Ai7dLyC7AOUFXPSfZoQR9gt6o+LpKQvjMHrAF3w70RgB2sR/2NWeBk2Gg3AYyq6iLJPZ/3fkfAaZIH2iKdVYCv+kt9Li1oSpIkSZI+8pc8SZIkSeowMEmSJElSh4FJkiRJkjoMTJIkSZLUYWCSJEmSpA4DkyRJkiR1GJgkSZIkqcPAJEmSJEkdb/dgIIK/sCeHAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jRgjmAxjqTy7", + "outputId": "5de42d0f-6d7f-4756-b77b-2e483fccc8a7", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "9.0" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "sales['Unit_Cost'].median()" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sales['Unit_Cost'].plot(kind='density', figsize=(14,6)) # kde" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9HgF44RGqTy7", + "outputId": "c20d21bc-61ae-4f3c-e24c-3d8146152411", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 26 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAH5CAYAAADELySSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIXFJREFUeJzt3XuQlnX98PHPArvLcVkUloMiBw+YmIIZRGhjA8PhoUbLPyidRhvTiTCH8tDjM5PWNPPoz8xxLDNtGrHJ8TQ91cQUDSLIWIik4jlyFbVEpExYQJSV/T5//B72aeO0C59lb5bXa2Znlvu69nt/772u732vb6+9t6qUUgIAAAAAkvTo6gkAAAAA0L0ITgAAAACkEpwAAAAASCU4AQAAAJBKcAIAAAAgleAEAAAAQCrBCQAAAIBUvbp6At1RS0tLrF+/PgYMGBBVVVVdPR0AAACAFKWU2LJlS4wYMSJ69Nj7dUyCUydYv359jBw5squnAQAAANAp/va3v8Wxxx671+2CUycYMGBARPz3N7+urq6LZwMAAACQo6mpKUaOHNnaPvZGcOoEu36Nrq6uTnACAAAAup39vYWQNw0HAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIFWvrp4AlW3dP7fFtg8+POhx+tX2ijGD+yXMCAAAAKh0ghN7te6f2+LTNy+PiIiqXk1RXb8qmjdNjvJh3QGNt+yqc0QnAAAAOAIITuzVriubbp07IXr2fjP+1xP/O34w54IYUzeuQ+M0btwaCx5Yk3KlFAAAAFD5BCf264SG/tGjd/+IiDi+oX+ccvTALp4RAAAAUMm8aTgAAAAAqQQnAAAAAFIJTgAAAACkEpwAAAAASCU4AQAAAJBKcAIAAAAgleAEAAAAQCrBCQAAAIBUghMAAAAAqQQnAAAAAFIJTgAAAACkEpwAAAAASCU4AQAAAJBKcGKPtu/YGY0btx6y+3r+zc2xfcfOQ3J/AAAAQOcSnNijV/6xNRY8sOaQ3ddnfvhYvPKPQxO4AAAAgM4lOAEAAACQSnACAAAAIJXgBAAAAEAqwQkAAACAVIITAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnACAAAAIJXgBAAAAECqXl09AeDwUFVVtdttpZS93n6w43aFrLl0dJxK+h7QVuaxcZzJ5pzquM56LSNHxnGolDGgPfZ1rjkPu6cj7bh2yRVOo0ePjltvvbUr7ho4AHt6YjyQ27O/PlPWXLK+V13xPaCtzGPjOJPNOdVxnocrW8ZxqJQxoD32da45D7unI/G4dig4nXPOObFgwYLdbl+4cGHU19e3e5zVq1fHZZdd1vrvqqqq+PWvf92RqcSOHTvipptuitNPPz369u0bgwcPjqlTp8bdd98dzc3NHRprT1577bWoqqqKNWvWHPRYcDg70CfA/X3dwW7PlDWXjo5TSd8D2so8No4z2ZxTHddZr2XkyDinK2UMaI+DOZech4enI/X5pUt+pW7IkCEH9fU7duyImTNnxjPPPBPf+973YurUqVFXVxePP/543HzzzTFx4sSYMGFCzmThCPafT3ztucT337dVVVXt8RLRvY3b3q/PlDWXjo5TSd8D2so8No4z2ZxTHddZr2XkyDinK2UMaI/2nmv72uY8PLwcycc1/VfqLr744jjvvPPi5ptvjuHDh8fRRx8d8+fPb3PV0b//St3o0aMjIuJzn/tcVFVVtf57X2699dZYsWJFLF26NObPnx8TJkyIsWPHxgUXXBCrVq2KE088MSIiPvjgg7jiiiuioaEhevfuHWeddVasXr26dZx33303LrzwwhgyZEj06dMnTjzxxLj77rsjImLMmDERETFx4sSoqqqKc845Z6/z+eCDD6KpqanNx+Hu/eade/z8YMZq3Lg1nn9z824fjRu3ptwPnau9T34dfZL8z/278kk2ay4dHaeSvge0lXlsHGeyOac6rrNey8iRcU5XyhjQHh05t5yH3cOR9vzSKVc4LVu2LIYPHx7Lli2LxsbGmDt3bkyYMCEuvfTS3fZdvXp1NDQ0xN133x2zZs2Knj177nf8e++9N6ZPnx4TJ07cbVt1dXVUV1dHRMQ111wTv/zlL+Oee+6JUaNGxU033RQzZ86MxsbGOOqoo+Lb3/52vPjii/H73/8+Bg8eHI2NjbF9+/aIiHjiiSdi0qRJ8fDDD8f48eOjpqZmr/O54YYb4rvf/W57vz2Hhb+/u73N5ycNOPixFjywZr/7nTn6wO8HAAAAqAydEpwGDRoUP/rRj6Jnz55x8sknx5w5c2Lp0qV7DE67fr2uvr4+hg0b1q7xX3755X1ecRQRsW3btrjjjjti4cKFMXv27IiI+OlPfxpLliyJn/3sZ3H11VfHG2+8ERMnTowzzzwzIqLN1VW75nX00Ufvd17XXnttfPOb32z9d1NTU4wcObJdj6VSHTuoz398vvmgx7p17oQ4oaH/btsbN26NBQ+saXOfAAAAwOGrU4LT+PHj21ypNHz48HjuuefSxm/PZWevvPJKNDc3x9SpU1tvq66ujkmTJsVLL70UERHz5s2L888/P5566qmYMWNGnHfeefHJT36yw/Opra2N2traDn9dJetd3XOPnx/MWCc09I9TjxnYrvuk8rT3d4oP5K+67et31w+lrLl0dJxK+h7QVuaxcZzJ5pzquM56LSNHxjldKWNAe3TkPXuch93Dkfb80qH3cKqrq4vNm3e/0mXTpk0xcOD/Dwm7fqVtl6qqqmhpaTnAKe7upJNOir/85S8HPc7s2bPj9ddfj2984xuxfv36mDZtWlx11VUJM4Tu4T9fAPf3Z1r39YZ47Rm3vV+fKWsuHR2nkr4HtJV5bBxnsjmnOq6zXsvIkXFOV8oY0B7tPdf2tc15eHg5kp9fOhScxo0bF0899dRutz/11FNx0kknHfAkqqurY+fO9r9h9AUXXBAPP/xwPP3007tta25ujm3btsXxxx8fNTU18cc//rHNttWrV8cpp5zSetuQIUPioosuil/84hdx6623xl133RUR0fqeTR2ZF3RHWW+cnb09U9Zcst8cvDu+6BwuMo+N40w251THddZrGTkyzulKGQPaI/OPkHB4OFKfXzoUnObNmxd//etf44orrohnn3021q5dG7fcckvcd999ceWVVx7wJEaPHh1Lly6NDRs2xLvvvrvf/RcsWBBTp06NadOmxe233x7PPPNMvPrqq/Hggw/GJz7xiXj55ZejX79+MW/evLj66qtj8eLF8eKLL8all14a7733XlxyySUREXHdddfFb37zm2hsbIwXXnghFi1aFB/5yEciIqKhoSH69OkTixcvjrfffnuPV3bBkaK9Vyrt7/bsr8+UNZes71V3fdE5nGQeG8eZbM6pjvM8XNkyjkOljAHtsa9zzXnYPR2Jx7VDwWns2LGxYsWK+Mtf/hLTp0+PyZMnx4MPPhgPPfRQzJo164An8YMf/CCWLFkSI0eO3ONfnvtPtbW1sWTJkrjmmmvizjvvjE984hPx8Y9/PG677ba44oor4tRTT42IiBtvvDHOP//8+NKXvhRnnHFGNDY2xh/+8IcYNGhQRPz3VUzXXnttnHbaafGpT30qevbsGffff39ERPTq1Stuu+22uPPOO2PEiBFx7rnnHvDjg+5g14vfv3/s6/aDHbcrZM2lo+NU0veAtjKPjeNMNudUx3XWaxk5Mo5DpYwB7bGvc8152D0dace1qnT3R9gFmpqaYuDAgbF58+aoq6vr6ukckOff3Byf+eFjERGx6OtnRY/eb8bcRXPjgc88EKccfcp+vnrPYy36+ll7fNPw/W0HAAAAKkN7m0eHrnACAAAAgP2pyOA0fvz46N+//x4/7r333q6eHgAAAAD70KurJ7Anv/vd76K5uXmP24YOHXqIZwMAAABAR1RkcBo1alRXTwEAAACAA1SRv1IHAAAAwOFLcAIAAAAgleAEAAAAQCrBCQAAAIBUghMAAAAAqQQnAAAAAFIJTgAAAACkEpzYo+OH9I9b5044ZPe16OtnxfFD+h+S+wMAAAA6V6+ungCVqU9Nzzih4dAEoD41PePUYwYekvsCAAAAOp8rnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFS9unoCVK7tzTsjIuL5NzdHvwFbIyLilY1bo+X9zR0ap3Hj1vS5AQAAAJVLcGKvXvl/oeh//p/noqpXU1TXT4sr7n0lyof/OKDx+tU63QAAAOBIoACwVzPGD4uIiOMb+kef6p4R8T8OeKx+tb1izOB+STMDAAAAKpngxF4d1a8mvjDpuK6eBgAAAHCY8abhAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUvXq6gl0R6WUiIhoamrq4pkAAAAA5NnVOna1j70RnDrBli1bIiJi5MiRXTwTAAAAgHxbtmyJgQMH7nV7VdlfkqLDWlpaYv369TFgwICoqqrq6ukckKamphg5cmT87W9/i7q6uq6eDhyxrEWoDNYiVA7rESqDtXjkKqXEli1bYsSIEdGjx97fqckVTp2gR48eceyxx3b1NFLU1dV58oAKYC1CZbAWoXJYj1AZrMUj076ubNrFm4YDAAAAkEpwAgAAACCV4MQe1dbWxvXXXx+1tbVdPRU4olmLUBmsRagc1iNUBmuR/fGm4QAAAACkcoUTAAAAAKkEJwAAAABSCU4AAAAApBKcAAAAAEglOAEAAACQSnBiN7fffnuMHj06evfuHZMnT44nnniiq6cE3cp3vvOdqKqqavNx8sknt25///33Y/78+XH00UdH//794/zzz4+33367zRhvvPFGzJkzJ/r27RsNDQ1x9dVXx4cffnioHwocVlasWBGf/exnY8SIEVFVVRW//vWv22wvpcR1110Xw4cPjz59+sT06dPj5ZdfbrPPv/71r7jwwgujrq4u6uvr45JLLomtW7e22efZZ5+Ns88+O3r37h0jR46Mm266qbMfGhx29rceL7744t1eK2fNmtVmH+sRDs4NN9wQH//4x2PAgAHR0NAQ5513Xqxdu7bNPlk/ly5fvjzOOOOMqK2tjRNOOCEWLlzY2Q+PCiA40cYDDzwQ3/zmN+P666+Pp556Kk4//fSYOXNmbNy4saunBt3K+PHj46233mr9eOyxx1q3feMb34jf/va38dBDD8Wjjz4a69evj89//vOt23fu3Blz5syJHTt2xJ/+9Ke45557YuHChXHdddd1xUOBw8a2bdvi9NNPj9tvv32P22+66aa47bbb4ic/+UmsWrUq+vXrFzNnzoz333+/dZ8LL7wwXnjhhViyZEksWrQoVqxYEZdddlnr9qamppgxY0aMGjUqnnzyyfj+978f3/nOd+Kuu+7q9McHh5P9rceIiFmzZrV5rbzvvvvabLce4eA8+uijMX/+/Hj88cdjyZIl0dzcHDNmzIht27a17pPxc+m6detizpw58elPfzrWrFkTCxYsiK985Svxhz/84ZA+XrpAgX8zadKkMn/+/NZ/79y5s4wYMaLccMMNXTgr6F6uv/76cvrpp+9x26ZNm0p1dXV56KGHWm976aWXSkSUlStXllJK+d3vfld69OhRNmzY0LrPHXfcUerq6soHH3zQqXOH7iIiyq9+9avWf7e0tJRhw4aV73//+623bdq0qdTW1pb77ruvlFLKiy++WCKirF69unWf3//+96Wqqqq8+eabpZRSfvzjH5dBgwa1WYvf+ta3yrhx4zr5EcHh6z/XYymlXHTRReXcc8/d69dYj5Bv48aNJSLKo48+WkrJ+7n0mmuuKePHj29zX3Pnzi0zZ87s7IdEF3OFE6127NgRTz75ZEyfPr31th49esT06dNj5cqVXTgz6H5efvnlGDFiRIwdOzYuvPDCeOONNyIi4sknn4zm5uY26/Dkk0+O4447rnUdrly5Mj760Y/G0KFDW/eZOXNmNDU1xQsvvHBoHwh0E+vWrYsNGza0WXsDBw6MyZMnt1l79fX1ceaZZ7buM3369OjRo0esWrWqdZ9PfepTUVNT07rPzJkzY+3atfHuu+8eokcD3cPy5cujoaEhxo0bF/PmzYt33nmndZv1CPk2b94cERFHHXVUROT9XLpy5co2Y+zax39jdn+CE63++c9/xs6dO9s8WUREDB06NDZs2NBFs4LuZ/LkybFw4cJYvHhx3HHHHbFu3bo4++yzY8uWLbFhw4aoqamJ+vr6Nl/z7+tww4YNe1ynu7YBHbdr7ezrNXDDhg3R0NDQZnuvXr3iqKOOsj4h2axZs+LnP/95LF26NP7rv/4rHn300Zg9e3bs3LkzIqxHyNbS0hILFiyIqVOnxqmnnhoRkfZz6d72aWpqiu3bt3fGw6FC9OrqCQAcaWbPnt36+WmnnRaTJ0+OUaNGxYMPPhh9+vTpwpkBQGX4whe+0Pr5Rz/60TjttNPi+OOPj+XLl8e0adO6cGbQPc2fPz+ef/75Nu8rCgfLFU60Gjx4cPTs2XO3vzrw9ttvx7Bhw7poVtD91dfXx0knnRSNjY0xbNiw2LFjR2zatKnNPv++DocNG7bHdbprG9Bxu9bOvl4Dhw0bttsf0fjwww/jX//6l/UJnWzs2LExePDgaGxsjAjrETJdfvnlsWjRoli2bFkce+yxrbdn/Vy6t33q6ur8z9ZuTnCiVU1NTXzsYx+LpUuXtt7W0tISS5cujSlTpnThzKB727p1a7zyyisxfPjw+NjHPhbV1dVt1uHatWvjjTfeaF2HU6ZMieeee67ND9pLliyJurq6OOWUUw75/KE7GDNmTAwbNqzN2mtqaopVq1a1WXubNm2KJ598snWfRx55JFpaWmLy5Mmt+6xYsSKam5tb91myZEmMGzcuBg0adIgeDXQ/f//73+Odd96J4cOHR4T1CBlKKXH55ZfHr371q3jkkUdizJgxbbZn/Vw6ZcqUNmPs2sd/Yx4Buvpdy6ks999/f6mtrS0LFy4sL774YrnssstKfX19m786ABycK6+8sixfvrysW7eu/PGPfyzTp08vgwcPLhs3biyllPLVr361HHfcceWRRx4pf/7zn8uUKVPKlClTWr/+ww8/LKeeemqZMWNGWbNmTVm8eHEZMmRIufbaa7vqIcFhYcuWLeXpp58uTz/9dImIcsstt5Snn366vP7666WUUm688cZSX19ffvOb35Rnn322nHvuuWXMmDFl+/btrWPMmjWrTJw4saxatao89thj5cQTTyxf/OIXW7dv2rSpDB06tHzpS18qzz//fLn//vtL3759y5133nnIHy9Usn2txy1btpSrrrqqrFy5sqxbt648/PDD5Ywzzignnnhief/991vHsB7h4MybN68MHDiwLF++vLz11lutH++9917rPhk/l7766qulb9++5eqrry4vvfRSuf3220vPnj3L4sWLD+nj5dATnNjND3/4w3LccceVmpqaMmnSpPL444939ZSgW5k7d24ZPnx4qampKcccc0yZO3duaWxsbN2+ffv28rWvfa0MGjSo9O3bt3zuc58rb731VpsxXnvttTJ79uzSp0+fMnjw4HLllVeW5ubmQ/1Q4LCybNmyEhG7fVx00UWllFJaWlrKt7/97TJ06NBSW1tbpk2bVtauXdtmjHfeead88YtfLP379y91dXXly1/+ctmyZUubfZ555ply1llnldra2nLMMceUG2+88VA9RDhs7Gs9vvfee2XGjBllyJAhpbq6uowaNapceumlu/0PUOsRDs6e1mBElLvvvrt1n6yfS5ctW1YmTJhQampqytixY9vcB91XVSmlHOqrqgAAAADovryHEwAAAACpBCcAAAAAUglOAAAAAKQSnAAAAABIJTgBAAAAkEpwAgAAACCV4AQAAABAKsEJAAAAgFSCEwAAAACpBCcAAAAAUglOAAAAAKT6v14h7b250mpYAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "sales['Unit_Cost'].plot(kind='box', vert=False, figsize=(14,6))" ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAFlCAYAAADYoWhgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzde5ycZX3///dnZnZnz7vJZnMOJJAQCGcIICIQUCSAirWgYG2xpfJVUavW+gW1am1paw9a60+sVvmJYEFA0EipCEJQLBDCOQdCQhJy3t3sZg+zu3O+vn/MPcsm2dlT5jyv5+ORR2bvue97rkkmm/u91+f63OacEwAAAADgcL5CDwAAAAAAihWBCQAAAAAyIDABAAAAQAYEJgAAAADIgMAEAAAAABkQmAAAAAAgg0ChB5APM2bMcAsXLiz0MICysalrkyRpaevSAo9kHJtS49TSIh8nAAAouOeee26/c67t0O0VEZgWLlyotWvXFnoYQNlY8aMVkqTVH15d0HGMa8WK1O+rVxdyFAAAoASY2RujbackDwAAAAAyIDABAAAAQAYEJgAAAADIgMAEAAAAABkQmAAAAAAgAwITAAAAAGRAYAIAAACADAhMAAAAAJABgQkAAAAAMiAwAQAAAEAGBCYAAAAAyCBQ6AEAKD3hWEKu0IMAAADIAwITgElZu71bL+7skZmpKxRRa0Ow0EMCAADIGUryAEzK3c/ulCQ553Tfc7sKPBoAAIDcIjABmLBk0unh9fvU1hhUQzCg32zsKPSQAAAAcoqSPAATtqN7UP3huBpbq+Q30/o9vUomnXw+K/TQAAAAcoIZJgATtmFvnySpvtqv+mBAA9GEtu4fKPCoAAAAcofABGDCNuzpk99nqvUCkySt39Nb4FEBAADkDoEJwIS91t6vRTPq5TNTTZVPZtI2ZpgAAEAZIzABmLCdB4Z09PQ6SZLPTHOaarSje7DAowIAAMgdAhOACXHOaVf3oBZ4gUmSFkyv004CEwAAKGMEJgAT0jsUU38krvnTaoe3HTW9jhkmAABQ1ghMACZkZ/eQJGn+tDdnmI6aXqf2vojCsUShhgUAAJBTBCYAE7LrQGomacH0N2eY5nuPd/cMFWRMAAAAuUZgAjAhe3vDkqS5zW8GplmNNZKkjr5IQcYEAACQawQmABPS0R9Rtd+nlrqq4W0zm7zA1B8u1LAAAAByisAEYEI6+sNqawzKzIa3zWoKSpLa+whMAACgPBGYAExIR19EbY3Bg7Y1BAOqq/arnZI8AABQpghMACakoz+smYcEJjPTrKYaZpgAAEDZIjABmJCO/ohmNgUP2z6zMUjTBwAAULYITADGFY4l1DMYG+6KN1JbY5CmDwAAoGwRmACMq3sgKklqbTh8hmlGQ1Bd3vMAAADlhsAEYFwHBlOBaHp91WHPTa+vVn84rmg8me9hAQAA5ByBCcC4DgzEJEnT6qoPe256fWpbN7NMAACgDBGYAIwrPcM0rf7wwDSjIbWta4DGDwAAoPwQmACMq8cLTC11o5XkpdY1McMEAADKEYEJwLi6J1CS1xUiMAEAgPJDYAIwrgODUTUGA6ryH/4t482SPAITAAAoPwQmAOPqGYyqZZQOeZLUVFMlv8/UzRomAABQhghMAMZ1YDA2ajmeJPl8pubaKvUMxvI8KgAAgNwjMAEY14HBaMbAJEkttVXqHSIwAQCA8pPTwGRmK81sk5ltMbObRnk+aGY/9Z5/xswWjnjuZm/7JjO7dMT27Wb2ipm9aGZrczl+ACmpwDR6SZ4kNRGYAABAmQrk6sRm5pf0HUmXSNol6VkzW+Wc2zBit+slHXDOLTazayR9XdIHzGyZpGsknShprqRHzew451zCO+4i59z+XI0dwMF6BmJqGWuGqa6KtuIAAKAs5XKG6WxJW5xzW51zUUl3S7rykH2ulHS79/g+SW83M/O23+2cizjntkna4p0PQJ5F40n1R+LD7cNH08wMEwAAKFO5DEzzJO0c8fUub9uo+zjn4pJ6JbWOc6yT9Gsze87Mbsj04mZ2g5mtNbO1nZ2dR/RGgErWM5SaORqrJI+mDwAAoFyVYtOHtznnzpB0maQbzeyC0XZyzn3fObfcObe8ra0tvyMEykg6CI1Zkldbpb5wTMmky9ewAAAA8iKXgWm3pAUjvp7vbRt1HzMLSGqW1DXWsc659O8dkh4QpXpATqXXJo1VktdUWyXnpP5IPF/DAgAAyItcBqZnJS0xs0VmVq1UE4dVh+yzStJ13uOrJD3mnHPe9mu8LnqLJC2RtMbM6s2sUZLMrF7SOyWty+F7ACpez2AqMLWMU5InSb2U5QEAgDKTsy55zrm4mX1C0sOS/JJuc86tN7OvSVrrnFsl6YeS7jCzLZK6lQpV8va7R9IGSXFJNzrnEmY2S9IDqb4QCkj6L+fcr3L1HgCkbloraez7MHnP0fgBAACUm5wFJklyzj0k6aFDtn15xOOwpKszHHuLpFsO2bZV0qnZHymATA4Mpps+jN0lTyIwAQCA8lOKTR8A5FHvUEzVAZ9qq/0Z90kHpnRHPQAAgHJBYAIwpr6huJpqMq9fkt5c38QMEwAAKDcEJgBj6g/H1FQzdvUuJXkAAKBcEZgAjKk/HFfjOIGppsqv6oCPLnkAAKDsEJgAjKkvHFNT7dgleVLq5rXMMAEAgHJDYAIwponMMEmpsjwCEwAAKDcEJgBj6huKjdv0QUoFph5K8gAAQJkhMAEY00RnmFrqmGECAADlh8AEIKNYIqmhWEKNE5hhaqIkDwAAlCECE4CM+sNxSRq3rbjEGiYAAFCeCEwAMuoPpwLQhGaYaqoUisSVSLpcDwsAACBvCEwAMuob8maYJtBWPL3OaSAaz+mYAAAA8onABCCjN2eYxi/JS++TLuMDAAAoBwQmABn1eeFnIoGpIZiahQoRmAAAQBkhMAHIqM+bYZrIfZjenGGi8QMAACgfBCYAGb3ZJW/8wNSQDkwRZpgAAED5IDAByKjPaxPeMIGSvCbWMAEAgDJEYAKQUX84roZgQH6fjbtvuvU4a5gAAEA5ITAByKg/HJtQwwdJagiyhgkAAJQfAhOAjPrCsQmtX5Kkumq/fCaFWMMEAADKCIEJQEb94fiEZ5jMTA3BAGuYAABAWSEwAcioLxxTU+3EZpik1DqmPkryAABAGSEwAchoMjNMUupeTDR9AAAA5YTABCCjqQQmSvIAAEA5ITAByCgUjqshOPGSvIZggKYPAACgrBCYAIwqGk8qmkiqIeif8DGNNVW0FQcAAGWFwARgVAPeTFF9cOIleQ01zDABAIDyQmACMKrQFAJTY01AfaxhAgAAZYTABGBUA9FU8GmYRGBqqqlSNJ5UJJ7I1bAAAADyisAEYFRTKsnz9qW1OAAAKBcEJgCjCkVSs0STa/rgBSbWMQEAgDJBYAIwqiOZYeJeTAAAoFwQmACMarjpQ/Vkmj6k7tnUR2txAABQJghMAEaVnmGaTNOH4ZI8ZpgAAECZIDABGNVUSvLSgYmSPAAAUC4ITABGFYokVO33qTow8W8T6XCVbkkOAABQ6ghMAEY1EImrfhId8qQRbcXpkgcAAMoEgQnAqFKBaeLleJIUDPjk99lwOR8AAECpIzABGFUoEp9UwwdJMjPVV/s14N3DCQAAoNQRmACMaiA6+RkmKVWWR0keAAAoFwQmAKMKRRJTCkz1wQAleQAAoGwQmACMaiASV8Mkmz5IqcDEDBMAACgXBCYAoxqIxFVfPbWSPGaYAABAuSAwARhVaApd8iSpPuhnhgkAAJSNnAYmM1tpZpvMbIuZ3TTK80Ez+6n3/DNmtnDEczd72zeZ2aWHHOc3sxfM7MFcjh+oVM45ryRvKjNMVXTJAwAAZSNngcnM/JK+I+kyScskXWtmyw7Z7XpJB5xziyV9U9LXvWOXSbpG0omSVkq61Ttf2l9I2pirsQOVLhxLKuk0xS55zDABAIDykcsZprMlbXHObXXORSXdLenKQ/a5UtLt3uP7JL3dzMzbfrdzLuKc2yZpi3c+mdl8SVdI+kEOxw5UtHTgmWrTh4FIXM65bA8LAAAg73IZmOZJ2jni613etlH3cc7FJfVKah3n2H+T9HlJybFe3MxuMLO1Zra2s7Nzqu8BqEjppg1TbSseTzpF4mP+EwUAACgJJdX0wczeJanDOffcePs6577vnFvunFve1taWh9EB5SN0BIEpve6JTnkAAKAc5DIw7Za0YMTX871to+5jZgFJzZK6xjj2PEnvMbPtSpX4XWxmd+Zi8EAle7Mkb2ozTJJo/AAAAMpCLgPTs5KWmNkiM6tWqonDqkP2WSXpOu/xVZIec6mFD6skXeN10VskaYmkNc65m51z851zC73zPeac+1AO3wNQkY6kJC+97onGDwAAoBxM/mpogpxzcTP7hKSHJfkl3eacW29mX5O01jm3StIPJd1hZlskdSsVguTtd4+kDZLikm50zvHjaiBPjrTpgyQNRAlMAACg9OUsMEmSc+4hSQ8dsu3LIx6HJV2d4dhbJN0yxrlXS1qdjXECOFi6nG6qTR8kZpgAAEB5KKmmDwDy48hK8mj6AAAAygeBCcBhhrvkVR9J0wcCEwAAKH0EJgCHGYjEVVvll99nkz62oTpdkseyQwAAUPoITAAOMxCNT6kcT5LqvUYRzDABAIByQGACcJhQJDGlDnmSFPD7FAz4CEwAAKAsEJgAHGYgMvUZJinV+IEueQAAoBwQmAAcJnSEgak+GGCGCQAAlAUCE4DDDETiw+3Bp6I+GKDpAwAAKAsEJgCHOfKSPD8zTAAAoCwQmAAc5kiaPkheSV6UwAQAAEofgQnAYQYi8SndtDatIRhQKExgAgAApY/ABOAgiaTTUCyhhhq65AEAABCYABwkXUp3pE0fWMMEAADKAYEJwEHSQeeI24pHE0omXbaGBQAAUBAEJgAHyUZgSjeMGIzRWhwAAJQ2AhOAg6Tvn3SkXfIkUZYHAABKHoEJwEGGZ5iOsEueJBo/AACAkkdgAnCQUDbWMFUzwwQAAMoDgQnAQdIh50i75EnMMAEAgNJHYAJwkOw0fUjPMNH0AQAAlDYCE4CDvNn04UhmmFINIyjJAwAApY7ABOAgA5G4fCbVVE392wNNHwAAQLkgMAE4SCgSV30wIDOb8jloKw4AAMoFgQnAQQYi8SMqx5Okumq/zAhMAACg9BGYABxkIBo/ooYPkmRmqq8ODK+HAgAAKFUEJgAHCUUSRxyYpFTjB2aYAABAqSMwAThIKBxTg9fl7kjUBwMKRQlMAACgtBGYABxkIJJQffWRzzA1BAPMMAEAgJJHYAJwkFAWmj5IBCYAAFAeCEwADpKNpg9SqiSvP0xgAgAApY3ABOAgA5HsBKaGYEADrGECAAAljsAEYFgknlAs4bLU9MGvAdqKAwCAEkdgAjAsHXCyVZIXYg0TAAAocQQmAMPSTRqyUpJXHVA0nlQskTzicwEAABQKgQnAsPSMUDa65KVDF53yAABAKSMwARiW1Rkm7xyU5QEAgFJGYAIw7M0Zpmw0fUjPMNH4AQAAlC4CE4Bh2W36kApdzDABAIBSRmACMGy4JK86eyV5rGECAACljMAEYFg2mz401BCYAABA6SMwARiWzaYP6VmqfgITAAAoYRMKTGZ2v5ldYWYELKCMhaJxVft9qg4c+T91SvIAAEA5mOhV0a2SPihps5n9o5ktzeGYABTIQCQ+3KzhSHEfJgAAUA4mFJicc4865/5I0hmStkt61Mz+18z+1MyqcjlAAPkzEElkpRxPkqoDqZkqSvIAAEApm3DdjZm1SvqwpD+X9IKkbykVoB4Z45iVZrbJzLaY2U2jPB80s596zz9jZgtHPHezt32TmV3qbasxszVm9pKZrTezv5no+AGMLxSJZ6XhQ1pDMMAMEwAAKGkTujIyswckLZV0h6R3O+f2ek/91MzWZjjGL+k7ki6RtEvSs2a2yjm3YcRu10s64JxbbGbXSPq6pA+Y2TJJ10g6UdJcpWa0jpMUkXSxcy7kzWw9aWb/45x7epLvG8AoUiV52Q5M3LgWAACUronOMP2nc26Zc+4f0mHJzIKS5JxbnuGYsyVtcc5tdc5FJd0t6cpD9rlS0u3e4/skvd3MzNt+t3Mu4pzbJmmLpLNdSsjbv8r75Sb4HgCMI9uBqT4YUH+YGSYAAFC6JhqY/m6UbU+Nc8w8STtHfL3L2zbqPs65uKReSa1jHWtmfjN7UVKHpEecc8+M9uJmdoOZrTWztZ2dneMMFYCULsnLTtMHSWoI+inJAwAAJW3MHyWb2WylgkqtmZ0uybynmiTV5Xhso3LOJSSdZmYtkh4ws5Occ+tG2e/7kr4vScuXL2cWCpiAgUhi+P5J2VAfDKh7IJq18wEAAOTbeFdGlyrV6GG+pG+M2N4v6QvjHLtb0oIRX8/3to22zy4zC0hqltQ1kWOdcz1m9riklZIOC0wAJi8Xa5h2dA9m7XwAAAD5NmZJnnPudufcRZI+7Jy7aMSv9zjn7h/n3M9KWmJmi8ysWqkmDqsO2WeVpOu8x1dJesw557zt13hd9BZJWiJpjZm1eTNLMrNapRpKvDqJ9wsgA+ecBqLZ75IXYg0TAAAoYeOV5H3IOXenpIVm9tlDn3fOfWOUw9LPxc3sE5IeluSXdJtzbr2ZfU3SWufcKkk/lHSHmW2R1K1UqJK33z2SNkiKS7rROZcwszmSbvc68Pkk3eOce3AK7xvAIYZiCSWdst70gTVMAACglI13ZVTv/d4wlZM75x6S9NAh27484nFY0tUZjr1F0i2HbHtZ0ulTGQuAsYW8YJPdpg8BDUQTSiadfD4b/wAAAIAiM2Zgcs59z/udG8QCZS59v6Rsr2GSpIFoXI01VVk7LwAAQL5MqK24mf2TmTWZWZWZ/cbMOs3sQ7keHID8SZfOZbskL3Vubl4LAABK00Tvw/RO51yfpHdJ2i5psaS/ytWgAORf+gazjTVZnGHyzhViHRMAAChREw1M6SuoKyTd65zrzdF4ABTIm2uYslmS5z/o3AAAAKVmoldGD5rZq5KGJH3MzNokhXM3LAD5NpCDwJS+CS6d8gAAQKma0AyTc+4mSW+VtNw5F5M0IOnKXA4MQH715yIwBSnJAwAApW0yV0bHK3U/ppHH/DjL4wFQIOkbzDZkcQ1Tej0UN68FAAClakJXRmZ2h6RjJb0oKd3uyonABJSNgUhcPpNqq7J3H6b6EW3FAQAAStFEf5S8XNIy55zL5WAAFE4oEld9MCCz7N1gtoGSPAAAUOIm2iVvnaTZuRwIgMIKReJqzOL6JUkKBnwK+IymDwAAoGRN9OpohqQNZrZGUiS90Tn3npyMCkDehcLxrK5fkiQzU30wwBomAABQsiZ6dfTVXA4CQOGlS/KyrSEYUCiSGH9HAACAIjShqyPn3BNmdrSkJc65R82sTlL2VoYDKLhQJD7c1S6bGoIBSvIAAEDJmtAaJjP7iKT7JH3P2zRP0s9zNSgA+ZerwFQf9NP0AQAAlKyJNn24UdJ5kvokyTm3WdLMXA0KQP6FwnHVV+ciMAUITAAAoGRNNDBFnHPR9BfezWtpMQ6UkYFI9ps+SJTkAQCA0jbRwPSEmX1BUq2ZXSLpXkm/zN2wAORTMukUima/rbiUbvpAYAIAAKVpooHpJkmdkl6R9H8kPSTpS7kaFID8Gowl5Jxy0iWPkjwAAFDKJtolL2lmP5f0c+dcZ47HBCDP0iVzuSzJc87JzLJ+fgAAgFwac4bJUr5qZvslbZK0ycw6zezL+RkegHzo924s25CLkryagJJOCseSWT83AABAro1XkvcZpbrjneWcm+6cmy7pHEnnmdlncj46AHmRLpnLRWBKl/n1R2JZPzcAAECujReY/ljStc65bekNzrmtkj4k6U9yOTAA+TOQw8DUEPR7r5HI+rkBAABybbzAVOWc23/oRm8dU1VuhgQg39Ileblo+tAQTH2roLU4AAAoReMFpugUnwNQQtIleY05aPpQ780wpUMZAABAKRnv6uhUM+sbZbtJqsnBeAAUQG5L8gIHvQYAAEApGfPqyDnnz9dAABROeoYpNyV5gYNeAwAAoJRM9Ma1AMpYfziuKr8pGMj+t4T0vZ36CUwAAKAEEZgAaCASV0MwkJMbyzbVpJo+9IdpKw4AAEoPgQmAQpF4TsrxJCkY8CngM4Vo+gAAAEoQgQmA+sPxnDR8kCQzU2NNgC55AACgJBGYAGggEs9JS/G0xpoqSvIAAEBJIjAByGlJnpTqlEeXPAAAUIoITACGmz7kSmNNQH2U5AEAgBJEYAKg/ryU5BGYAABA6SEwAVAoHFd9dW5nmEIR1jABAIDSQ2ACKlwi6TQUSwzfYDYX6JIHAABKFYEJqHDpZgy5XsPUH47LOZez1wAAAMgFAhNQ4fIRmBqCVUokncKxZM5eAwAAIBcITECFG0gHphyX5EniXkwAAKDkEJiACpdeW5TrkjxJtBYHAAAlh8AEVLh8rWEa+VoAAAClgsAEVLhQOB8leVWSKMkDAAClh8AEVLh0iGnyQk0uDM8wUZIHAABKDIEJqHB9XmBqzOEMU7rcj3sxAQCAUpPTwGRmK81sk5ltMbObRnk+aGY/9Z5/xswWjnjuZm/7JjO71Nu2wMweN7MNZrbezP4il+MHKkF/OC6fSfXVuS/J66MkDwAAlJicBSYz80v6jqTLJC2TdK2ZLTtkt+slHXDOLZb0TUlf945dJukaSSdKWinpVu98cUl/6ZxbJuktkm4c5ZwAJqFvKKaGYEA+n+XsNdIzTDR9AAAApSaXM0xnS9rinNvqnItKulvSlYfsc6Wk273H90l6u5mZt/1u51zEObdN0hZJZzvn9jrnnpck51y/pI2S5uXwPQBlrz8cV1Nt7tYvSZLfZ6qv9lOSBwAASk4uA9M8STtHfL1Lh4eb4X2cc3FJvZJaJ3KsV753uqRnRntxM7vBzNaa2drOzs4pvwmg3PWFY8Mlc7nUWFNFlzwAAFBySrLpg5k1SPqZpE875/pG28c5933n3HLn3PK2trb8DhAoIX3huJpy2PAhraEmQEkeAAAoObkMTLslLRjx9Xxv26j7mFlAUrOkrrGONbMqpcLST5xz9+dk5EAF6RvK1wxTgJI8AABQcnIZmJ6VtMTMFplZtVJNHFYdss8qSdd5j6+S9Jhzznnbr/G66C2StETSGm990w8lbXTOfSOHYwcqRmoNU+5nmBprqtQ3REkeAAAoLTm7SnLOxc3sE5IeluSXdJtzbr2ZfU3SWufcKqXCzx1mtkVSt1KhSt5+90jaoFRnvBudcwkze5ukP5b0ipm96L3UF5xzD+XqfQDlri8cy+lNa9Oaa6u0s3sw568DAACQTTn9sbIXZB46ZNuXRzwOS7o6w7G3SLrlkG1PSspd72OgwiSTTqFIftYwNdUEmGECAAAlpySbPgDIjlA0LueUlzVMzbVV6h2KKVV1CwAAUBoITEAFSzdhyMcapqbaKsWTTkOxRM5fCwAAIFsITEAFS5fI5WuGSZJ6KcsDAAAlhMAEVLDhGaY8BKb0a/QN0VocAACUDgITUMHSM0z5KMljhgkAAJQiAhNQwfoj+SvJS4cyAhMAACglBCaggqXL4/LRVjw9w0RrcQAAUEoITEAF6w/ncYaphpI8AABQeghMQAXrC8dVU+VTdSD33wqa0jNMYQITAAAoHQQmoIL1h2N5mV2SJL/P1BgMMMMEAABKCoEJqGB9Q/G8rF9Ka6qtoq04AAAoKQQmoIL15XGGSUoFJmaYAABAKSEwARWsbyimlro8BqaaAGuYAABASSEwARWsZyg23O47H5prq2grDgAASgqBCahgPYMxteQxMFGSBwAASg2BCahQiaRTXzim5rrqvL0mM0wAAKDUEJiACtUfjsk55XeGqaZKA9GEYolk3l4TAADgSBCYgArVM5ia6cln04fm2lQL8/4wrcUBAEBpIDABFapnqACByXst1jEBAIBSQWACKlTPYFSS1Fyb3zVMEoEJAACUDgITUKF6CzDD1OI1mDjghTUAAIBiR2ACKtTwGqY8Nn2Ylg5MAwQmAABQGghMQIVKB6Z83rh2mjebdWCQkjwAAFAaCExAheoZiqoxGFDAn79vA001VfIZM0wAAKB0EJiACtU7GFNTHmeXJMnnM7XUVbOGCQAAlAwCE1CheodieW34kDatrmq4HBAAAKDYEZiACtVTsMBUrW5K8gAAQIkgMAEVqmcwqpY83oMpjZI8AABQSghMQIXqHYqpuQAzTNPrKckDAAClg8AEVCDnnHoGY3m9B1PatLpqdQ9G5ZzL+2sDAABMFoEJqEAD0YTiSVeQNUwtddWKxpMaiiXy/toAAACTRWACKlCPt4aoEGuYptenQhqNHwAAQCkgMAEV6MBAag1RIdYwtdSlQhrrmAAAQCkgMAEVqGsgIkma0ZD/GaZpXmCiUx4AACgFBCagAnWFUmGltT6Y99emJA8AAJQSAhNQgdJhZXoBZpgoyQMAAKWEwARUoK6BqKr8psZgIO+vnW5lTkkeAAAoBQQmoAJ1hSJqrQ/KzPL+2gG/T001AR2gJA8AAJQAAhNQgboHoppen/9yvLTp9dXqIjABAIASQGACKtD+gahaC7B+Ka2tMaj9oUjBXh8AAGCiCExABeoeiKi1gDNMMxqC6uwnMAEAgOJHYAIqUHcoqtaG/LcUT0vNMFGSBwAAih+BCagw4VhCA9FEQdcwzWgIqncopkg8UbAxAAAATASBCagw6WYLMwq4hmmGN7vVxSwTAAAocjkNTGa20sw2mdkWM7tplOeDZvZT7/lnzGzhiOdu9rZvMrNLR2y/zcw6zGxdLscOlKsur9nC9PrCluRJovEDAAAoejkLTGbml/QdSZdJWibpWjNbdshu10s64JxbLOmbkr7uHbtM0jWSTpS0UtKt3vkk6UfeNgBTkJ5hKmSXvPTsFo0fAABAscvlDNPZkrY457Y656KS7pZ05SH7XCnpdu/xfZLebqk7aV4p6W7nXMQ5t03SFu98cs79VlJ3DscNlLV0GVwhu+QxwwQAAEpFLgPTPEk7R3y9y9s26j7OubikXkmtEzx2TGZ2g5mtNbO1nZ2dk//RpmUAAB/ESURBVBw6UL66B9IleYVfw0SnPAAAUOzKtumDc+77zrnlzrnlbW1thR4OUDS6BqKqDvjUEAwUbAw1VX41BgOU5AEAgKKXy8C0W9KCEV/P97aNuo+ZBSQ1S+qa4LEApqCzP6K2hqBS1a+F09YYVCcleQAAoMjlMjA9K2mJmS0ys2qlmjisOmSfVZKu8x5fJekx55zztl/jddFbJGmJpDU5HCtQMdr7wprVVLgOeWkzGoLazwwTAAAocjkLTN6apE9IeljSRkn3OOfWm9nXzOw93m4/lNRqZlskfVbSTd6x6yXdI2mDpF9JutE5l5AkM7tL0lOSlprZLjO7PlfvAShH+3rDmtVUU+hhMMMEAABKQk4XMTjnHpL00CHbvjzicVjS1RmOvUXSLaNsvzbLwwQqSkdfROcvKfy6vhkN1cwwAQCAole2TR8AHG4gEld/JF40M0x94bjCsUShhwIAAJARgQmoIO19YUnS7ObCr2FKh7b0mAAAAIoRgQmoIPu8cDKrsfAzTHNbaiVJu3uGCjwSAACAzAhMQAVJz+bMai6ewLS3hxkmAABQvAhMQAVp70s1WSiGNUxzvNC2t5cZJgAAULwITEAF2dcbVkMwoIZgThtkTkhNlV/T66u1p5cZJgAAULwITEAFKZab1qbNaa7RHtYwAQCAIkZgAipIKjAVvhwvbW5LLWuYAABAUSMwARWkvS+i2cUUmJprtIc1TAAAoIgRmIAKkUw6dfSHNbOIAtOcllr1h+PqD8cKPRQAAIBREZiACtHeH1Ys4TR/Wm2hhzLszU55lOUBAIDiRGACKsSOrkFJ0lHT6wo8kjfN8+7FROMHAABQrAhMQIXY0V18gWlO+ua1zDABAIAiRWACKsTO7kH5LNWZrljMagwq4LPhMAcAAFBsCExAhdjRPag5zbWqDhTPP/uA36ejptdp+/6BQg8FAABgVMVz5QQgp3Z0DxZVOV7aohn12kZgAgAARYrABFSIHd1DRRmYFs6o1/auASWTrtBDAQAAOAyBCagAg9G49ociOqq1+ALTohn1CseS2tdH4wcAAFB8CExABdjZnWrbvaAIZ5iOmVEvSaxjAgAARYnABFSAYmwpnrbQC0xbCUwAAKAIEZiACvBGVyqMFGNgmt1Uo5oqH40fAABAUSIwARXg1X39mtEQ1PT66kIP5TA+n2lhaz0leQAAoCgRmIAKsGlfv46f3VjoYWS0aEY9JXkAAKAoEZiAMpdIOm3u6NfSIg5MS2c3anvXgAaj8UIPBQAA4CAEJqDM7egeVDiWLOrAdOLcZjknbdzbV+ihAAAAHCRQ6AEAyK1N+1IhpJhL8k6a1yRJWre7T2cePb3AowGyo70vrO+ufl0Pr9+njv6IFkyr1XtOm6ePXniM6qr57xcASgXfsYEy9+q+fplJS2YWb2Ca3VSj1vpqrdvdW+ihAFnx+Ksd+uw9LyoUieuSZbO0sLVe6/f06d9/s1mrXtytb197hk6e31zoYQIAJoDABJS5Tfv6tbC1XrXV/kIPJSMz04nzmrVuDyV5KH0/f2G3PnPPizp+dpP+vw+ermPbGoafe+r1Ln3u3pf0wf98Wj/6s7N15tHTCjhSAMBEsIYJKHOv7uvX0lnFO7uUdtLcJm1u71c4lij0UIApe2RDuz57z4t6y6JW3f+xtx4UliTp3GNbde9Hz1VrQ7Wuu22NNrf3F2ikAICJIjABZezAQFTb9g/o1AUthR7KuE6a16x40uk1LiBRorZ2hvSZn76ok+c164cfXp5xVnduS61+8pG3qKbKpz//8Vr1DEbzPFIAwGQQmIAy9sLOA5Kk048q/sCUDnVrtx8o8EiAyRuMxvWxO59Xld9064fOHLepw7yWWn3vj8/Unp4hff6+l+Wcy9NIAQCTRWACytjzb/TI7zOdUgKLy+e11GrRjHr9fsv+Qg8FmBTnnL74wDq91tGvb11zuua11E7ouDOPnq7PX3q8fr2hXXet2ZnjUQIAporABJSxp7Z26aR5zSXTwvi8xa16emuXYolkoYcCTNhPntmhB17YrU+//ThdcFzbpI69/m2LdP6SGfrag+u1pSOUoxECAI5EaVxFAZi0UCSul3b26IYLjin0UCbsbYtn6M6nd+ilnT1avjB/92PqD8f06/Xtemprlzbs6dO+vrBiiaRMUnNdlWY31WhWU43mNNdobkut5jTXam5LjeY012p6fbX8PsvbWFFcXtrZo6/9coNWLG3TJy9ePOnjfT7Tv159qlZ+63f61F0v6IEb36pgIH8dLcOxhFZv6tQz27q0pSOkUCSu2iq/5k+r1fKjp+viE2ZqRkMwb+MBgGJEYALK1NOvdymedHrrsTMKPZQJO/eYGfKZ9OSW/XkJTDu7B/UfT7yu+57bpUg8qWl1VTplfotOO6pF1X6fnHPqGYppX29Y63b36tcb2hWNHzz75TNpen1QMxqq1dpQrRkNQbXWBzWjsVonzG7SmQunqammKufvBfl3YCCqj//kebU1BvXN958m3xSD88ymGv3TH56iP//xWv3Trzbpr9+1LMsjPVxHf1g/+N02/dczOxSKxFVT5dNxsxrVXFulwWhCj27s0D1rdyngM1164mx96u1LtLSIb35dadr7wtofiqja79PCGfWq8lMwBOQSgQkoU49ubFdDMKCzFpXOfV6avcDym40d+vQ7jsvZ64RjCf3HE6/r1tWvS0563xnz9P6zFuj0BS0yy3zR65xT90BUe3vD2tMzpL29qYuW/aGo9oci6gpF9OLOHu3vj2ggmmqPbiaddfR0/eGZ83T5yXPUSHgqC9F4Uh+98zl19kd038fO1bT66iM63zuWzdJ15x6tHz65TectbtXFx8/K0kgPFo0ndfv/bte3frNZQ7GErjh5jt6/fIHecsx0BUZcdDvn9Oq+ft3//C7dvWanHlq3V39w+jx94fITmHEqkPa+sO546g098MJu7e4ZGt5eHfDpwuPa9EfnHKULj2sb83sYgKkhMAFlKJF0enRjhy5c2pbX8p5seM+pc/W1Bzdo077+nPxEe/2eXn3yrhe0tXNA7zpljr5w+QmaO8FF+mam1oagWhuCOmne2I00QpG4Xt7Zo6e3devBl/fo//7sFd3y3xv15+cfow+ft7BoZp2SSaf2/rB6h2KqCfg1b1otP60eR6rJwyt6Zlu3/u0Dp+mU+dnpQnnz5SdozfYD+ty9L+t//uJ8zWqqycp50za39+tTd7+ojXv7dNHSNn353Sdq0Yz6Ufc1M50wp0lfvGKZPr5isb77xOv60e+36/FXO/TV95yo95w6lwvzPInGk/ru6tf13Se2KBpPasXSmbr+bYs0t6VWQ7G4XtrZqwdf3qtHNrTrnEXTdcsfnKzFMxvGPzGACbNKaGW6fPlyt3bt2kIPA8ib377WqT+5bY1u/aMzdPnJc7J+/hU/WiFJWv3h1Vk/d1coonP+/jf6s7ct0hcuP+HITrZiRer31avlnNMdT7+hv3two6bVV+lfrj5V5y+Z3AL9qXLO6fkdPfqPJ17XIxvaNa2uSjdffoKuPnN+QS46Y4mkfrVun37x4m499XrX8GyYJFX5TafOb9HKk2brqjPnq6XuyGZOyo1zTt98dLP+/Teb9am3L9FnL8nuTOjrnSG969+f1GkLWnTH9WcfNOszVc45/fipN/T3D21UQzCgv3/fybr0xNmTPs/m9n791X0v68WdPbr85Nm65b0nH/HMGsa2ff+APnnXC3pld6+uOHmO/u/K43VUa91h+8USSd29Zoe+8chrGowmdNNlx+u6cxdOuUwUqFRm9pxzbvlh2wlMQPn55F0v6IlNHXr2S+/IyQxTLgOTJN3w47V6fkePnrr54iOb7fACU+9Dj+jzP3tJD69v10VL2/QvV5+q1gKVFa3b3auvrlqvtW8c0FkLp+mWPzhZx83Kz9qQeCKpnzyzQ//xxOva2xvWvJZarVjapmVzmzStrlqD0YQ2d/Tryc37tX5Pn2qr/PrAWQv08YuO1czG7M52lKJk0umff71J3139uq46c77++apTchJ473tulz5370v68FsX6qvvOfGIztUViuiv7ntZj73aoQuPa9M/X33KEf1dJpJO3//tVn3jkU2aVletf776VF04yc6AmJifv7BbX3zgFQX8Pn39D0/RypPGD7kd/WH93/te1uObOrViaZv+tYDf64BSRGAiMKFC7O0d0vlff1x/cu5CffnduVk8nuvA9JuN7br+9rX6xvtP1fvOmD/1E61Yof5wXCvf+zW194V102XH68/OW1Twn7omk073PrdT//A/r2ogEtfHVyzWxy86Nqflk09v7dJXV63Xq/v6dc6i6frI+cfoouNnZuzwt3Fvn37wu236xYu7VVPl140XLdafnrdQNVWlVeKZLR19YX3+Zy9r9aZOXXv2UbrlvSfl9HP0dw9u0A+e3KYvXXGC/vz8qXW6/N3mTn32npfUOxjTzZcfrw+/dWHWAt663b36zE9f1OaOkK4792jddNkJqq2uzM9GtoVjCf3NLzforjU7dNbCafq3SdzbS0rNKN759Bv6W282/dvXnqGzF+Wv6yhQyghMBCZUiK/8Yp3ufGaHVn9uhRZMP7x0IxtyHZiSSacrvv2kBiJx/fozF0zpIj2WSGrfGedqd8+Q/urGf9O3rz1Dpy3IzlqTbOkKRfS3D27Qz1/coyUzG/SPf3iKzjw6u0069vYO6e8felW/fGmP5rXU6q/ftUyXnjhrwhfO2/YP6Jb/3qhHN7ZrwfRaffHyyR1fDJxz2tE9qI17+/VG14C6BqJKJJ0CftPMxhrNagpqdlONZjfXaGZjjaoDqVnNWCKpV/f2a9VLu3Xn0zuUSDr99buX6UPnHJXz959IOn3qrhf036/s1RcvP0EfmcTtAcKxhL75yGv63m+3avHMBn372tN1wpymrI8xHEvon361Sbf9fpuObavXv33gdJ1cAjfJLmY7uwf18Z88r1d29+pjK47VX15y3JTLMtft7tUn/ut57ege1GcvOU4fX7G44D8sAoodgYnAhAqwpaNfl33rd7rqzAX6h/ednLPXyXVgklI/Hf/jH67RJy9erL9859JJHft6Z0ifvecl3fz1j2pGQ1Azn3+qaJosjObxVzv0xQde0d6+sK47d6H+6tKlqg8eWU+eoWhCP3xyq25d/briSaePXXisPnrhsVOeBfjd5k797YMb9Fp7SOctbtVX3n1i3koJp8I5p+feOKD7X9itJzZ1HtRVLBjwKeAzxRJO0UNukmwmtdZXy8zUMxhVLOHk95kuO2m2PvfOpVqYoUlCLsQSSf3F3S/ooVf26ZqzFuir7zlxzB8eOOf0+KYOfWXVeu3sHtIHzzlKf33FspzP/Px+y3795T0vaX8ook+/Y4k+euGxWVl7VWkeXr9Pn7/vZSWd0zfef5ouWXbknRJDkbi+cP8rWvXSHp2/ZIa+8f7T1NZIiR6QCYGJwIQyF4kn9P7vPa03ugb0yGcuzOl/ivkITJL0uXtf0s+e36XvfehMvXMCi9RDkbi+/dhm3fbkNtVVB/TYg19Va321tDq348yGUCSuf/rVq7rj6Tc0oyGoT79jid6/fMGk13Alk04PvLBb//LrTdrbG9Y7l83Sl65YNupC8cmKJ5K68+k39I1HXtNANKE/fsvR+uTFi4tqjcTO7kHd//xu3f/CLr3RNai6ar8uWNKm8xa36rQF03T0jLrh8OycU+9QTO19Ee3tHVJ7X1h7e8Nq74tIcmqpq9Zxsxp04XEzNb1AzQ0SSadvPLJJ33n8dc1rqdVnLjlOV5w856AQNBRN6NGN7fr/f79Nz+/o0eKZDfrbK0/Suce25m2cvYMxfekX6/TLl/bozKOn6V+uPjVjBz4c7MBAVH/zy/X6+Yt7tGxOk777oTN0dGv2/uycc7r72Z366qr1aqqt0r9efaouYN0ZMCoCE4EJZSwcS+hTd72gX29o13986AytPCn7nfFGyldgGozGde1/PqP1u3v1uUuX6iPnHzPqmpt9vWHd8fR2/eSZHeoZjOmqM+fr8yuXaua7V6Z2KIHAlPb8jgP6h4c26tntBzR/Wq0+eM5Rev/yBePe++bAQFQPvLBbtz+1XW90DeqU+c364uUn6Jxjsn/R3D0Q1b/+epPuWrNDwYBfHzznKP3peQs1f1puSkDH0x+O6X9e2af7nt+lNdu6ZSade0yr/vCM+Vp50uwjnq0rBiPXoNVU+bR0VqMaa6p0YDCqze0hRRNJzWup1UcvPEYfOOuo4bLCfPvFi7v1pZ+v01A0oavOnK8bL1qcs9LgUjcUTehH/7td3129RYPRhD5x8WJ9fMXinP3dbdzbpxv/63lt7RzQO06YqZsuO16LZxbvLDFQCAUJTGa2UtK3JPkl/cA594+HPB+U9GNJZ0rqkvQB59x277mbJV0vKSHpU865hydyztEQmFDOXt3Xpy/c/4pe2Nmjr7xrmT583qKcv2a+ApMk9Q7FdNPPXtb/rNuneS21uuKUOTq6tU5Jl5pNeO6NA3p+xwFJ0juXzdLHVyzWqem1SiPaipcS55wee7VDP/jdNj21tUtm0inzmvWWY1t19PR6zW4OymTq7I9oW9eA1m7v1nNvHFDSSWcc1aLr33aMLjtpds7XK2zpCOnW1Vv0ixf3KOmc3rZ4ht596lytWNqW86567X1hrd7UodWbOvX4pg6FY0kdM6Ne7ztjnv7gjPmTWiRfKpJJpzXbu/Xr9e16rb1fQ7GE6oMBnTCnUSuOm6mzF03P2MQjnzr6wvrO41t015qdiiWTumBJm646c74uOK5NzbWFK411zml/KKp9vWF19KdmEtv7wuoeiCocSygSTyrhnGoCftVU+dRUW6W2hqDaGoOa2RjU7ObUOrcjac6STDpt2Nun+5/frQde2KUDgzFdfPxMfX7lUh0/O/vrzA4VjiV02++36dbHX1coEtcF3g1vL1jSRtMOQAUITGbml/SapEsk7ZL0rKRrnXMbRuzzcUmnOOc+ambXSPoD59wHzGyZpLsknS1prqRHJaVvdjHmOUdDYEK5cM4pFInr9c4Brdvdq0c3tuu3r3WqqbZKf/fek/SuU+bmZRz5DExS6n3/at0+3fnMG1qzrVuxROr7VnXApxNmN2rF0pl63xnzDi9jKdHANNLm9n799yt79eTm/XpxZ4/iyYO/Zwd8puPnNOqipTN16Ymzx72hbi7s7hnSvWt36t61u4bXCh03q0Enzm3WiXObtGhGfepis6lGjTVVE/oJunNO4VhSfeGY9vaGtadnSNu7BrR+T5/W7+7V9q5BSdLsphpdsmyW3nfGPJ22oKWkmlGUu729Q7przU7du3an9vaG5feZTp3frBPnNuv4OY1a3NagmU01mtkYPKJZQOechmIJdQ9Eh391haLa2zuk3T1D2nVgSLsPpB5H4snDjm+pq1JtlV/BgE8+M0XiSYVjCfWFY8Pfa0Zqra/W7OYazWmu1RwvRM1tqdH0+qCq/T4Fq3yq9vs0FEsoFI7rwGBU2/cPaHNHSGu2datrIKoqv+mdy2brw+ct1FkL89/BrisU0Z1P79B/rXlD7X0RBQM+nXNMq06b36zj5zRp/rRazW6qUWtDsChCOJAvhQhM50r6qnPuUu/rmyXJOfcPI/Z52NvnKTMLSNonqU3STSP3Te/nHTbmOUdTLIHpnx9+Vf/7etdh28f6K8j41BgHZXpm7NcZ43wZnprKuKfyeZvKuLM9tsx/D/l5HeekoVhieBF62ryWWr339Ln6yPnH5PUGo/kOTCPFE0l1hiLy+0zT6qrHXuNTBoFppHgiqY7+1E/FJWl6fbXmtdQWzQJ751I/PX/81Q49v6NH6/f0euuBDlblN9VW+VVXHRi+GHPOKelS/6bDsaRCkbgSycP/RSyYXquT5jbr1AUtuvC4Nh0/u5GQVOQSSafndxzQE5s69fTWLr26r1+hSPygfar8lprZqU7N7lT7faP+vTqXatQRiaVCTTieVHSUEJQ2oyH1b2TetNrU7y21mtNSq1leUJvREMwY4JPJ1Bq3zlDq39y+3tQat729Ye3rHRp+3DsUG/fPwGfSgul1OvOoaXrLsa16xwmzCrYubqRYIqmnXu/S45s69Pst+7WlI6SR/+zMpNoqv2qr/Kqp8qu22i+/mcwkM5N5+/jS2+Rt558kJuHe/3Nu0fw/likw5bKwe56knSO+3iXpnEz7OOfiZtYrqdXb/vQhx87zHo93TkmSmd0g6QZJOuqoo6b2DrKsJuBXQ4afoo31H36mZ8b6hpT5mMm/ztivNcb5Mjw1ldexqbzOmH8+kx9cNv9Mp/J3V1PlV0tdtVrqqrSwtV4nzk39FLDSLhYDfp/mNJdfudVEBPw+zW2p1dwiLTczM29W6c1Zrv2hiHZ2Dw5fcPaH4xqMJTQUTWgwGlc86WQy+UzeBZeppsqnhpqAGoJVaqwJaHZTjeZ6F72FLOnC1Ph9prMWTh+eSXHOadeBIW3bP6D9oYg6+yPqGYqlApAXhCLxRMbv09UBn2qqfAoG/ApW+VQTSF3IT6+r1rT6ak33fs1uqjmiMjOfzzStPnXOsTpCDkTi2tcXVs9gVBEvwEXjSdVWp/7Pb6qt0vxptTm9z9pUVfl9uuC4tuEmEOFYQpvbQ8NNUDr7IxqKJTQUS2gwmlA4llAi6eScvGCVeuwkJV16e/mvjUd2lcJ1TOmvhM3AOfd9Sd+XUjNMBR6OJOmTb19S6CEAQF7NaAiO27AClcXMtGB6Xdk0g6gPBnRsW0Ohh5EVNVV+nTy/mftpAYfI5fzXbkkLRnw939s26j5eSV6zUs0fMh07kXMCAAAAQFbkMjA9K2mJmS0ys2pJ10hadcg+qyRd5z2+StJjLrXAY5Wka8wsaGaLJC2RtGaC5wQAAACArMhZSZ63JukTkh5WqgX4bc659Wb2NUlrnXOrJP1Q0h1mtkVSt1IBSN5+90jaICku6UbnXEKSRjtnrt4DAAAAgMqW0zVMzrmHJD10yLYvj3gclnR1hmNvkXTLRM4JAAAAALlQHD38AAAAAKAIEZgAAAAAIAMCEwAAAABkQGACAAAAgAwITAAAAACQAYEJAAAAADIgMAEAAABABgQmAAAAAMiAwAQAAAAAGZhzrtBjyDkz65T0RqHHcYRmSNpf6EEA4rOI4sLnEcWEzyOKBZ/FqTnaOdd26MaKCEzlwMzWOueWF3ocAJ9FFBM+jygmfB5RLPgsZhcleQAAAACQAYEJAAAAADIgMJWO7xd6AICHzyKKCZ9HFBM+jygWfBaziDVMAAAAAJABM0wAAAAAkAGBqQiY2dVmtt7Mkma2/JDnbjazLWa2ycwuHbF9pbdti5ndNGL7IjN7xtv+UzOrzud7QXnL9LkDssnMbjOzDjNbN2LbdDN7xMw2e79P87abmf2795l82czOGHHMdd7+m83sukK8F5Q2M1tgZo+b2Qbv/+m/8LbzeUTemVmNma0xs5e8z+PfeNtHvfYzs6D39Rbv+YUjzjXq9SVGR2AqDuskvU/Sb0duNLNlkq6RdKKklZJuNTO/mfklfUfSZZKWSbrW21eSvi7pm865xZIOSLo+P28B5W6czx2QTT9S6nveSDdJ+o1zbomk33hfS6nP4xLv1w2SviulLmglfUXSOZLOlvSV9EUtMAlxSX/pnFsm6S2SbvS+7/F5RCFEJF3snDtV0mmSVprZW5T52u96SQe87d/09st4fZnXd1JiCExFwDm30Tm3aZSnrpR0t3Mu4pzbJmmLUt9oz5a0xTm31TkXlXS3pCvNzCRdLOk+7/jbJb039+8AFWLUz12Bx4Qy5Jz7raTuQzZfqdT3NOng721XSvqxS3laUouZzZF0qaRHnHPdzrkDkh7R4SEMGJNzbq9z7nnvcb+kjZLmic8jCsD7XIW8L6u8X06Zr/1Gfk7vk/R271ox0/UlMiAwFbd5knaO+HqXty3T9lZJPc65+CHbgWzI9LkD8mGWc26v93ifpFne48l+nwSmxCtnOl3SM+LziALxKo1elNShVPB+XZmv/YY/d97zvUpdK/J5nKRAoQdQKczsUUmzR3nqi865X+R7PABQqpxzzsxo8Yq8MbMGST+T9GnnXF/qh/QpfB6RT865hKTTzKxF0gOSji/wkCoCgSlPnHPvmMJhuyUtGPH1fG+bMmzvUmr6P+D9JGHk/sCRGuvzCORau5nNcc7t9UqcOrztmT6XuyWtOGT76jyME2XGzKqUCks/cc79v/bu0EXKKArD+POqCCYR3GA0+D8oZlewCYtsURGj2wWjGkwW8wpiUCYYBhUsbtegILsWi7BZtJiEY7hXWJe5q+LiLPj84jfzDRMO9ztn7j1nnvTLxqPmqqo+J1kDTjHO/X7E42aSA8BhWq7o8/wPeSRvb5sCy33KyXFaE+kr4DVwok9FOUhr3JtW+1OtNWCp338ZcPdKu2Vm3M35O+n/MaWtafDz2jYFLvXpZCeBL/2o1AtgMcmR3ly/2K9Jv633e6wC76vq7paXjEf9c0kW+s4SSQ4BZ2h9daPcb2ucLgEve644yi814A7THpDkPHAPWACeJXlbVWeraj3JBNigTeq51rdiSbJCW2z3A/erar1/3HXgcZLbwBvaQi/9tar6tkPcSbsmySPar/FHk2zSpovdASZJrgIfgQv97c+Bc7Sm5a/AFYCq+pTkFq3QB7hZVdsHSUi/chq4CLzrfSMANzAeNR/HgAd9ot0+YFJVT5NsMDv3WwUeJvlAG6SzDLBTfqnZ0gpNSZIkSdJ2HsmTJEmSpAELJkmSJEkasGCSJEmSpAELJkmSJEkasGCSJEmSpAELJkmSJEkasGCSJEmSpAELJkmSJEka+A5h4E/UWtC44gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wWevhSv4qTy8", + "outputId": "f897c001-7521-4e1e-cbf2-96438f82884b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 305 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 27 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAH5CAYAAAA4Og9YAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaipJREFUeJzt3Xt80+Xd//F30jZJzwUKPUCBCkVEEBCkFnHo7CzTOdHpmLf3RObUOXUqKlN/Aju4G6fT4emWuU2Zu8dwOIebUyZDJ3NglbOIIudTaQuUNm3aJm3y/f2RJqVSStOm/Sbt6/l45FGbXPnmCvabNu98rs9lMQzDEAAAAAAAABACq9kTAAAAAAAAQPQhVAIAAAAAAEDICJUAAAAAAAAQMkIlAAAAAAAAhIxQCQAAAAAAACEjVAIAAAAAAEDICJUAAAAAAAAQslizJxCtfD6fSkpKlJycLIvFYvZ0AAAAAAAAwsIwDFVXVys7O1tW66nrkQiVOqikpEQ5OTlmTwMAAAAAAKBLHDhwQIMGDTrl7YRKHZScnCzJ/w+ckpJi8mwAAAAAAADCw+l0KicnJ5h9nAqhUgcFlrylpKQQKgEAAAAAgB7ndO1+aNQNAAAAAACAkBEqAQAAAAAAIGSESgAAAAAAAAgZoRIAAAAAAABCRqgEAAAAAACAkBEqAQAAAAAAIGSESgAAAAAAAAgZoRIAAAAAAABCRqgEAAAAAACAkBEqAQAAAAAAIGSESgAAAAAAAAgZoRIAAAAAAABCRqgEAAAAAACAkBEqAQAAAAAAIGSESgAAAAAAAAgZoRIAAAAAAABCRqgEAAAAAACAkMWaPQEAQHgZhqHf/HuP/rPrqCYP66dbvjTM7CkBAAAA6IEIlQCgh9l0oFI/e/NTSdJ7nx/RV0dnKadvgsmzAgAAANDTsPwNAHqY1zeVBP/bMKQ/rTtg4mwAAAAA9FSESgDQgzR6fXpjiz9UumbCIEnSn9cfNHNKAAAAAHooQiUA6EE+L6vR0RqPku2xmnfFKFktUklVvcqd9WZPDQAAAEAPQ6gEAD3Ip4edkqSzslOU4ojTsP5JkqStJVVmTgsAAABAD0SoBAA9SCBUGpWVIkkaPTBVkvTJIadpcwIAAADQMxEqAUAP8mlpU6VSVrIk6exsf7hEpRIAAACAcCNUAoAewjAMfXq4WpJ01hcrlUqoVAIAAAAQXoRKANBDHK3xqMLlkdUijcjwVyoNH+DvqXSosk7uRq+Z0wMAAADQwxAqAUAPsb+iVpKUlRovR1yMJKlfok0JthgZhnToeJ2Z0wMAAADQwxAqAUAPcfC4P1Qa2Cc+eJ3FYlFOnwRJ0gFCJQAAAABhRKgEAD3EwabQaNAJoZIk5fT1fx+oZAIAAACAcCBUAoAeojlUSmhxfU5f//cHCZUAAAAAhBGhEgD0EIHlbydVKgWXvxEqAQAAAAgfQiUA6CEClUo5X6hUGtxUqcTyNwAAAADhRKgEAD2Az2cEd3f7YqXSoKaeSgdp1A0AAAAgjAiVAKAHOFrjlsfrk9UiZaY6WtyWmeL/vrK2Qe5GrxnTAwAAANADESoBQA9QXu2WJPVLsisupuVLe2p8nGyx/uvKne5unxsAAACAnolQCQB6gPLqeklS/yT7SbdZLBYNSLY3jSNUAgAAABAehEoA0AMcaQqLBqScHCpJag6VnPXdNicAAAAAPRuhEgD0AIFlbYHw6IsymvoqUakEAAAAIFwIlQCgBwiERQOSHa3eHgibyqhUAgAAABAmhEoA0AOcdvkblUoAAAAAwoxQCQB6gECj7lMtf6NSCQAAAEC4ESoBQA8QqEDqf5qeSkeoVAIAAAAQJoRKABDlDMM4bU+lQNhEqAQAAAAgXAiVACDKOesb5Wn0STp1pVK/RJsk6XitRz6f0W1zAwAAANBzESoBQJSrcHkkSUn2WDniYlod06cpVPIZUmVdQ7fNDQAAAEDPRagEAFEuECr1SYw75Zi4GKtSHLFN41kCBwAAAKDzCJUAIMoFQqW+CbY2x/VL8i+NO1bj6fI5AQAAAOj5CJUAIModD4RKiW2HSoHbAyEUAAAAAHQGoRIARLljweVv7QuVjhEqAQAAAAgDQiUAiHLHa/0hUb/ThEr9qFQCAAAAEEaESgAQ5SpCrFQiVAIAAAAQDoRKABDl2tuom+VvAAAAAMKJUAkAolxFOxt190sKVCq5u3xOAAAAAHo+QiUAiHLtDZX6NFUyHauhUgkAAABA5xEqAUCUO97eSqVEu398LaESAAAAgM4jVAKAKOZp9Kna3Sjp9KFSWkKcJKmytqHL5wUAAACg5yNUAoAoVlnnrzqyWKQUR1ybYwOhkrvRp/oGb5fPDQAAAEDPRqgEAFGsqqnqKDU+Tlarpc2xSfZYxTSNoVoJAAAAQGcRKgFAFKus84dDafFtVylJksViCY4LVDgBAAAAQEdFRKj03HPPaejQoXI4HMrPz9eHH37Y5vhly5Zp5MiRcjgcGjNmjN58880WtxuGoXnz5ikrK0vx8fEqLCzUjh07WowZOnSoLBZLi8ujjz4a9ucGAF3pxEql9kilrxIAAACAMDE9VHrllVc0e/ZszZ8/Xxs2bNDYsWNVVFSk8vLyVsevWbNG1113nW666SZt3LhR06dP1/Tp07V169bgmMcee0xPP/20Fi1apOLiYiUmJqqoqEj19fUtjvWTn/xEhw8fDl7uvPPOLn2uABBugUql1IS2m3QHBCuVCJUAAAAAdJLpodKTTz6pm2++WbNmzdKoUaO0aNEiJSQk6MUXX2x1/FNPPaVp06bp/vvv11lnnaWf/vSnOvfcc/Xss89K8lcpLVy4UA8//LCuvPJKnXPOOXr55ZdVUlKi5cuXtzhWcnKyMjMzg5fExMSufroAEFaVtf5lbO1Z/iZJaU3hUxXL3wAAAAB0kqmhksfj0fr161VYWBi8zmq1qrCwUGvXrm31PmvXrm0xXpKKioqC4/fs2aPS0tIWY1JTU5Wfn3/SMR999FH169dP48eP1+OPP67GxsZTztXtdsvpdLa4AIDZnHWhLX+jUgkAAABAuMSa+eBHjx6V1+tVRkZGi+szMjL02WeftXqf0tLSVseXlpYGbw9cd6oxkvSDH/xA5557rvr27as1a9bowQcf1OHDh/Xkk0+2+rgLFizQj3/849CeIAB0sWCj7oQQeyrVESoBAAAA6BxTQyUzzZ49O/jf55xzjmw2m2699VYtWLBAdrv9pPEPPvhgi/s4nU7l5OR0y1wB4FQqQ2zUnRZva3E/AAAAAOgoU5e/paenKyYmRmVlZS2uLysrU2ZmZqv3yczMbHN84Gsox5Sk/Px8NTY2au/eva3ebrfblZKS0uICAGarCnX5W1OlEj2VAAAAAHSWqaGSzWbThAkTtGrVquB1Pp9Pq1atUkFBQav3KSgoaDFeklauXBkcn5ubq8zMzBZjnE6niouLT3lMSdq0aZOsVqsGDBjQmacEAN2qeflbO3d/S6CnEgAAAIDwMH352+zZszVz5kxNnDhRkyZN0sKFC+VyuTRr1ixJ0g033KCBAwdqwYIFkqS77rpLU6dO1RNPPKHLL79cS5cu1bp16/TCCy9IkiwWi+6++2498sgjysvLU25urubOnavs7GxNnz5dkr/Zd3FxsS6++GIlJydr7dq1uueee/Tf//3f6tOnjyn/DgDQEc5QeyrRqBsAAABAmJgeKs2YMUNHjhzRvHnzVFpaqnHjxmnFihXBRtv79++X1dpcUDV58mQtWbJEDz/8sB566CHl5eVp+fLlGj16dHDMnDlz5HK5dMstt6iyslJTpkzRihUr5HA4JPmXsi1dulQ/+tGP5Ha7lZubq3vuuadFzyQAiAaVtf5lbO1f/uavaKqiUTcAAACATrIYhmGYPYlo5HQ6lZqaqqqqKvorATCFz2do+P97Uz5D+vChSzQgxXHa++w+UqMvP/Gekh2x+vhHRd0wSwAAAADRpr2Zh6k9lQAAHVfjaZSv6WOBlHZWKiU7/ONq3I3y+fhMAQAAAEDHESoBQJSqrm+UJNlirHLExbTrPskO/6pnw/CHUgAAAADQUYRKABClquv9fZECQVF7OOJiZIv1v/Q76asEAAAAoBMIlQAgSgUqldq79C0gpSmECtwfAAAAADqCUAkAolSg0iiUSiX/eH8IRagEAAAAoDMIlQAgSgVCoVBDpUClEsvfAAAAAHQGoRIARKlgTyV7aMvfgpVKbkIlAAAAAB1HqAQAUcrZ0Uql+EClEsvfAAAAAHQcoRIARKnm5W8hVirZAz2VqFQCAAAA0HGESgAQpYLL30Ju1M3ubwAAAAA6j1AJAKJUhxt1x/srlZxUKgEAAADoBEIlAIhSgUqllFCXvwV2f6NSCQAAAEAnECoBQJTqaKVScPc3QiUAAAAAnUCoBABRyhnsqRRapVJKoFKpjuVvAAAAADqOUAkAolSg0iglvqOVSoRKAAAAADqOUAkAolTz8rcQK5Xi6akEAAAAoPMIlQAgCnl9hmrcHdz9jUolAAAAAGFAqAQAUSgQKEkdadTtH1/f4JOn0RfWeQEAAADoPQiVACAKBaqMbLFW2WNjQrpvkr05hKJaCQAAAEBHESoBQBQKNukOsUpJkmJjrEq0xbQ4DgAAAACEilAJAKJQR5t0BwTu56RSCQAAAEAHESoBQBRy1vnDoFD7KQUEdoCjUgkAAABARxEqAUAUqnZ3LlRKZgc4AAAAAJ1EqAQAUSi4/M3eseVvgV5MzjoqlQAAAAB0DKESAESh5p5KnatUoqcSAAAAgI4iVAKAKBQIg1LiO9qou6lSiZ5KAAAAADqIUAkAolBnK5UCYRQ9lQAAAAB0FKESAESh5lCpc5VK7P4GAAAAoKMIlQAgCgUqjDrdU6mOSiUAAAAAHUOoBABRKFBhlNLR5W9UKgEAAADoJEIlAIhCgQqjji5/S2H3NwAAAACdRKgEAFGos4266akEAAAAoLMIlQAgCjX3VOpYpVJSU6jkchMqAQAAAOgYQiUAiDJenyGXxyup45VKiTb//WoIlQAAAAB0EKESAESZE4OgJHvnlr+5G31q8PrCMi8AAAAAvQuhEgBEmcCStVirRfbYjr2MJ54QRrEEDgAAAEBHECoBQJQJhECJ9lhZLJYOHSMuxhoMpGjWDQAAAKAjCJUAIMoElr91dOlbQOD+Lg+hEgAAAIDQESoBQJRxuf1NuhPtMZ06TmAHuBoqlQAAAAB0AKESAESZmhOWv3UGO8ABAAAA6AxCJQCIMq5wLX9zECoBAAAA6DhCJQCIMoEeSGHrqUSoBAAAAKADCJUAIMqEa/lbIFRi9zcAAAAAHUGoBABRJlzL3xKDlUreTs8JAAAAQO9DqAQAUSZcu78lB3sqNXR6TgAAAAB6H0IlAIgy4d/9jUolAAAAAKEjVAKAKMPubwAAAAAiAaESAESZYKWSrXOhUjK7vwEAAADoBEIlAIgyrnAtf2u6fw27vwEAAADoAEIlAIgygUbdLH8DAAAAYCZCJQCIMs2Nuju3+1tS0/0JlQAAAAB0BKESAESZmnA16rbHSaKnEgAAAICOIVQCgChiGEYYeyr5K5WqCZUAAAAAdAChEgBEEXejT40+Q1LnQ6XkpkolT6NPDV5fp+cGAAAAoHchVAKAKHLiUrVEW+d6Kp3Yk4klcAAAAABCRagEAFEksPObI86q2JjOvYTHxljliPMfo7qeUAkAAABAaAiVACCKhKtJd0DgOC4PoRIAAACA0BAqAUAUCYQ/ne2nFBAIlWqoVAIAAAAQIkIlAIgi4a5UCoRTNfRUAgAAABAiQiUAiCKBhtphr1QiVAIAAAAQIkIlAIgirq7qqUSoBAAAACBEhEoAEEVqmnZ/C1ulksN/HHZ/AwAAABAqQiUAiCLNlUoxYTleYrBSyRuW4wEAAADoPQiVACCKBHsq2cJTqZQc7KnUEJbjAQAAAOg9IiJUeu655zR06FA5HA7l5+frww8/bHP8smXLNHLkSDkcDo0ZM0Zvvvlmi9sNw9C8efOUlZWl+Ph4FRYWaseOHa0ey+12a9y4cbJYLNq0aVO4nhIAdImaMDfqbt79jUolAAAAAKExPVR65ZVXNHv2bM2fP18bNmzQ2LFjVVRUpPLy8lbHr1mzRtddd51uuukmbdy4UdOnT9f06dO1devW4JjHHntMTz/9tBYtWqTi4mIlJiaqqKhI9fX1Jx1vzpw5ys7O7rLnBwDh1FWNutn9DQAAAECoTA+VnnzySd18882aNWuWRo0apUWLFikhIUEvvvhiq+OfeuopTZs2Tffff7/OOuss/fSnP9W5556rZ599VpK/SmnhwoV6+OGHdeWVV+qcc87Ryy+/rJKSEi1fvrzFsd566y29/fbb+sUvftHVTxMAwiLsjbrZ/Q0AAABAB5kaKnk8Hq1fv16FhYXB66xWqwoLC7V27dpW77N27doW4yWpqKgoOH7Pnj0qLS1tMSY1NVX5+fktjllWVqabb75Zv//975WQkHDaubrdbjmdzhYXAOhuwZ5KYWrUHdj9rYbd3wAAAACEyNRQ6ejRo/J6vcrIyGhxfUZGhkpLS1u9T2lpaZvjA1/bGmMYhm688UZ973vf08SJE9s11wULFig1NTV4ycnJadf9ACCcXJ7wLn8LVDxVU6kEAAAAIESmL38zwzPPPKPq6mo9+OCD7b7Pgw8+qKqqquDlwIEDXThDAGhdoKIofMvf/BVPLH8DAAAAECpTQ6X09HTFxMSorKysxfVlZWXKzMxs9T6ZmZltjg98bWvMO++8o7Vr18putys2NlbDhw+XJE2cOFEzZ85s9XHtdrtSUlJaXACgu9WEuVF3Ij2VAAAAAHSQqaGSzWbThAkTtGrVquB1Pp9Pq1atUkFBQav3KSgoaDFeklauXBkcn5ubq8zMzBZjnE6niouLg2Oefvppbd68WZs2bdKmTZv05ptvSvLvRPezn/0srM8RAMKpuadSmEIlG7u/AQAAAOiY8Lwr6YTZs2dr5syZmjhxoiZNmqSFCxfK5XJp1qxZkqQbbrhBAwcO1IIFCyRJd911l6ZOnaonnnhCl19+uZYuXap169bphRdekCRZLBbdfffdeuSRR5SXl6fc3FzNnTtX2dnZmj59uiRp8ODBLeaQlJQkSRo2bJgGDRrUTc8cAELj8xlyeQK7v4WpUXdTOOVu9KnR61NsTK9cFQ0AAACgA0wPlWbMmKEjR45o3rx5Ki0t1bhx47RixYpgo+39+/fLam1+kzN58mQtWbJEDz/8sB566CHl5eVp+fLlGj16dHDMnDlz5HK5dMstt6iyslJTpkzRihUr5HA4uv35AUC41DZ4g/8d7uVvkuRye5WaQKgEAAAAoH0shmEYZk8iGjmdTqWmpqqqqor+SgC6RZmzXvn/s0pWi7Trfy6TxWIJy3FH/L+35PH69J8HvqyBafFhOSYAAACA6NXezIOPpAEgStSc0E8pXIGS/3jsAAcAAAAgdIRKABAlXGHe+S0gsASOZt0AAAAAQkGoBABRoibMO78FBEIqKpUAAAAAhIJQCQCihMsd2PmtayqVCJUAAAAAhIJQCQCiRPPyt5iwHrd5+Zv3NCMBAAAAoBmhEgBEieDyN1u4l7/RqBsAAABA6AiVACBKdFmjbhuNugEAAACEjlAJAKKEq4saddNTCQAAAEBHECoBQJSo6aJG3ez+BgAAAKAjCJUAIErQqBsAAABAJCFUAoAoUePpmuVvNOoGAAAA0BGESgAQJWrqu7inkodQCQAAAED7ESoBQJTost3f7Oz+BgAAACB0hEoAECVqumj3Nxp1AwAAAOgIQiUAiBKB5Wld1ajbRaNuAAAAACEgVAKAKBEIfZLscWE9biCkYvkbAAAAgFAQKgFAlGhe/tZVlUqNMgwjrMcGAAAA0HMRKgFAFGjw+uRp9EnqukbdjT5D7qbHAAAAAIDTIVQCgChQe0K/owRbmEOlE45Hs24AAAAA7UWoBABRoKapSbctxipbbHhfumOsFsXH+ZfU0awbAAAAQHsRKgFAFKhtqiBKCHM/pYDAEjiadQMAAABoL0IlAIgCwSbdYV76FhDYAc7lIVQCAAAA0D6ESgAQBWo9/mVp4W7SHUClEgAAAIBQESoBQBSo6ablbzTqBgAAANBehEoAEAUCYU9XVSolESoBAAAACBGhEgBEAVfT8rcEW1c36mb3NwAAAADtQ6gEAFEgUEGU2GWVSjEtHgcAAAAATodQCQCiQG0XL38L7CpHqAQAAACgvQiVACAKBJalJdjY/Q0AAABAZCBUAoAo0Nyou2t6KtGoGwAAAECoCJUAIAq4PP6wp+srlWjUDQAAAKB9CJUAIAq4urqnEo26AQAAAISIUAkAooDL468g6rrd35qWv3kIlQAAAAC0D6ESAESBQAVRQhf1VKJRNwAAAIBQESoBQBTo6uVvNOoGAAAAECpCJQCIAoHlbwm2rq1UctGoGwAAAEA7ESoBQBTotkbdnkYZhtEljwEAAACgZyFUAoAI5/MZqu2mRt2GoeBjAQAAAEBbCJUAIMLVNjSHPIm2rgmV4uNiZLX4/5u+SgAAAADag1AJACJcIOSxWiRHXNe8bFsslmBgxQ5wAAAAANqDUAkAIlwgVEq0xcpisXTZ49CsGwAAAEAoCJUAIMIFQp6u6qcUEGjWTaUSAAAAgPYgVAKACOfyNFUqNYU+XSUpWKlEqAQAAADg9AiVACDCBZe/dXmlUlOo5CFUAgAAAHB6hEoAEOFqTuip1JUCoRLL3wAAAAC0B6ESAES4Wk+gpxLL3wAAAABEDkIlAIhw3bf8LdCom93fAAAAAJweoRIARLju2/2NSiUAAAAA7UeoBAARLrj7m62Ll7/ZCJUAAAAAtB+hEgBEuJpu3v2NRt0AAAAA2oNQCQAiXG037f5Go24AAAAAoSBUAoAIV9PtPZVo1A0AAADg9AiVACDC1QZ6Ktm7tqdS8+5vVCoBAAAAOD1CJQCIcK7uXv7mIVQCAAAAcHqESgAQ4bq7UTc9lQAAAAC0B6ESAES4Wk+gp1LXLn9LYvc3AAAAACEgVAKACNfdlUr1DT41en1d+lgAAAAAoh+hEgBEMMMwgpVKSV0eKjVXQrk87AAHAAAAoG2ESgAQwdyNPnl9hiQpwda1y9/ssTGKi7FIoq8SAAAAgNPrUKi0e/fucM8DANCKE/sbJXTx7m8SzboBAAAAtF+HQqXhw4fr4osv1v/93/+pvr4+3HMCADSpdfuXocXHxSjGaunyx0u00awbAAAAQPt0KFTasGGDzjnnHM2ePVuZmZm69dZb9eGHH4Z7bgDQ63VXk+6ApGClEj2VAAAAALStQ6HSuHHj9NRTT6mkpEQvvviiDh8+rClTpmj06NF68skndeTIkXDPEwB6pVqPP1RKsndtP6WAQLNuKpUAAAAAnE6nGnXHxsbq6quv1rJly/Tzn/9cO3fu1H333aecnBzdcMMNOnz4cLjmCQC9UiDc6Y5+ShI9lQAAAAC0X6dCpXXr1un73/++srKy9OSTT+q+++7Trl27tHLlSpWUlOjKK69s13Gee+45DR06VA6HQ/n5+addSrds2TKNHDlSDodDY8aM0ZtvvtnidsMwNG/ePGVlZSk+Pl6FhYXasWNHizFf//rXNXjwYDkcDmVlZenb3/62SkpKQvsHAIAuFliGltTdy988hEoAAAAA2tahUOnJJ5/UmDFjNHnyZJWUlOjll1/Wvn379Mgjjyg3N1cXXnihFi9erA0bNpz2WK+88opmz56t+fPna8OGDRo7dqyKiopUXl7e6vg1a9bouuuu00033aSNGzdq+vTpmj59urZu3Roc89hjj+npp5/WokWLVFxcrMTERBUVFbVoKn7xxRfrT3/6k7Zv364///nP2rVrl6655pqO/HMAQJcJhDsJ3bb8jUbdAAAAANrHYhiGEeqd8vLy9J3vfEc33nijsrKyWh3j8Xj0xz/+UTNnzmzzWPn5+TrvvPP07LPPSpJ8Pp9ycnJ055136oEHHjhp/IwZM+RyufTGG28Erzv//PM1btw4LVq0SIZhKDs7W/fee6/uu+8+SVJVVZUyMjK0ePFifetb32p1Hn/96181ffp0ud1uxcXFnXS72+2W2+0Ofu90OpWTk6OqqiqlpKS0+RwBoKNe+s8e/fhv23T5OVl67r/O7fLH+9FfP9HiNXt1+8XDdH/RyC5/PAAAAACRx+l0KjU19bSZR4cqlVauXKkf/vCHJwVKhmFo//79kiSbzXbaQMnj8Wj9+vUqLCxsnpDVqsLCQq1du7bV+6xdu7bFeEkqKioKjt+zZ49KS0tbjElNTVV+fv4pj1lRUaE//OEPmjx5cquBkiQtWLBAqampwUtOTk6bzw0AwqHW07T8rdt6Kvkrotj9DQAAAMDpdChUGjZsmI4ePXrS9RUVFcrNzW33cY4ePSqv16uMjIwW12dkZKi0tLTV+5SWlrY5PvC1Pcf84Q9/qMTERPXr10/79+/X66+/fsq5Pvjgg6qqqgpeDhw40L4nCQCdEGzUzfI3AAAAABGmQ6HSqVbM1dTUyOFwdGpC3en+++/Xxo0b9fbbbysmJkY33HDDKZ+b3W5XSkpKiwsAdLXALmzd3qibUAkAAADAaYT0LmX27NmSJIvFonnz5ikhISF4m9frVXFxscaNG9fu46WnpysmJkZlZWUtri8rK1NmZmar98nMzGxzfOBrWVlZi+V5ZWVlJ80tPT1d6enpGjFihM466yzl5OTogw8+UEFBQbufAwB0pcAytITuWv5mo1IJAAAAQPuEVKm0ceNGbdy4UYZh6OOPPw5+v3HjRn322WcaO3asFi9e3O7j2Ww2TZgwQatWrQpe5/P5tGrVqlMGOwUFBS3GS/4eT4Hxubm5yszMbDHG6XSquLi4zbDI5/NJUotm3ABgtuZKpe5d/kalEgAAAIDTCemj73fffVeSNGvWLD311FNhWQI2e/ZszZw5UxMnTtSkSZO0cOFCuVwuzZo1S5J0ww03aODAgVqwYIEk6a677tLUqVP1xBNP6PLLL9fSpUu1bt06vfDCC5L8VVR33323HnnkEeXl5Sk3N1dz585Vdna2pk+fLkkqLi7WRx99pClTpqhPnz7atWuX5s6dq2HDhlGlBCCiuDz+cCexm5e/UakEAAAA4HQ69C7lpZdeCtsEZsyYoSNHjmjevHkqLS3VuHHjtGLFimCj7f3798tqbS6omjx5spYsWaKHH35YDz30kPLy8rR8+XKNHj06OGbOnDlyuVy65ZZbVFlZqSlTpmjFihXBfk8JCQl67bXXNH/+fLlcLmVlZWnatGl6+OGHZbfbw/bcAKCzAhVD3bb8jd3fAAAAALSTxThVZ+ovuPrqq7V48WKlpKTo6quvbnPsa6+9FpbJRTKn06nU1FRVVVXRtBtAlyn65WptL6vW/92Uryl56V3+eDvKqvWVX65WanycNs+/tMsfDwAAAEDkaW/m0e6PvlNTU2WxWIL/DQDoeoHlbwkm9FQyDCP4ug8AAAAAX9TuUOnEJW/hXP4GADi15kbd3bX8zf84jT5D7kafHHHdE2YBAAAAiD4h7f4WUFdXp9ra2uD3+/bt08KFC/X222+HbWIAAMnl8fc26q5G3Ym25hCJHeAAAAAAtKVDodKVV16pl19+WZJUWVmpSZMm6YknntCVV16p559/PqwTBIDeqsHrk6fRJ6ll2NOVYmOscsT5fzXQrBsAAABAWzoUKm3YsEEXXnihJOnVV19VZmam9u3bp5dffllPP/10WCcIAL3ViZVC3bX7myQl2eMkSTVUKgEAAABoQ4dCpdraWiUnJ0uS3n77bV199dWyWq06//zztW/fvrBOEAB6q8DSN1uMVbbYDr1cd0hSU1PwQJNwAAAAAGhNh96lDB8+XMuXL9eBAwf0j3/8Q5de6t92ury8vM2t5gAA7ReoVErspp3fAgL9m6hUAgAAANCWDoVK8+bN03333aehQ4cqPz9fBQUFkvxVS+PHjw/rBAGgt2oOlbpv6duJj0ejbgAAAABt6dA7lWuuuUZTpkzR4cOHNXbs2OD1l1xyia666qqwTQ4AerNAo+zEbuynJElJhEoAAAAA2qHD71QyMzOVmZnZ4rpJkyZ1ekIAAL8a05e/sfsbAAAAgFPrUKjkcrn06KOPatWqVSovL5fP52tx++7du8MyOQDozWo95ix/CzbqplIJAAAAQBs69E7lu9/9rt577z19+9vfVlZWliwWS7jnBQC9XrCnUjcvfws8HqESAAAAgLZ06J3KW2+9pb///e+64IILwj0fAEATl6epp5JJjbrZ/Q0AAABAWzq0+1ufPn3Ut2/fcM8FAHACl0k9lWjUDQAAAKA9OhQq/fSnP9W8efNUW1sb7vkAAJo0N+o2q1KJRt0AAAAATq1D71SeeOIJ7dq1SxkZGRo6dKji4uJa3L5hw4awTA4AerPaplAn0dbdu7/RqBsAAADA6XUoVJo+fXqYpwEA+KIa03Z/a1r+5iFUAgAAAHBqHXqnMn/+/HDPAwDwBS7Tl78RKgEAAAA4tQ71VJKkyspK/eY3v9GDDz6oiooKSf5lb4cOHQrb5ACgN2te/mZSpRKhEgAAAIA2dOidypYtW1RYWKjU1FTt3btXN998s/r27avXXntN+/fv18svvxzueQJAr1Nj0u5vicFQiUbdAAAAAE6tQ5VKs2fP1o033qgdO3bI4XAEr7/sssu0evXqsE0OAHqzWpN6KgUbdXsaZRhGtz42AAAAgOjRoVDpo48+0q233nrS9QMHDlRpaWmnJwUAkGpMXv5mGFKth2olAAAAAK3rUKhkt9vldDpPuv7zzz9X//79Oz0pAEBzT6Okbq5Uio+LkdXScg4AAAAA8EUdCpW+/vWv6yc/+YkaGhokSRaLRfv379cPf/hDfeMb3wjrBAGgN/L6DNU1+KuEkhzdGypZLJZgdRQ7wAEAAAA4lQ6FSk888YRqamrUv39/1dXVaerUqRo+fLiSk5P1s5/9LNxzBIBe58Qwp7sbdfsfk2bdAAAAANrWoY+/U1NTtXLlSv3nP//R5s2bVVNTo3PPPVeFhYXhnh8A9EqBUMkWY5U91oxQKabFPAAAAADgi0IOlXw+nxYvXqzXXntNe/fulcViUW5urjIzM2UYhiwWS1fMEwB6lWA/pW5e+haQFKxUIlQCAAAA0LqQlr8ZhqGvf/3r+u53v6tDhw5pzJgxOvvss7Vv3z7deOONuuqqq7pqngDQq1TX+8McM5a++R+3KVTyECoBAAAAaF1IH4EvXrxYq1ev1qpVq3TxxRe3uO2dd97R9OnT9fLLL+uGG24I6yQBoLepCe78FmfK4wdCJZa/AQAAADiVkCqV/vjHP+qhhx46KVCSpC9/+ct64IEH9Ic//CFskwOA3iqw7CzZzvI3AAAAAJEppFBpy5YtmjZt2ilv/+pXv6rNmzd3elIA0NvVmL78LdCom93fAAAAALQupFCpoqJCGRkZp7w9IyNDx48f7/SkAKC3qw426jZ3+RuVSgAAAABOJaRQyev1Kjb21EsxYmJi1NjIGxAA6Kzg7m9mLX+zESoBAAAAaFtI71YMw9CNN94ou93e6u1utzsskwKA3q65Ube5u7/RqBsAAADAqYQUKs2cOfO0Y9j5DQA6z+zd32jUDQAAAOB0QgqVXnrppa6aBwDgBIFG3UkOc5a/NfdUolE3AAAAgNaF1FMJANA9zF/+Ftj9jUolAAAAAK0jVAKACBQxy988hEoAAAAAWkeoBAARKLD8LdHkRt30VAIAAABwKoRKABCBApVKySb1VEpi9zcAAAAAp0GoBAARyGXy8rdApVJ9g0+NXp8pcwAAAAAQ2QiVACACVbvNXv7W/LguDzvAAQAAADgZoRIARBhPo0+eRn91ULJJlUr22BjFxVgk0VcJAAAAQOsIlQAgwpwY4phVqeR/bJp1AwAAADg1QiUAiDCB5tiOOKtiY8x7mU600awbAAAAwKkRKgFAhKkxuUl3QFKwUomeSgAAAABORqgEABEmEColO2JNnUdg6R2VSgAAAABaQ6gEABGmpt7cnd8C6KkEAAAAoC2ESgAQYZqXv5lbqRRc/uYhVAIAAABwMkIlAIgwkdJTKVCpxPI3AAAAAK0hVAKACOMKhkrmLn9LYvkbAAAAgDYQKgFAhKlu6qmUFCGNutn9DQAAAEBrCJUAIMKw/A0AAABANCBUAoAIw/I3AAAAANGAUAkAIkx1hOz+lmijUgkAAADAqREqAUCEqQn2VDJ3+Vugp1OgxxMAAAAAnIhQCQAiTKQsf0sOhkoNps4DAAAAQGQiVAKACBMpjbpTmiqlqFQCAAAA0BpCJQCIMMFQyWFuTyVCJQAAAABtIVQCgAgTCHEiZflbXYNXDV6fqXMBAAAAEHkIlQAgghiGEaxUSomQRt0S1UoAAAAATkaoBAARpNbjlddnSJKSTQ6V4mKsSrD5q6Vo1g0AAADgiwiVACCCOJvCm1irRY4481+im3eAo1IJAAAAQEvmv2MBAAQFwptkR6wsFovJs2mulnJSqQQAAADgCyIiVHruuec0dOhQORwO5efn68MPP2xz/LJlyzRy5Eg5HA6NGTNGb775ZovbDcPQvHnzlJWVpfj4eBUWFmrHjh3B2/fu3aubbrpJubm5io+P17BhwzR//nx5PJ4ueX4A0F6BZWZmL30LCFQqOeuoVAIAAADQkumh0iuvvKLZs2dr/vz52rBhg8aOHauioiKVl5e3On7NmjW67rrrdNNNN2njxo2aPn26pk+frq1btwbHPPbYY3r66ae1aNEiFRcXKzExUUVFRaqvr5ckffbZZ/L5fPrVr36lTz75RL/85S+1aNEiPfTQQ93ynAHgVJxNlUop8bGnGdk9AuEWPZUAAAAAfJHFMAzDzAnk5+frvPPO07PPPitJ8vl8ysnJ0Z133qkHHnjgpPEzZsyQy+XSG2+8Ebzu/PPP17hx47Ro0SIZhqHs7Gzde++9uu+++yRJVVVVysjI0OLFi/Wtb32r1Xk8/vjjev7557V79+5Wb3e73XK73cHvnU6ncnJyVFVVpZSUlA4/fwA40V83l+gHf9yogjP66Y+3nG/2dHTHkg16Y8thzfvaKH1nSq7Z0wEAAADQDZxOp1JTU0+beZhaqeTxeLR+/XoVFhYGr7NarSosLNTatWtbvc/atWtbjJekoqKi4Pg9e/aotLS0xZjU1FTl5+ef8piSP3jq27fvKW9fsGCBUlNTg5ecnJx2PUcACIWzLrD8LdIqlVj+BgAAAKAlU0Olo0ePyuv1KiMjo8X1GRkZKi0tbfU+paWlbY4PfA3lmDt37tQzzzyjW2+99ZRzffDBB1VVVRW8HDhwoO0nBwAd0NyoOzJ6KqUEd39j+RsAAACAliLjo3ATHTp0SNOmTdO1116rm2+++ZTj7Ha77HZ7N84MQG/U3Kg7Ml6ek4OhEpVKAAAAAFoytVIpPT1dMTExKisra3F9WVmZMjMzW71PZmZmm+MDX9tzzJKSEl188cWaPHmyXnjhhU49FwAIh+pgo+7IqFQKVEw5qVQCAAAA8AWmhko2m00TJkzQqlWrgtf5fD6tWrVKBQUFrd6noKCgxXhJWrlyZXB8bm6uMjMzW4xxOp0qLi5uccxDhw7poosu0oQJE/TSSy/JajV9IzwACIY3KRFSqRTYhY5KJQAAAABfZPq7ltmzZ2vmzJmaOHGiJk2apIULF8rlcmnWrFmSpBtuuEEDBw7UggULJEl33XWXpk6dqieeeEKXX365li5dqnXr1gUrjSwWi+6++2498sgjysvLU25urubOnavs7GxNnz5dUnOgNGTIEP3iF7/QkSNHgvM5VYUUAHSH5p5Kpr88S5KS7YFG3VQqAQAAAGjJ9HctM2bM0JEjRzRv3jyVlpZq3LhxWrFiRbDR9v79+1tUEU2ePFlLlizRww8/rIceekh5eXlavny5Ro8eHRwzZ84cuVwu3XLLLaqsrNSUKVO0YsUKORwOSf7Kpp07d2rnzp0aNGhQi/kYhtENzxoAWtfcUylSlr9RqQQAAACgdRaDFKVDnE6nUlNTVVVVpZSUFLOnA6CHmLZwtT4rrdbvb5qkC/P6mz0dbStx6rKn/630JLvWPVxo9nQAAAAAdIP2Zh40EgKACBJs1B0hlUqBnko06gYAAADwRYRKABBBnHWB5W+mr06W1LwMz9Pok7vRa/JsAAAAAEQSQiUAiBA+n6EaT6BRd2RUKiXZm8Mt+ioBAAAAOBGhEgBEiBpPowJd7iKlUinGagkGS4RKAAAAAE5EqAQAESIQ2thirHLExZg8m2bNO8DRVwkAAABAM0IlAIgQgdAm0Bw7UgSahjvrqFQCAAAA0IxQCQAiRCC0iZR+SgFUKgEAAABoDaESAESIQGgTKf2UAppDJSqVAAAAADQjVAKACBEIbSIvVGpa/kalEgAAAIATECoBQIQI9lSK2OVvVCoBAAAAaEaoBAARwhmhlUop8VQqAQAAADgZoRIARAhnsKcSlUoAAAAAIh+hEgBEiEjvqcTubwAAAABORKgEABGiOVSKrEqllKaQy1lHpRIAAACAZoRKABAhmht1R1alUlqCTZJUWUelEgAAAIBmhEoAECGcdZHZUyk10KibUAkAAADACQiVACBCBJa/RVylUlOoVFnrMXkmAAAAACIJoRIARIhI7akUqFRyebxq8PpMng0AAACASEGoBAARorLOXwmUlhBZoVJKfPN8qlgCBwAAAKAJoRIARID6Bq/qG/xVQCeGOJEgxmpRctOSPEIlAAAAAAGESgAQAQJNsK0WKdkeWT2VpObqKUIlAAAAAAGESgAQAQJhTWp8nKxWi8mzOVmgr1JVLaESAAAAAD9CJQCIAJUnhEqRKC3eJolKJQAAAADNCJUAIAIEKoBSE2wmz6R1gbCrstZj8kwAAAAARApCJQCIAJFeqZQa7KnUaPJMAAAAAEQKQiUAiACBCqC0SA2VApVKdVQqAQAAAPAjVAKACOCM8EqlQNhFTyUAAAAAAYRKABABAsvf0hIiM1Ri9zcAAAAAX0SoBAARoCrSK5USqFQCAAAA0BKhEgBEgMrayA6VUoI9lQiVAAAAAPgRKgFABIj4SqV4myQqlQAAAAA0I1QCgAhQFeypZDN5Jq1LTWjuqWQYhsmzAQAAABAJCJUAIAJU1nokRW6j7sDubx6vT/UNPpNnAwAAACASECoBgMl8PiPil78l2GIUa7VIkirrPCbPBgAAAEAkIFQCAJPVeBrla1pRFqmhksViYQc4AAAAAC0QKgGAyaqadn6zx1rliIsxeTanFtwBrpZQCQAAAAChEgCYrrlJd2RWKQUE+ipRqQQAAABAIlQCANNFej+lgMD8qqhUAgAAACBCJQAwXWA5WVq8zeSZtC0twT8/KpUAAAAASIRKAGC6QEiTEi2VSoRKAAAAAESoBACmq6zzSIr8nkqBUCkwXwAAAAC9G6ESAJgs0KMoWnoqsfsbAAAAAIlQCQBMF9z9LcJDpT6JhEoAAAAAmhEqAYDJgo26I3z5W99EuyTpmIvlbwAAAAAIlQDAdNHSqLtfon/3twqX2+SZAAAAAIgEhEoAYLLKwPK3BJvJM2lbn2Co5JFhGCbPBgAAAIDZCJUAwGSVtU27v0VJpVKD11CNu9Hk2QAAAAAwG6ESAJjIMIxgj6K+iZFdqeSIi1GCLUaSv1oJAAAAQO9GqAQAJnJ5vPI0+iRJ/ZIiO1SSmoMvmnUDAAAAIFQCABNV1PjDGUecVQm2WJNnc3qBUCkwbwAAAAC9F6ESAJjoWNNOav0S7SbPpH36ntCsGwAAAEDvRqgEACaqiJJ+SgEsfwMAAAAQQKgEACaKlibdAYEd4I7XEioBAAAAvR2hEgCYKFCp1C9KQqU+gUoleioBAAAAvR6hEgCYKNqWv/UL9lRymzwTAAAAAGYjVAIAEwUqfvomRUeo1LepoTiNugEAAAAQKgGAiSqCu79FS6hEo24AAAAAfoRKAGCi5uVvdpNn0j7Ny98IlQAAAIDejlAJAEwUbbu/BRp113q8qm/wmjwbAAAAAGYiVAIAE0Xb7m8pjljFxVgkUa0EAAAA9HaESgBgkjqPV7Uef7VPtDTqtlgs6pPAEjgAAAAAhEoAYJpjTU26bTFWJdtjTZ5N+9GsGwAAAIBEqAQApqk4oZ+SxWIxeTbt1zfYrNtt8kwAAAAAmIlQCQBMEm1NugOClUo1VCoBAAAAvZnpodJzzz2noUOHyuFwKD8/Xx9++GGb45ctW6aRI0fK4XBozJgxevPNN1vcbhiG5s2bp6ysLMXHx6uwsFA7duxoMeZnP/uZJk+erISEBKWlpYX7KQFAu1Q0hTL9oqSfUkCgqfjxWkIlAAAAoDczNVR65ZVXNHv2bM2fP18bNmzQ2LFjVVRUpPLy8lbHr1mzRtddd51uuukmbdy4UdOnT9f06dO1devW4JjHHntMTz/9tBYtWqTi4mIlJiaqqKhI9fX1wTEej0fXXnutbrvtti5/jgBwKhVRW6lkl0SjbgAAAKC3MzVUevLJJ3XzzTdr1qxZGjVqlBYtWqSEhAS9+OKLrY5/6qmnNG3aNN1///0666yz9NOf/lTnnnuunn32WUn+KqWFCxfq4Ycf1pVXXqlzzjlHL7/8skpKSrR8+fLgcX784x/rnnvu0ZgxY9o9V7fbLafT2eICAJ0RtcvfmiqrjlQTKgEAAAC9mWmhksfj0fr161VYWNg8GatVhYWFWrt2bav3Wbt2bYvxklRUVBQcv2fPHpWWlrYYk5qaqvz8/FMes70WLFig1NTU4CUnJ6dTxwOAQKPrflEWKmUk+yuVjlTXn2YkAAAAgJ7MtFDp6NGj8nq9ysjIaHF9RkaGSktLW71PaWlpm+MDX0M5Zns9+OCDqqqqCl4OHDjQqeMBQPPyN7vJMwlNRopDklTmZPc3AAAAoDeLNXsC0cJut8tuj643fgAiW7QufxuQ0lSpVOOWz2fIarWYPCMAAAAAZjCtUik9PV0xMTEqKytrcX1ZWZkyMzNbvU9mZmab4wNfQzkmAJjlWNPub+lRtvtbepJdFovk9RnBYAwAAABA72NaqGSz2TRhwgStWrUqeJ3P59OqVatUUFDQ6n0KCgpajJeklStXBsfn5uYqMzOzxRin06ni4uJTHhMAzGAYhsqbehINSHaYPJvQxMVYg32gyumrBAAAAPRapi5/mz17tmbOnKmJEydq0qRJWrhwoVwul2bNmiVJuuGGGzRw4EAtWLBAknTXXXdp6tSpeuKJJ3T55Zdr6dKlWrdunV544QVJksVi0d13361HHnlEeXl5ys3N1dy5c5Wdna3p06cHH3f//v2qqKjQ/v375fV6tWnTJknS8OHDlZSU1K3/BgB6p2p3o+obfJKk/snRt7R2QLJDR2s8Kne6dXa22bMBAAAAYAZTQ6UZM2boyJEjmjdvnkpLSzVu3DitWLEi2Gh7//79slqbi6kmT56sJUuW6OGHH9ZDDz2kvLw8LV++XKNHjw6OmTNnjlwul2655RZVVlZqypQpWrFihRyO5kqAefPm6Xe/+13w+/Hjx0uS3n33XV100UVd/KwBQDpS7W9ynWyPVbwtxuTZhC4jxa5th6lUAgAAAHozi2EYhtmTiEZOp1OpqamqqqpSSkqK2dMBEGXW7jqm6379gc5IT9Q7911k9nRC9sNXt+iVdQc0+ysj9INL8syeDgAAAIAwam/mYVpPJQDozQIVPtG49E3yVypJVCoBAAAAvRmhEgCYILD8bUBKdDXpDujfNO8yp9vkmQAAAAAwC6ESAJggECr1T4rSSqWmCqtyJ5VKAAAAQG9FqAQAJigPVipFaajUVKkUeB4AAAAAeh9CJQAwQaAX0YAo7akUCMOOVLvl87HfAwAAANAbESoBgAnKm3oRRWuj7vQkuywWqdFnqKLWY/Z0AAAAAJiAUAkATFDa1IsoKzU6G3XHxVjVL9EmSSqjrxIAAADQKxEqAUA3c7kbVV3fKEnKTI03eTYdNyCZvkoAAABAb0aoBADdLFCllGSPVZI91uTZdFxGCjvAAQAAAL0ZoRIAdLPSKn8IkxmlS98CgpVKTiqVAAAAgN6IUAkAutnhqujupxQQqFQqpVIJAAAA6JUIlQCgmwUaW2ekRHmo1BSK0agbAAAA6J0IlQCgmx2uqpMU/ZVK2Wn+JuMHj9eZPBMAAAAAZiBUAoBu1lN6Kg1qCpVKKgmVAAAAgN6IUAkAulmgp1JmlC9/C1QqOesbVV3fYPJsAAAAAHQ3QiUA6GaHmip7BvaJN3kmnZNoj1VaQpwkqaSSvkoAAABAb0OoBADdyOVuVGWtv6pnYFp0h0qSlJ3KEjgAAACgtyJUAoBuFKhSSnHEKtkRZ/JsOi9QbXWQUAkAAADodQiVAKAbHTxeK0ka1CfB5JmEx0CadQMAAAC9FqESAHSjQ8d7Rj+lgECodKCi1uSZAAAAAOhuhEoA0I0Cy8QG9ZBQKaevv+KKUAkAAADofQiVAKAbBSuVekCTbkka3BQq7SdUAgAAAHodQiUA6EYHj/esSqXB/fyh0vHaBjnrG0yeDQAAAIDuRKgEAN0oUNEzuG+iyTMJjyR7rPol2iRJ+49RrQQAAAD0JoRKANBNquoaVOHySJKG9OsZu79JzdVKLIEDAAAAehdCJQDoJoFKnvQkuxLtsSbPJnzoqwQAAAD0ToRKANBN9h5zSZKG9qAqJUka0hQq7Wt6fgAAAAB6B0IlAOgmgUqeIf16Rj+lgNz+/uez+wihEgAAANCbECoBQDfZe9QfuvSkfkqSNKx/kiRpF6ESAAAA0KsQKgFANwksf+tpoVJuur9S6WiNW1V1DSbPBgAAAEB3IVQCgG4SqOQ5Iz3J5JmEV7IjThkpdknS7iM1Js8GAAAAQHchVAKAblDh8qjC5ZEkDRvQs3oqSc1BGX2VAAAAgN6DUAkAusHOcn8Fz8C0eCXYYk2eTfgFgrJdVCoBAAAAvQahEgB0g0CoNHxAz1r6FjC8qVn352WESgAAAEBvQagEAN0gUMHTU0OlkVkpkqTPSp0mzwQAAABAdyFUAoBu0NMrlUZmJkuSDh6vU3U9O8ABAAAAvUHPa+wBABEoUMEzIqNnhkppCTZlpjhU6qzX52XVmjCkr9lTAtDFSqvq9ecNB/XB7mM6WuNR38Q4TRraT9dOHKTstHizpwcAALoBoRIAdLFjNW6VOd2yWKSRmSlmT6fLnJmZrFJnvT49TKgE9GSeRp+efWeHFq3eLU+jr8Vt/9l5TM++u0O3fOkM3XXJCNliKYoHAKAnI1QCgC726eFqSdLQfolKtPfcl92RWcl67/Mj+vQwfZWAnupYjVu3/H691u87LkmaOKSPpo8fqEF94lVSWa/XNx1S8Z4KPffuLq3ddUy/nXme+iTaTJ41AADoKj333Q0ARIhth6skSWdlJZs8k641OjtVkvTxoSqTZwKgKxyrcetbL3ygHeU1SnbEasHVY3T5mCxZLJbgmP/KH6wVWw9rzqtbtGF/pf7rN8Va8t18giUAAHooapIBoIttK/FX7ozK6rlL3yRp7KA0SdKnh51yN3rNnQyAsKqqbdC3f/uhdpTXKDPFob98/wJ97ZzsFoFSwLTRWXrt+5OVnmTXp4eduv43xXLSwB8AgB6JUAkAuligcmdUds8OlXL6xistIU4NXkPbS6vNng6AMPH6DH1/yXptO+xUepJNf7g5/7Q7WQ4fkKylt+QrPcmubYedmv3KJvl8RjfNGAAAdBdCJQDoQlW1Ddp1xCWpuZKnp7JYLBoz0L8EbvNBlsABPcVTq3boPzuPKT4uRi9/J1/D+rdvF8vhA5L14o0TZYu16p+fluuX//y8i2cKAAC6G6ESAHShzQcrJUlD+iWoX5Ld3Ml0g3E5aZKkjfuPmzsRAGGx+vMjeuadHZKk/7l6dMgVl+cMStOCq8ZIkp55Z6fe3V4e9jkCAADzECoBQBfauL9SUnPY0tNNHNpXkvTR3gqTZwKgs0qr6nX3K5tkGNJ1kwbrqvGDOnScb0wYpBsKhkiS7l+2Rcdq3OGcJgAAMBGhEgB0oY0H/BU7vSVUmjCkj6wW6UBFnQ5X1Zk9HQAd1OD16c4/blCFy6NRWSmaf8WoTh3vocvO0oiMJB2tceuHf/5YhkF/JQAAegJCJQDoIg1enz7a46/YOa+pgqenS7LH6uxsf1+lD/dQrQREq1+8vV0f7T2uJHus/vf6c+WIi+nU8RxxMVo4Y7xsMVb989MyLflwf5hmCgAAzBRr9gQAoKf6+FCVXB6vUuPjNCqrZ+/8dqJJuX318aEqrd11TFeOG2j2dNrlaI1bn5dWq6y6XlW1/q3PE2yxirfFqF+STYPSEpSZ6pAtls9i0PP9c1uZfvXebknSY9eco6HpiWE57qjsFM2ZdqYe+fun+ukb23T+Gf3a3fTbbIZh6JjLo3KnWzFWixJsMcpOi1eM1WL21AAAMBWhEgB0kbW7jkmS8nP7ytqL3nhcmJeu376/R+99fkSGYchiibznbhiG1uw6pre2Hta7nx3RocrTL9WzWKSMZIcG9olXdlq8stMcGpTm/+++iTalJdiUGh+nFEesYmMInxCdDlTU6t5lmyVJN04eqsvGZIX1+N+5IFfvbi/Xf3Ye0z2vbNKfb5usuAg9X8qc9frb5hKt3nFU6/ZWqNbjbXG7PdaqkZnJmjqiv6aNzgq5iTkAAD0BoRIAdJE1u45KkgqG9TN5Jt3r/DP6yR5r1eGqen1eVqMzM5PNnlJQg9enP607oN++v0e7j7iC11ss0pC+CRrUJ0Gp8XGSRap1N8rl8epotVuHKuvkbvSp1FmvUme91u9re3e7ZHusUhPi1C/RpvQku/on2zWkX6JGZCRpREayBvWJj8iwDb2bp9GnO5ZsUFVdg8bmpOmhy84K+2NYrRb94tqxKvrlam05WKVnVu3Q7EvPDPvjdMbWQ1V69p2dWvlpmby+5t5PFovUL9Emw5Cq3Y1yN/q0+WCVNh+s0tPv7NT4wWm6+cIzNO3szF71QQIAoHcjVAKALuCsb1Dxbn9PoYvOHGDybLqXIy5G55/RT+99fkTvbi+PiFDJMAz945MyPfrWp9p7rFaSv//TFWOz9JVRGcrP7adE+6l/JRqGoaM1Hh2qrFNJ0+VQZZ0OHa9TSVWdjrsaVFXXoBp3oyT/G85qd6MOHm+9Aiojxa4LhqWraHSmLjqzv+yxnetXA4TDI3/fps0Hq5QaH6dnrxvfZcs9s1Lj9bOrxujOP27Us+/u1NQzB2jCkD5d8lihKK2q10/f2Ka/f3w4eN3EIX00bXSmLhierjP6JwbPVZ/P0P6KWq3fd1z/+KRU/9p+RBv3V+r7f9igs7NT9P8uP0uTh6Wb9VQQwapqG/TXLSX6YPcxbT5QqRp3o7w+Q4P7JmhUVoq+MipDF48cELEVfADwRRaD7Tc6xOl0KjU1VVVVVUpJodwZQEtvbCnRHUs26oz+iXrn3ovMnk63+/3avZr7+icam5Om12+/wNS5lFbVa+7rW7VyW5kkKT3Jpu9fNFzXThykZEdcWB+r0euTs75RlbUeVdY16FiNR0dr3Cpz1mvXEZd2lFVr15EaNXibf/WmOGJ17cQczbpgqAb1SQjrfID2euWj/frhnz+WJP125kRdclZGlz/mPa9s0l82HtKQfgn6+w8uVFIbwW5XW7G1VA+8tkWVtQ2yWKTp4wbqe1OHtTsUL6+u1+/X7tPi/+xVdVO4fPX4gZp/xdlKTQjv6wyiU5mzXk+v2qE/bzio+gZfm2PTk+y65Uu5uqFgaKeb5ANAR7U38yBU6iBCJQBtuWvpRr2+qUS3fOmMLllCEumOVLuV/z//lM+Q/j3nYuX0NScsWbmtTPf+aZOc9Y2Ki7Ho1i8N0/cuGmbqm9f6Bq/W7zuudz8r19+2lKjM6ZYkxVgtunbCIN3zlRHKSHGYNr9wqnE3qqHRp7hYqxJtMSz5i1Dr91XouheK5fH6NPsrI/SDS/K65XGd9Q366sJ/61BlnWZMzNHPrzmnWx73RLWeRv3kb9u09KMDkqQxA1P1+LXnaGRmx/62O1bj1sJ/7tAfivfJZ0gDku1acPWYbgnpEJkavT795v09embVDrma+nKNzEzW5WOyNGFoH/VPsstikXaWu7Rub4WWbzqkozUeSdLAtHj9dPrZ+vJIfn4AdD9CpS5GqATgVGo9jZr4yD9V6/Hqz7cVaMKQvmZPyRT/9esPtGbXMc2Zdqa+f9Hwbn3sBq9PP3/rM/3m/T2SpLGDUvXYNWMjYineibw+Q6s/P6Lfvr9H7+/09+ByxFl184Vn6LaLhinBFl2r1LeXVuufn5Zp9edHtKO8RhUuT/C2ZEesRmYm67yhfTVtdKbGDEwlZIoA20ur9c1frVVVXYOKzs7Q89dP6NZ+QB/sPqbrfv2BDENaOGOcpo/vvh0jtxys1N1LN2n3UZcsFul7U4fpnsIRYVn2t37fcd3/6uZg77b/Pn+wHr58FFUnvUx5db1+8MeN+qBpOfz4wWmaUzRS55/R95Svfw1en/6y8ZCeeHt78EOHGRNzNPeKUaZ+IAKg9yFU6mKESgBO5fVNh3TX0k0a3DdB791/Ua994/ynjw5ozp+3aEi/BL1770Xd9kb1UGWd7liyQRv3V0qSbpqSqx9OG9ll/WHCZf2+Cv3s759qQ9O8B/WJ14Krx+jCvP7mTuw0vD5Db358WL9bs1frTtPA/ETDByRp1gVDdfX4QYq38UbbDHuPuvTNX61VebVb4wen6f9uym+zt1hXeeLt7XrmnZ1yxFm1/PYLOlwl1F5en6Ffrd6lJ9/+XI0+Q5kpDj05Y2zYeyDVN3j1xNvb9et/+8PtUVkp+t/rz9XQ9MSwPg4i04d7KnTHkg0qr3Yr0Raj+V8/W9ecO6jdvwvrPP6fn9/+Z48Mw/+auei/J2j4gKQunjkA+BEqdTFCJQCncv1vPtB/dh7TDy7J0+yvjDB7Oqap9TQq/2erVO1u1P/dlK8peV3ftHbVp2Wa/afNqqprULIj1r/L1NmZXf644WIYhlZsLdUjf/9Uhyr9Tb6vnTBID18+KuL6shiGoZXbyvSLt7fr87IaSVKs1aKpI/rropEDdO7gNA3um6AEW6zcjV7tr6jV1kNOvfNZmd797IjqGvzLQDJS7LqncISumTBIsTSm7TabDlTqpsUf6ZjLozMzkvXKrecrLcFmyly8PkM3vvSh/r3jqIb2S9Br379AfRO7Zi4llXWa/adNwcqRy8Zk6n+uGtOlz/29z4/onlc2qcLlUZI9VguuHqMrxmZ32ePBXIZh6Nf/3q2fr9gur89Q3oAkPd+JMOiD3cd099JNKnXWK8keq19ce46mjc4K86wB4GSESl2MUAlAaz4vq9alv1wtq0V6737zeglFivmvb9Xv1u7Tl0b018vfmdRlj9Pg9ekX/9iuX63eLUk6Z1Cqnvuvc6P237/G3ahf/GO7frd2rwxD6p9s1yPTR0dMQLb3qEvz//qJ3vv8iCR/s/FZF+Tq+vzBGtCOflDV9Q3607qDevH9PcHwLG9Akh66/Cxd3Mt2S+xuhmHozxsO6eHlH6u+wadRWSla/J3zNCDZ3D5eFS6PrnjmfR2qrNP4wWla8t3zw17B9ubHh/Xgax+rqq5BCbYY/eiKs3XtxEHdUk1aWuVfBvXhXn+YdX3+YM39GsvhehpnfYPmLNuiFZ+USpKuHJet/7lqTKcrAI9Uu3XHkg0q3uP/+bl16hm6/9IzCeIBdClCpS5GqASgNXNe3aw/rTuoaWdnatG3J5g9HdPtP1ari5/4l7w+Q8tvv0DjctLC/hgHKmp19yubtL5p6dWNk4fqwctGBrf+jmbr91VozqtbtKupL8vXx2brR18/u8uqOE6nvsGr//3XLi16b5c8jT7ZYqz67oW5unXqMKXGh15J5W706vdr9+nZd3eqsrZBknTJyAGa+7VRLBHqAp+XVWvBm5/q3e3+MPBLI/rrf68/N2L6tOwsr9Y3nvf3d7r4zP56/r8nhCV0qa5v0E/+tk3L1h+U5A+dn/rWeOV2889Yo9enX/7zcz337i5J/mbNz1w3XnkZkdXrDR3z6WGnbvu/9dp7rFZxMRbN+9oo/ff5Q8IWWjZ6fXr0hF6Bk4f109PXjVd6kj0sxweALyJU6mKESgC+aPeRGn3ll6vl9Rm9ukH3F937p83684aDOm9oH/3p1oKwVgX8fcthPfDaFlXXNyrZHqvHrjlHXx3Ts5YF1Dd49cw7O7Tovd3y+gylJ9n0yPTR3b784d3t5Zr/+ifaX1ErSbowL10/uXJ0WN6YV9U16Ll3d+rF9/eo0WcEw6rbLx5uSo8fMxmGoc9Kq/WfnUf16eFq7SyvVnm1W5W1DfL6DFmtUmp8nPon29U/ya7stHgN6pOgnL7+rwPT4pUSH6s4q1XO+gaVVNZr3b4KrdxWpn/v8DeDt8VYdc9XRujmC3MjrtJh/b4K/devi+Vu9KngjH564YYJSnZ0fOnn6s+P6IE/b1FJVb0sFum2qcN0z1dGKM7E5/3e50d075826WiNR444q+Z97WxdNymn1/bf6wleXX8wWP03MC1ez11/bpd8iCJJb2wp0ZxXt6jW41VGil3/e/25/L0BoEsQKnUxQiUAX3TLy+v09rYyXXxmf700q+uWekWbkso6XfLEe6pr8Oqxb5yjb56X0+ljVtZ69LO/fxqsPBg/OE1Pf2t81C53a48tByt137LNwf5Fl5+TpflfG9Wu5WadUVJZp5/8bVtwOUdmikPzrhilr47ODPub4J3lNfrJG9u0umlZXWaKQw9eNlJfH5vdo99w+3yGPth9TK9uOKjVnx8JbiceblaLVHR2pu69dISGD4jc6pg1O4/q5pfXyeXx6qysFD1z3fiQ+9EcrXHrsRWf6U/r/K8ROX3j9fg1Y3X+Gf26YsohO1Lt1r3LNgd/1qednalHrhpN1UmUqa5v0LzXP9FfNh6SJE0d0V8LZ4xTny6uJt1ZXq1bf79eu464FGu16KHLztKsC4b26NdJAN2PUKmLESoBONFbHx/WbX/YoFirRW/8YEqX714UbX713i4teOszxcfF6K93XNDh5R6GYehvWw7rJ3/7REdrPBFTedBd3I1ePbNqp55/b5e8PkOJthjd8eU8fWfK0LAv96tv8Grxmr16etUO1Xq8irFa9J0LhuquwhFdulwq0AD8p3/fpgMV/n5Lk3L76kdXnK1R2T3rvDp4vFavrj+oV9cf1MHjdcHr4+NilH9GX507uI/yBiQpOy1efRJsio2xyOszVFnboCM19Sp3unWosk4Hj9fpQEWtDh6vU1l1vU78yy41Pk7nDErV+Wf00xXnZGtwv+gIXj8+WKUbX/pQx1z+ap77i0bq+vzBp10OV+Hy6Pdr9+mF1bvk8vibwd84eajmTDtTCbbIqnrz+Qz99v09euwfn6nBayg1Pk7/77Kzuq3PEzpn/b7juvuVjTpQUSerRbq7cITuuHh4t+10WuNu1AN/3qI3thyW5A+0Flw9Rtlp8d3y+AB6PkKlLkaoBCBg3zGXrnjmfTnrG3X7xcN0f9FIs6cUcbw+Q9/+bbHW7Dqm7FSHXrm1IOSqos0HKvXzFZ9pza5jkvzbKy+4eozOG9r7yv63HqrSw8u3atOBSknSkH4J+sGX83TluOxOL2fyNPr0yroDembVDpVXuyVJE4b00SPTR+usrO77fVff4NWvV+/Wc//aqfoGn6wW6fr8Ibq7ME/9oriao77Bq398Uqpl6w7qP7uOBgOgZHusrhiXrSvOydaEIX1ki+3Y/8cGr091DV55Gn1KdsRGdW+x0qp63bdss97f6V+2l5Fi1/X5Q3TRmf01KitFsTFW+XyGjta4VbynQu98Vq6/f3xYnkafJH/vpLlfGxXxrxFbD1VpzqtbtO2wU5I/RH3wqyM1fnAfk2eG1jjrG/Tk25/r5bV75TOkgWnxeupb4zTRhJ8zwzD0uzV79T9vfSZPo09J9lg9dNlZ+tZ5Od0WbgHouQiVuhihEgBJOlxVpxm/+kD7K2o1fnCaXrmloMNvBnu6CpdH1yxao91HXEpPsunJb47Tl0b0b/M+Pp+h1TuO6Hdr9gabC9tirLrjy8N169QzovoNc2f5fIaWbzqkR9/6LBj+5PSN1/X5Q3TNhEEhL6Mpd9brT+sO6A/F+3W4ql6S/83S7K+M0FXjB5r2BuVQZZ3+581P9femT+PtsVZ9c2KOvnthrob0i45m3j6fofX7j2v5xkP62+YSOesbg7dNHtZP35yYo6KzM8O+21lP4PMZ+uNH+/XsOzuDP5cByY5YuRt88nh9La4fPTBFt3xpmL42Jitq3lg3en168T979MuVO1TX4K+wKjxrgO75ygidnZ1q8uwg+StF/1i8X8++u0tHa/yvuVeNH6gfX3m2UjrR9yscdpbXaM6rm7Vhf6Uk/znwwLSzdMHwflS9AeiwqAqVnnvuOT3++OMqLS3V2LFj9cwzz2jSpFP3I1m2bJnmzp2rvXv3Ki8vTz//+c912WWXBW83DEPz58/Xr3/9a1VWVuqCCy7Q888/r7y8vOCYiooK3Xnnnfrb3/4mq9Wqb3zjG3rqqaeUlNS+NfuESgA+2luhO5ZsUJnTrcF9E7TsewXK6OL+NtGutKpe31n8UfAT+Qvz0nX1uQN1dnaqBqbFq9Fr6KjLrU8PO/XB7mNaua1MZU7/H+9Wi3TV+EG6uzCvR/dOCpXL3aiX1+7Tb/69W8dc/l48MVaLzhvaRxefOUBjc9J0VmaKUuJjg28uDMO/hGp7WbXW7zuuf20v17p9x4NVM/2T7brzy8M147yciAnu1uw6qkff+kxbDlZJ8v88XJjXX1eNH6hLz86IuKVNhmHokxKn/v7xYf11U4kOVTYvbxuYFq9rJgzSNRMG8bPcTp5Gn17fdEgrt5Vpza5jqnE3B3MWizRiQLK+NCJd00Zn6dzBaVH7Rvrg8Vot/OcOvbbhoHxN5+N5Q/vov/IH66ujs8KyG14kcLkbdbiqXlV1HjnrGlVV16Aad6NOfFMSY7EoJT5WqfFxSo2PU58EmzJSHN3+wU15db2WfnhAfyjeF/x9lJueqJ9cebYuzGv7g5Hu5PUZWrxmr3658vPg+TE2J003TclV0dkZEfNaDiB6RE2o9Morr+iGG27QokWLlJ+fr4ULF2rZsmXavn27BgwYcNL4NWvW6Etf+pIWLFigr33ta1qyZIl+/vOfa8OGDRo9erQk6ec//7kWLFig3/3ud8rNzdXcuXP18ccfa9u2bXI4/G/4vvrVr+rw4cP61a9+pYaGBs2aNUvnnXeelixZ0q55EyoBvZNhGNp22KkX39+r1zYelGFIeQOS9NKs8zSoD28O26PW06jH/7FdL6/dJ6/v9L+Cku2xumbiIN1QMLTbtwCPJnUer/62uUR/+HC/NjctizuRI86qFEecfIb/DV2gGuJEE4b00bfPH6KvjsmMyDcghmHog90V+tXqXfpXU+WaJCXYYjR5WD9dMDxdk4ela/iAJMV0c4WKz2do91GXNh+o1Jpdx7R6xxEdaaogk6Qke6ymjc7UVeMHquCMflFTQROJ/H2lPDpe2yBHnFUZKY4e11NtZ3mNFv7zc721tTT4Oplsj9UFw9N18cj+umB4ugamxUdkeGYYho7XNujQ8TodqvT3+jpUWdf0vf9SWdvQoWNbLAruejgwLV7ZaY6mr82XPglxnfp38foMfVbq1Ae7K7RyW6k+3FMRDPgyUxy685Lh+ubEnIj9mTtW49Yz7+zUkg/3B5eCpjhi9dXRWfrSiP46/4y+Ub2EGED3iZpQKT8/X+edd56effZZSZLP51NOTo7uvPNOPfDAAyeNnzFjhlwul954443gdeeff77GjRunRYsWyTAMZWdn695779V9990nSaqqqlJGRoYWL16sb33rW/r00081atQoffTRR5o4caIkacWKFbrssst08OBBZWdnn3behEpAz9fg9amqrkEllXXac9SlTQcq9Z+dR4O7b0nStRMGad4Vozq15XVvdaCiVks/2q/3dx7T7vIaVTd9suqIs+rMzBSNGZiiS0ZmaPLwfhEZcESyAxW1+uenZVq765i2HqpSyReWDQVkpTp07uA+Om9oH116dmZUNXjde9Slv2w8pOWbDmnfsdoWt8XHxWhEZrJGZiRrUJ94ZaY6lJUar4wUu5IcsUq0xyohLqbd/ad8PkP1jV7V1DfqaI1Hx1xuHavx6FBlnfYedWnvMZc+O1wd/Bk+cR4X5qXrynEDdclZA3pMlQm6T2lVvZatO6ClHx1oUe0mSX0TbTo7O0VnNv2cD+qToIwUR7CyJ9kRG5bwMvDzX+fxqq7Bq6q6Bh13Naii1qPjLo+OuTwqrapTSWW9SirrVFJVp/oG32mPm2yPVZ9EW7AaKckeK+sJYVCD15CzvkHOugZV1TWowuWRu/H0x3XEWYOh04Dk5n+PlPhYJdpiJYtkkWSxWORp9KmyzqOq2gYdrKzT7iMu7Tlac9L8Iz1wb83RGrd+v3afXvnogEqdLX8HjMhI0oiMZOUNSNbQ9AT1T7arf5Jd6Ul2pcbHEXoDkBQloZLH41FCQoJeffVVTZ8+PXj9zJkzVVlZqddff/2k+wwePFizZ8/W3XffHbxu/vz5Wr58uTZv3qzdu3dr2LBh2rhxo8aNGxccM3XqVI0bN05PPfWUXnzxRd177706fvx48PbGxkY5HA4tW7ZMV1111UmP63a75XY3f+LodDqVk5MT1aHSt39brDrPyZ9Un6g9Pxzt+RFq33HaMaYdx2nPgcI3n3Y8VnuOE6bnHq7TuVufe7vmE57/p+0Z5DMM1bi9qnE3nPKPYlusVYVnDdAtXxqmcTlp7XlknIZhGHJ5vLLHWiP2099oVufx6ki1W876BsVYLYqPi1FmqqNHhByBZWb/2XlU7+88qo/2VrTrDa3kf/MZHxcji8Ui/3soiyxNbzgN+Ztqt9azp63jjc5O1blD+mjqiP6aOLRP1LwBRWTz+QxtLanSu58d0bvby/XxoarTVnpaLP5gMy7G/7pqi7Eoruk1NvAzbhiGDMP/377gfxtyN/hU3+BVfQg//1+UnmTXwD7xGpQW7//axx/0DGz6GuqHMYZhqMLlUUllvQ5V1upQU4h16HidDlfV6VBlfbDXUWcl2WM1cWgfTRmerqKzM6N6marXZ6h49zGtbPqg4bPS6tPexx5rlSMuRo44/1dbjFVWS9PrY9PrZavfd8PzAaLJNyfm6Jvn5Zg9jQ5rb6hkagOCo0ePyuv1KiMjo8X1GRkZ+uyzz1q9T2lpaavjS0tLg7cHrmtrzBeX1sXGxqpv377BMV+0YMEC/fjHP27nM4sOG/dXtuhJAKB1A5LtGtw3QaMHpmr84DRddOYApcZTmRROFoulS7ep7+3ibTFRs5V8qCwWi0YPTNXogam6deoweX2G9h5z6dPDTu0oq9HhqjodrqpXaVW9yqvdcrkb1dj0Zry+wdfuAEry93Hqm2hTv0S70pNtGpDsUG56ooamJ2p4/ySNyEjq9O57QGusVovOGZSmcwal6a7CPNU3eLW9tFpbS6q0+4hLh47X6cDxWh2tcauqzv+hiGFItR6vpLY/QAyFLdaqtPg49U20qU+CTX0TbUpLiFNWUzVgdtOStMxUR9gDVYvFon5JdvVLsmvMoNabl7sbvSqtqtehSn/lVHl1fbBnk7OuQXUNXn+QJv8HX3ExVqUlxCktPk4ZKQ4NG5CoM9KTlNM3oduX0HaVGKtFk4ena/LwdEn+CqbNByq1s7xGO8trtL/C/3NztMajqjr/skR3o0/uRp+q6to6MoDTuaDpvOvp+Au+nR588EHNnj07+H2gUima/XLGuHb1M2nPsvT2/Nptz/r29h0nTGPa82jR+NzbcaRw/T9t379P982nXf/OpxlikZRgi1Wyw39JtMdSOQNEkRirRcP6J2lY/9Y33jAMQx6vT7Vur2rcjapv8Las0jD8/22xqOmT+hg5gp/ax/SYN5qIbo64GI3NSdPYU1TLuhv9y9TqPf5Ko4YTLu5Gn2T4f2daTqg4ObFaL1CpEt/0cx8fFyN7rDXil0XZY2M0pF9i1OwMaYb0JLsuOStDl5yVcdJtnkafnPUNwSo1/1evv1rNkHxNr4/Nr5lG02um2vWeApGO/4fhNnxA+zYBi3amhkrp6emKiYlRWVlZi+vLysqUmZnZ6n0yMzPbHB/4WlZWpqysrBZjAsvhMjMzVV5e3uIYjY2NqqioOOXj2u122e09q6ndV0ad/MsEAICezGKxyB4bI3tsjPok2syeDtAl7LExGpDM0kuExhZrVTpNvAGEyNSP3202myZMmKBVq1YFr/P5fFq1apUKCgpavU9BQUGL8ZK0cuXK4Pjc3FxlZma2GON0OlVcXBwcU1BQoMrKSq1fvz445p133pHP51N+fn7Ynh8AAAAAAEBPZfryt9mzZ2vmzJmaOHGiJk2apIULF8rlcmnWrFmSpBtuuEEDBw7UggULJEl33XWXpk6dqieeeEKXX365li5dqnXr1umFF16Q5P8E8u6779YjjzyivLw85ebmau7cucrOzg42Az/rrLM0bdo03XzzzVq0aJEaGhp0xx136Fvf+la7dn4DAAAAAADo7UwPlWbMmKEjR45o3rx5Ki0t1bhx47RixYpgo+39+/fLam0uqJo8ebKWLFmihx9+WA899JDy8vK0fPlyjR49Ojhmzpw5crlcuuWWW1RZWakpU6ZoxYoVcjgcwTF/+MMfdMcdd+iSSy6R1WrVN77xDT399NPd98QBAAAAAACimMUI1x7kvUx7t9cDAAAAAACIJu3NPNjSCAAAAAAAACEjVAIAAAAAAEDICJUAAAAAAAAQMkIlAAAAAAAAhIxQCQAAAAAAACEjVAIAAAAAAEDICJUAAAAAAAAQMkIlAAAAAAAAhIxQCQAAAAAAACEjVAIAAAAAAEDICJUAAAAAAAAQMkIlAAAAAAAAhIxQCQAAAAAAACGLNXsC0cowDEmS0+k0eSYAAAAAAADhE8g6AtnHqRAqdVB1dbUkKScnx+SZAAAAAAAAhF91dbVSU1NPebvFOF3shFb5fD6VlJQoOTlZFovF7OmYzul0KicnRwcOHFBKSorZ0wF6Lc5FIHJwPgKRgXMRiAyci9HFMAxVV1crOztbVuupOydRqdRBVqtVgwYNMnsaESclJYUXCCACcC4CkYPzEYgMnItAZOBcjB5tVSgF0KgbAAAAAAAAISNUAgAAAAAAQMgIlRAWdrtd8+fPl91uN3sqQK/GuQhEDs5HIDJwLgKRgXOxZ6JRNwAAAAAAAEJGpRIAAAAAAABCRqgEAAAAAACAkBEqAQAAAAAAIGSESgAAAAAAAAgZoRIAAAAAAABCRqiENv3sZz/T5MmTlZCQoLS0tFbH7N+/X5dffrkSEhI0YMAA3X///WpsbGwx5l//+pfOPfdc2e12DR8+XIsXLz7pOM8995yGDh0qh8Oh/Px8ffjhh13wjICejfMICK/Vq1friiuuUHZ2tiwWi5YvX97idsMwNG/ePGVlZSk+Pl6FhYXasWNHizEVFRW6/vrrlZKSorS0NN10002qqalpMWbLli268MIL5XA4lJOTo8cee6yrnxoQVRYsWKDzzjtPycnJGjBggKZPn67t27e3GFNfX6/bb79d/fr1U1JSkr7xjW+orKysxZhw/d0K9FbPP/+8zjnnHKWkpCglJUUFBQV66623grdzHvY+hEpok8fj0bXXXqvbbrut1du9Xq8uv/xyeTwerVmzRr/73e+0ePFizZs3Lzhmz549uvzyy3XxxRdr06ZNuvvuu/Xd735X//jHP4JjXnnlFc2ePVvz58/Xhg0bNHbsWBUVFam8vLzLnyPQU3AeAeHncrk0duxYPffcc63e/thjj+npp5/WokWLVFxcrMTERBUVFam+vj445vrrr9cnn3yilStX6o033tDq1at1yy23BG93Op269NJLNWTIEK1fv16PP/64fvSjH+mFF17o8ucHRIv33ntPt99+uz744AOtXLlSDQ0NuvTSS+VyuYJj7rnnHv3tb3/TsmXL9N5776mkpERXX3118PZw/d0K9GaDBg3So48+qvXr12vdunX68pe/rCuvvFKffPKJJM7DXskA2uGll14yUlNTT7r+zTffNKxWq1FaWhq87vnnnzdSUlIMt9ttGIZhzJkzxzj77LNb3G/GjBlGUVFR8PtJkyYZt99+e/B7r9drZGdnGwsWLAjzMwF6Ls4joGtJMv7yl78Ev/f5fEZmZqbx+OOPB6+rrKw07Ha78cc//tEwDMPYtm2bIcn46KOPgmPeeustw2KxGIcOHTIMwzD+93//1+jTp0/w96ZhGMYPf/hD48wzz+ziZwREr/LyckOS8d577xmG4T/34uLijGXLlgXHfPrpp4YkY+3atYZhhO/vVgAt9enTx/jNb37DedhLUamETlm7dq3GjBmjjIyM4HVFRUVyOp3BtHrt2rUqLCxscb+ioiKtXbtWkr8aav369S3GWK1WFRYWBscAaBvnEdD99uzZo9LS0hbnXWpqqvLz84Pn3dq1a5WWlqaJEycGxxQWFspqtaq4uDg45ktf+pJsNltwTFFRkbZv367jx49307MBoktVVZUkqW/fvpKk9evXq6GhocX5OHLkSA0ePLjF+djZv1sBNPN6vVq6dKlcLpcKCgo4D3spQiV0SmlpaYsXBEnB70tLS9sc43Q6VVdXp6NHj8rr9bY6JnAMAG3jPAK6X+Dcauu8Ky0t1YABA1rcHhsbq759+5729+SJjwGgmc/n0913360LLrhAo0ePluQ/V2w220k9QL94Pnb271YA0scff6ykpCTZ7XZ973vf01/+8heNGjWK87CXIlTqhR544AFZLJY2L5999pnZ0wQAAABOcvvtt2vr1q1aunSp2VMBeqUzzzxTmzZtUnFxsW677TbNnDlT27ZtM3taMEms2RNA97v33nt14403tjnmjDPOaNexMjMzT9pdKtDdPzMzM/j1ix3/y8rKlJKSovj4eMXExCgmJqbVMYFjAGhbeno65xHQzQLnVllZmbKysoLXl5WVady4ccExX2yW39jYqIqKitP+njzxMQD43XHHHcGG94MGDQpen5mZKY/Ho8rKyhZVEif+HgzH360AJJvNpuHDh0uSJkyYoI8++khPPfWUZsyYwXnYC1Gp1Av1799fI0eObPNyYl+HthQUFOjjjz9u8QfzypUrlZKSolGjRgXHrFq1qsX9Vq5cqYKCAkn+F6UJEya0GOPz+bRq1argGABt4zwCul9ubq4yMzNbnHdOp1PFxcXB866goECVlZVav359cMw777wjn8+n/Pz84JjVq1eroaEhOGblypU688wz1adPn256NkBkMwxDd9xxh/7yl7/onXfeUW5ubovbJ0yYoLi4uBbn4/bt27V///4W52Nn/24FcDKfzye328152FuZ3SkckW3fvn3Gxo0bjR//+MdGUlKSsXHjRmPjxo1GdXW1YRiG0djYaIwePdq49NJLjU2bNhkrVqww+vfvbzz44IPBY+zevdtISEgw7r//fuPTTz81nnvuOSMmJsZYsWJFcMzSpUsNu91uLF682Ni2bZtxyy23GGlpaS12BQDQNs4jIPyqq6uDv/skGU8++aSxceNGY9++fYZhGMajjz5qpKWlGa+//rqxZcsW48orrzRyc3ONurq64DGmTZtmjB8/3iguLjbef/99Iy8vz7juuuuCt1dWVhoZGRnGt7/9bWPr1q3G0qVLjYSEBONXv/pVtz9fIFLddtttRmpqqvGvf/3LOHz4cPBSW1sbHPO9733PGDx4sPHOO+8Y69atMwoKCoyCgoLg7eH6uxXozR544AHjvffeM/bs2WNs2bLFeOCBBwyLxWK8/fbbhmFwHvZGhEpo08yZMw1JJ13efffd4Ji9e/caX/3qV434+HgjPT3duPfee42GhoYWx3n33XeNcePGGTabzTjjjDOMl1566aTHeuaZZ4zBgwcbNpvNmDRpkvHBBx908bMDeh7OIyC83n333VZ/D86cOdMwDMPw+XzG3LlzjYyMDMNutxuXXHKJsX379hbHOHbsmHHdddcZSUlJRkpKijFr1qzghzMBmzdvNqZMmWLY7XZj4MCBxqOPPtpdTxGICq2dh5Ja/E1ZV1dnfP/73zf69OljJCQkGFdddZVx+PDhFscJ19+tQG/1ne98xxgyZIhhs9mM/v37G5dcckkwUDIMzsPeyGIYhtHt5VEAAAAAAACIavRUAgAAAAAAQMgIlQAAAAAAABAyQiUAAAAAAACEjFAJAAAAAAAAISNUAgAAAAAAQMgIlQAAAAAAABAyQiUAAAAAAACEjFAJAAAAAAAAISNUAgAAAAAAQMgIlQAAAAAAABAyQiUAAAAAAACE7P8DSwD3IEHOpE8AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "sales['Unit_Cost'].plot(kind='density', figsize=(14,6)) # kde" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = sales['Unit_Cost'].plot(kind='density', figsize=(14,6)) # kde\n", - "ax.axvline(sales['Unit_Cost'].mean(), color='red')\n", - "ax.axvline(sales['Unit_Cost'].median(), color='green')" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0, 'dollars')" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Pn6SIImzqTy8", + "outputId": "d652cd8f-690b-4c60-8902-8de7a5b5f979", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 305 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 30 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAH5CAYAAAA4Og9YAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaxdJREFUeJzt3Xt80+Xd//F30jZJzwUKLYUClYOAnASkFnHo7CzTbaDTmznvicypc3NTcTLxx2Gb7sa56fB0y9ymjt1zOJzDe5syGTq9HVjlLKLI+VTaAqVNkx7SJt/fH2lSKqU0bdJv0r6ej0ceheTKN9cXmrR553N9LothGIYAAAAAAACAEFjNngAAAAAAAABiD6ESAAAAAAAAQkaoBAAAAAAAgJARKgEAAAAAACBkhEoAAAAAAAAIGaESAAAAAAAAQkaoBAAAAAAAgJDFmz2BWOXz+VRSUqLU1FRZLBazpwMAAAAAABAWhmGourpaOTk5slrPXo9EqNRBJSUlys3NNXsaAAAAAAAAEXH48GENHDjwrLcTKnVQamqqJP8/cFpamsmzAYCW3B63ch7NkSSV3FuiZFuyyTOKELdbyvGfp0pKpORuep4AAABAF3I6ncrNzQ1mH2dDqNRBgSVvaWlphEoAok6cJ05y+P+clpbWfUOluLjmP6elESoBAAAAYXSudj806gYAAAAAAEDICJUAAAAAAAAQMkIlAAAAAAAAhIxQCQAAAAAAACEjVAIAAAAAAEDICJUAAAAAAAAQMkIlAAAAAAAAhIxQCQAAAAAAACEjVAIAAAAAAEDICJUAAAAAAAAQMkIlAAAAAAAAhIxQCQAAAAAAACEjVAIAAAAAAEDICJUAAAAAAAAQMkIlAAAAAAAAhIxQCQAAAAAAACEjVAIAAAAAAEDICJUAoJsxDEPP/3u/2dMAAAAA0M0RKgFAN7P1cKUe+ceu4N+PnKoxcTYAAAAAuitCJQDoZl7dWtLi73/efMSkmQAAAADozgiVAKAbafT69LftLUOlV7ccNWk2AAAAALozQiUA6EY+LXPphMujVHt88LpjznqVO+tMnBUAAACA7ohQCQC6kY+POSVJ52entrh+R0mVGdMBAAAA0I0RKgFANxIIlUZ+JlT66KjTjOkAAAAA6MYIlQCgG/m4lEolAAAAAF2DUAkAugnDMPTxsWpJZ4ZKH5VQqQQAAAAgvAiVAKCbOOHyqMLtkdUiDe/XMlQ6Wlmr+kavSTMDAAAA0B0RKgFAN3GookaS1D89UY6EuOD1SbY4GYZ09FStWVMDAAAA0A0RKgFAN3HklD9UGtArscX1AzL8fz9MqAQAAAAgjAiVAKCbONIUGg38TKgU+HugkgkAAAAAwoFQCQC6ieZQKanF9YFQ6QihEgAAAIAwIlQCgG4isPztzEolf8h0+BShEgAAAIDwIVQCgG4iUKmUe5ZKJZa/AQAAAAgnQiUA6AZ8PiO4u9tnK5UCjbuP0KgbAAAAQBgRKgFAN3DCVS+P1yerRcpOd7S4LSvV//fKmgbVN3rNmB4AAACAbohQCQC6gfLqeklSnxS7EuJavrSnJybIFu+/rtxZ3+VzAwAAANA9ESoBQDdQXl0nSeqbYj/jNovFon6p9qZxhEoAAAAAwoNQCQC6geNNYVG/tDNDJUnNoZKzrsvmBAAAAKB7I1QCgG4gsKwtEB59Vlaav68SlUoAAAAAwoVQCQC6gUBY1C/V0ertgbCpjEolAAAAAGFCqAQA3cA5l79RqQQAAAAgzAiVAKAbCDTqPtvyNyqVAAAAAIQboRIAdAOBCqS+5+ipdJxKJQAAAABhQqgEADHOMIxz9lQKhE2ESgAAAADChVAJAGKcs65RnkafpLNXKvVJtkmSTtV45PMZXTY3AAAAAN0XoRIAxLgKt0eSlGKPlyMhrtUxvZpCJZ8hVdY2dNncAAAAAHRfhEoAEOMCoVKv5ISzjkmIsyrNEd80niVwAAAAADqPUAkAYlwgVOqdZGtzXJ8U/9K4ky5PxOcEAAAAoPsjVAKAGHcqEColtx0qBW4PhFAAAAAA0BmESgAQ404Gl7+1L1Q6SagEAAAAIAwIlQAgxp2q8YdEfc4RKvWhUgkAAABAGBEqAUCMqwixUolQCQAAAEA4ECoBQIxrb6Nulr8BAAAACCdCJQCIcRXtbNTdJyVQqVQf8TkBAAAA6P4IlQAgxrU3VOrVVMl00kWlEgAAAIDOI1QCgBh3qr2VSsl2//gaQiUAAAAAnUeoBAAxzNPoU3V9o6Rzh0oZSQmSpMqahojPCwAAAED3R6gEADGsstZfdWSxSGmOhDbHBkKl+kaf6hq8EZ8bAAAAgO6NUAkAYlhVU9VRemKCrFZLm2NT7PGKaxpDtRIAAACAziJUAoAYVlnrD4cyEtuuUpIki8USHBeocAIAAACAjoqKUOnpp5/WkCFD5HA4lJ+fr/fff7/N8atWrdLIkSPlcDg0duxYvfbaay1uNwxDixcvVv/+/ZWYmKjCwkLt3r27xZghQ4bIYrG0uDz88MNhPzcAiKTTK5XaI52+SgAAAADCxPRQ6aWXXtK8efO0ZMkSbd68WePHj1dRUZHKy8tbHb9+/XrdcMMNuuWWW7RlyxbNmjVLs2bN0o4dO4JjHnnkET3xxBNavny5iouLlZycrKKiItXV1bU41k9+8hMdO3YsePne974X0XMFgHALVCqlJ7XdpDsgWKlEqAQAAACgk0wPlR577DHdeuutmjt3rkaPHq3ly5crKSlJzz33XKvjH3/8cc2YMUP33XefRo0apQcffFATJ07UU089JclfpbRs2TItXLhQM2fO1Lhx47RixQqVlJRo9erVLY6Vmpqq7Ozs4CU5OTnSpwsAYVVZ41/G1p7lb5KU0RQ+VbH8DQAAAEAnmRoqeTwebdq0SYWFhcHrrFarCgsLtWHDhlbvs2HDhhbjJamoqCg4fv/+/SotLW0xJj09Xfn5+Wcc8+GHH1afPn104YUX6uc//7kaGxvPOtf6+no5nc4WFwAwm7M2tOVvVCoBAAAACJd4Mx/8xIkT8nq9ysrKanF9VlaWPvnkk1bvU1pa2ur40tLS4O2B6842RpK+//3va+LEierdu7fWr1+vBQsW6NixY3rsscdafdylS5fqxz/+cWgnCAARFmzUnRRiT6VaQiUAAAAAnWNqqGSmefPmBf88btw42Ww23X777Vq6dKnsdvsZ4xcsWNDiPk6nU7m5uV0yVwA4m8oQG3VnJNpa3A8AAAAAOsrU5W+ZmZmKi4tTWVlZi+vLysqUnZ3d6n2ys7PbHB/4GsoxJSk/P1+NjY06cOBAq7fb7XalpaW1uACA2apCXf7WVKlETyUAAAAAnWVqqGSz2TRp0iStW7cueJ3P59O6detUUFDQ6n0KCgpajJektWvXBsfn5eUpOzu7xRin06ni4uKzHlOStm7dKqvVqn79+nXmlACgSzUvf2vn7m9J9FQCAAAAEB6mL3+bN2+e5syZo8mTJ2vKlClatmyZ3G635s6dK0m66aabNGDAAC1dulSSdNddd2n69Ol69NFHdfXVV2vlypXauHGjnn32WUmSxWLR3XffrYceekjDhw9XXl6eFi1apJycHM2aNUuSv9l3cXGxLr/8cqWmpmrDhg2655579J//+Z/q1auXKf8OANARzlB7KtGoGwAAAECYmB4qzZ49W8ePH9fixYtVWlqqCRMmaM2aNcFG24cOHZLV2lxQNXXqVL344otauHChHnjgAQ0fPlyrV6/WmDFjgmPmz58vt9ut2267TZWVlZo2bZrWrFkjh8Mhyb+UbeXKlfrRj36k+vp65eXl6Z577mnRMwkAYkFljX8ZW/uXv/krmqpo1A0AAACgkyyGYRhmTyIWOZ1Opaenq6qqiv5KAEzh8xka9v9ek8+Q3n/gCvVLcwRvc3vcSlmaIklyLXAp2ZYsSdp33KXPP/q2Uh3x+vBHRabMO6zcbinFf55yuaTkZHPnAwAAAHQD7c08TO2pBADoOJenUb6mjwXS2lmplOrwj3PVN8rn4zMFAAAAAB1HqAQAMaq6rlGSZIuzypEQ1677pDr8q54Nwx9KAQAAAEBHESoBQIyqrvP3RQoERe3hSIiTLd7/0u+krxIAAACATiBUAoAYFahUau/St4C0phAqcH8AAAAA6AhCJQCIUYFKo1Aqlfzj/SEUoRIAAACAziBUAoAYFQiFQg2VApVKLH8DAAAA0BmESgAQo4I9leyhLX8LVirVEyoBAAAA6DhCJQCIUc6OViolBiqVWP4GAAAAoOMIlQAgRjUvfwuxUske6KlEpRIAAACAjiNUAoAYFVz+FnKjbnZ/AwAAANB5hEoAEKM63Kg70V+p5KRSCQAAAEAnECoBQIwKVCqlhbr8LbD7G5VKAAAAADqBUAkAYlRHK5WCu78RKgEAAADoBEIlAIhRzmBPpdAqldIClUq1LH8DAAAA0HGESgAQowKVRmmJHa1UIlQCAAAA0HGESgAQo5qXv4VYqZRITyUAAAAAnUeoBAAxyOsz5Krv4O5vVCoBAAAACANCJQCIQYFASepIo27/+LoGnzyNvrDOCwAAAEDPQagEADEoUGVki7fKHh8X0n1T7M0hFNVKAAAAADqKUAkAYlCwSXeIVUqSFB9nVbItrsVxAAAAACBUhEoAEIM62qQ7IHA/J5VKAAAAADqIUAkAYpCz1h8GhdpPKSCwAxyVSgAAAAA6ilAJAGJQdX3nQqVUdoADAAAA0EmESgAQg4LL3+wdW/4W6MXkrKVSCQAAAEDHECoBQAxq7qnUuUoleioBAAAA6ChCJQCIQYEwKC2xo426myqV6KkEAAAAoIMIlQAgBnW2UikQRtFTCQAAAEBHESoBQAxqDpU6V6nE7m8AAAAAOopQCQBiUKDCqNM9lWqpVAIAAADQMYRKABCDAhVGaR1d/kalEgAAAIBOIlQCgBgUqDDq6PK3NHZ/AwAAANBJhEoAEIM626ibnkoAAAAAOotQCQBiUHNPpY5VKqU0hUruekIlAAAAAB1DqAQAMcbrM+T2eCV1vFIp2ea/n4tQCQAAAEAHESoBQIw5PQhKsXdu+Vt9o08NXl9Y5gUAAACgZyFUAoAYE1iyFm+1yB7fsZfx5NPCKJbAAQAAAOgIQiUAiDGBECjZHi+LxdKhYyTEWYOBFM26AQAAAHQEoRIAxJjA8reOLn0LCNzf7SFUAgAAABA6QiUAiDHuen+T7mR7XKeOE9gBzkWlEgAAAIAOIFQCgBjjOm35W2ewAxwAAACAziBUAoAY4w7X8jcHoRIAAACAjiNUAoAYE+iBFLaeSoRKAAAAADqAUAkAYky4lr8FQiV2fwMAAADQEYRKABBjwrX8LTlYqeTt9JwAAAAA9DyESgAQY8K1+1tqsKdSQ6fnBAAAAKDnIVQCgBgT/t3fqFQCAAAAEDpCJQCIMez+BgAAACAaECoBQIwJVirZOhcqpbL7GwAAAIBOIFQCgBjjDtfyt6b7u9j9DQAAAEAHECoBQIwJNOpm+RsAAAAAMxEqAUCMaW7U3bnd31Ka7k+oBAAAAKAjCJUAIMa4wtWo254giZ5KAAAAADqGUAkAYohhGGHsqeSvVKomVAIAAADQAYRKABBD6ht9avQZkjofKqU2VSp5Gn1q8Po6PTcAAAAAPQuhEgDEkNOXqiXbOtdT6fSeTCyBAwAAABAqQiUAiCGBnd8cCVbFx3XuJTw+zipHgv8Y1XWESgAAAABCQ6gEADEkXE26AwLHcXsIlQAAAACEhlAJAGJIIPzpbD+lgECo5KJSCQAAAECICJUAIIaEu1IpEE656KkEAAAAIESESgAQQwINtcNeqUSoBAAAACBEhEoAEEPckeqpRKgEAAAAIESESgAQQ1xNu7+FrVLJ4T8Ou78BAAAACBWhEgDEkOZKpbiwHC85WKnkDcvxAAAAAPQchEoAEEOCPZVs4alUSg32VGoIy/EAAAAA9BxRESo9/fTTGjJkiBwOh/Lz8/X++++3OX7VqlUaOXKkHA6Hxo4dq9dee63F7YZhaPHixerfv78SExNVWFio3bt3t3qs+vp6TZgwQRaLRVu3bg3XKQFARLjC3Ki7efc3KpUAAAAAhMb0UOmll17SvHnztGTJEm3evFnjx49XUVGRysvLWx2/fv163XDDDbrlllu0ZcsWzZo1S7NmzdKOHTuCYx555BE98cQTWr58uYqLi5WcnKyioiLV1dWdcbz58+crJycnYucHAOEUqUbd7P4GAAAAIFSmh0qPPfaYbr31Vs2dO1ejR4/W8uXLlZSUpOeee67V8Y8//rhmzJih++67T6NGjdKDDz6oiRMn6qmnnpLkr1JatmyZFi5cqJkzZ2rcuHFasWKFSkpKtHr16hbHev311/XGG2/oF7/4RaRPEwDCIuyNutn9DQAAAEAHmRoqeTwebdq0SYWFhcHrrFarCgsLtWHDhlbvs2HDhhbjJamoqCg4fv/+/SotLW0xJj09Xfn5+S2OWVZWpltvvVW///3vlZSUdM651tfXy+l0trgAQFcL9lQKU6PuwO5vLnZ/AwAAABAiU0OlEydOyOv1Kisrq8X1WVlZKi0tbfU+paWlbY4PfG1rjGEYuvnmm/Xtb39bkydPbtdcly5dqvT09OAlNze3XfcDgHBye8K7/C1Q8VRNpRIAAACAEJm+/M0MTz75pKqrq7VgwYJ232fBggWqqqoKXg4fPhzBGQJA6wIVReFb/uaveGL5GwAAAIBQmRoqZWZmKi4uTmVlZS2uLysrU3Z2dqv3yc7ObnN84GtbY958801t2LBBdrtd8fHxGjZsmCRp8uTJmjNnTquPa7fblZaW1uICAF3NFeZG3cn0VAIAAADQQaaGSjabTZMmTdK6deuC1/l8Pq1bt04FBQWt3qegoKDFeElau3ZtcHxeXp6ys7NbjHE6nSouLg6OeeKJJ7Rt2zZt3bpVW7du1WuvvSbJvxPdT3/607CeIwCEU3NPpTCFSjZ2fwMAAADQMeF5V9IJ8+bN05w5czR58mRNmTJFy5Ytk9vt1ty5cyVJN910kwYMGKClS5dKku666y5Nnz5djz76qK6++mqtXLlSGzdu1LPPPitJslgsuvvuu/XQQw9p+PDhysvL06JFi5STk6NZs2ZJkgYNGtRiDikpKZKkoUOHauDAgV105gAQGp/PkNsT2P0tTI26m8Kp+kafGr0+xcf1yFXRAAAAADrA9FBp9uzZOn78uBYvXqzS0lJNmDBBa9asCTbaPnTokKzW5jc5U6dO1YsvvqiFCxfqgQce0PDhw7V69WqNGTMmOGb+/Plyu9267bbbVFlZqWnTpmnNmjVyOBxdfn4AEC41Dd7gn8O9/E2S3PVepScRKgEAAABoH4thGIbZk4hFTqdT6enpqqqqor8SgC5R5qxT/n+tk9Ui7f2vq2SxWM461u1xK2WpvwrTtcClZFvyWceO+H+vy+P16d/3f14DMhLDPu+IcrulpmpTuVxS8tnPEwAAAED7tDfz4CNpAIgRrtP6KbUVKIUqmR3gAAAAAHQAoRIAxAh3mHd+CwgsgaNZNwAAAIBQECoBQIxwhXnnt4BASEWlEgAAAIBQECoBQIxw1wd2fotMpRKhEgAAAIBQECoBQIxoXv4WF9bjNi9/855jJAAAAAA0I1QCgBgRXP5mC/fyNxp1AwAAAAgdoRIAxIiINeq20agbAAAAQOgIlQAgRrgj1KibnkoAAAAAOoJQCQBihCtCjbrZ/Q0AAABARxAqAUCMoFE3AAAAgGhCqAQAMcLliczyNxp1AwAAAOgIQiUAiBGuugj3VPIQKgEAAABoP0IlAIgREdv9zc7ubwAAAABCR6gEADHCFaHd32jUDQAAAKAjCJUAIEYElqdFqlG3m0bdAAAAAEJAqAQAMSIQ+qTYE8J63EBIxfI3AAAAAKEgVAKAGNG8/C1SlUqNMgwjrMcGAAAA0H0RKgFADGjw+uRp9EmKXKPuRp+h+qbHAAAAAIBzIVQCgBhQc1q/oyRbmEOl045Hs24AAAAA7UWoBAAxwNXUpNsWZ5UtPrwv3XFWixIT/EvqaNYNAAAAoL0IlQAgBtQ0VRAlhbmfUkBgCRzNugEAAAC0F6ESAMSAYJPuMC99CwjsAOf2ECoBAAAAaB9CJQCIATUe/7K0cDfpDqBSCQAAAECoCJUAIAa4umj5G426AQAAALQXoRIAxIBA2BOpSqUUQiUAAAAAISJUAoAY4G5a/pZki3SjbnZ/AwAAANA+hEoAEAMCFUTJEatUimvxOAAAAABwLoRKABADaiK8/C2wqxyhEgAAAID2IlQCgBgQWJaWZGP3NwAAAADRgVAJAGJAc6PuyPRUolE3AAAAgFARKgFADHB7/GFP5CuVaNQNAAAAoH0IlQAgBrgj3VOJRt0AAAAAQkSoBAAxwO3xVxBFbve3puVvHkIlAAAAAO1DqAQAMSBQQZQUoZ5KNOoGAAAAECpCJQCIAZFe/kajbgAAAAChIlQCgBgQWP6WZItspZKbRt0AAAAA2olQCQBiQJc16vY0yjCMiDwGAAAAgO6FUAkAopzPZ6imixp1G4aCjwUAAAAAbSFUAoAoV9PQHPIk2yITKiUmxMlq8f+ZvkoAAAAA2oNQCQCiXCDksVokR0JkXrYtFkswsGIHOAAAAADtQagEAFEuECol2+JlsVgi9jg06wYAAAAQCkIlAIhygZAnUv2UAgLNuqlUAgAAANAehEoAEOXcnqZKpabQJ1JSgpVKhEoAAAAAzo1QCQCiXHD5W8QrlZpCJQ+hEgAAAIBzI1QCgCjnOq2nUiQFQiWWvwEAAABoD0IlAIhyNZ5ATyWWvwEAAACIHoRKABDlum75W6BRN7u/AQAAADg3QiUAiHJdt/sblUoAAAAA2o9QCQCiXHD3N1uEl7/ZCJUAAAAAtB+hEgBEOVcX7/5Go24AAAAA7UGoBABRrqaLdn+jUTcAAACAUBAqAUCUc3V5TyUadQMAAAA4N0IlAIhyNYGeSvbI9lRq3v2NSiUAAAAA50aoBABRzt3Vy988hEoAAAAAzo1QCQCiXFc36qanEgAAAID2IFQCgChX4wn0VIrs8rcUdn8DAAAAEAJCJQCIcl1dqVTX4FOj1xfRxwIAAAAQ+wiVACCKGYYRrFRKiXio1FwJ5fawAxwAAACAthEqAUAUq2/0yeszJElJtsguf7PHxykhziKJvkoAAAAAzq1DodK+ffvCPQ8AQCtO72+UFOHd3ySadQMAAABovw6FSsOGDdPll1+u//mf/1FdXV245wQAaFJT71+GlpgQpzirJeKPl2yjWTcAAACA9ulQqLR582aNGzdO8+bNU3Z2tm6//Xa9//774Z4bAPR4XdWkOyAlWKlETyUAAAAAbetQqDRhwgQ9/vjjKikp0XPPPadjx45p2rRpGjNmjB577DEdP3483PMEgB6pxuMPlVLske2nFBBo1k2lEgAAAIBz6VSj7vj4eF177bVatWqVfvazn2nPnj36wQ9+oNzcXN100006duxYuOYJAD1SINzpin5KEj2VAAAAALRfp0KljRs36jvf+Y769++vxx57TD/4wQ+0d+9erV27ViUlJZo5c2a7jvP0009ryJAhcjgcys/PP+dSulWrVmnkyJFyOBwaO3asXnvttRa3G4ahxYsXq3///kpMTFRhYaF2797dYsxXvvIVDRo0SA6HQ/3799c3vvENlZSUhPYPAAARFliGltLVy988hEoAAAAA2tahUOmxxx7T2LFjNXXqVJWUlGjFihU6ePCgHnroIeXl5enSSy/VCy+8oM2bN5/zWC+99JLmzZunJUuWaPPmzRo/fryKiopUXl7e6vj169frhhtu0C233KItW7Zo1qxZmjVrlnbs2BEc88gjj+iJJ57Q8uXLVVxcrOTkZBUVFbVoKn755ZfrT3/6k3bt2qU///nP2rt3r6677rqO/HMAQMQEwp2kLlv+RqNuAAAAAO3ToVDpmWee0de//nUdPHhQq1ev1pe+9CVZrS0P1a9fP/32t78957Eee+wx3XrrrZo7d65Gjx6t5cuXKykpSc8991yr4x9//HHNmDFD9913n0aNGqUHH3xQEydO1FNPPSXJX6W0bNkyLVy4UDNnztS4ceO0YsUKlZSUaPXq1cHj3HPPPbr44os1ePBgTZ06Vffff7/ee+89NTQ0tPq49fX1cjqdLS4AEGlu0xp1EyoBAAAAaFuHQqW1a9fqhz/8ofr379/iesMwdOjQIUmSzWbTnDlz2jyOx+PRpk2bVFhY2Dwhq1WFhYXasGFDq/fZsGFDi/GSVFRUFBy/f/9+lZaWthiTnp6u/Pz8sx6zoqJCf/jDHzR16lQlJCS0Ombp0qVKT08PXnJzc9s8NwAIhxpP0/K3Luup5K+IYvc3AAAAAOfSoVBp6NChOnHixBnXV1RUKC8vr93HOXHihLxer7Kyslpcn5WVpdLS0lbvU1pa2ub4wNf2HPOHP/yhkpOT1adPHx06dEivvvrqWee6YMECVVVVBS+HDx9u30kCQCcEG3Wz/A0AAABAlOlQqGQYRqvXu1wuORyOTk2oK913333asmWL3njjDcXFxemmm24667nZ7XalpaW1uABApAWWoXV5o25CJQAAAADnENK7lHnz5kmSLBaLFi9erKSkpOBtXq9XxcXFmjBhQruPl5mZqbi4OJWVlbW4vqysTNnZ2a3eJzs7u83xga9lZWUtlueVlZWdMbfMzExlZmZqxIgRGjVqlHJzc/Xee++poKCg3ecAAJEUWIaW1FXL32xUKgEAAABon5AqlbZs2aItW7bIMAx9+OGHwb9v2bJFn3zyicaPH68XXnih3cez2WyaNGmS1q1bF7zO5/Np3bp1Zw12CgoKWoyX/D2eAuPz8vKUnZ3dYozT6VRxcXGbYZHP55Pkb8gNANGiuVKpa5e/UakEAAAA4FxC+uj7rbfekiTNnTtXjz/+eFiWgM2bN09z5szR5MmTNWXKFC1btkxut1tz586VJN10000aMGCAli5dKkm66667NH36dD366KO6+uqrtXLlSm3cuFHPPvusJH8V1d13362HHnpIw4cPV15enhYtWqScnBzNmjVLklRcXKwPPvhA06ZNU69evbR3714tWrRIQ4cOpUoJQFRxe8zZ/Y1KJQAAAADn0qF3Kc8//3zYJjB79mwdP35cixcvVmlpqSZMmKA1a9YEG20fOnRIVmtzQdXUqVP14osvauHChXrggQc0fPhwrV69WmPGjAmOmT9/vtxut2677TZVVlZq2rRpWrNmTbDfU1JSkl555RUtWbJEbrdb/fv314wZM7Rw4ULZ7fawnRsAdFagYqjLlr+x+xsAAACAdrIYZ+tM/RnXXnutXnjhBaWlpenaa69tc+wrr7wSlslFM6fTqfT0dFVVVdG0G0DEFP3yHe0qq9b/3JKvacMz230/t8etlKUpkiTXApeSbcntut/usmp94ZfvKD0xQduWXNmhOXcpt1tK8Z+nXC4puX3nCQAAAODs2pt5tPuj7/T0dFksluCfAQCRF1j+lmRCTyXDMIKv+wAAAADwWe0OlU5f8hbO5W8AgLNrbtTdVcvf/I/T6DNU3+iTI6FrwiwAAAAAsSek3d8CamtrVVNTE/z7wYMHtWzZMr3xxhthmxgAQHJ7/L2NuqpRd7KtOURiBzgAAAAAbelQqDRz5kytWLFCklRZWakpU6bo0Ucf1cyZM/XMM8+EdYIA0FM1eH3yNPoktQx7Iik+zipHgv9HA826AQAAALSlQ6HS5s2bdemll0qSXn75ZWVnZ+vgwYNasWKFnnjiibBOEAB6qtMrhbpq9zdJSrEnSJJcVCoBAAAAaEOHQqWamhqlpqZKkt544w1de+21slqtuvjii3Xw4MGwThAAeqrA0jdbnFW2+A69XHdISlNT8ECTcAAAAABoTYfepQwbNkyrV6/W4cOH9Y9//ENXXunfdrq8vLzNreYAAO0XqFRK7qKd3wIC/ZuoVAIAAADQlg6FSosXL9YPfvADDRkyRPn5+SooKJDkr1q68MILwzpBAOipmkOlrlv6dvrj0agbAAAAQFs69E7luuuu07Rp03Ts2DGNHz8+eP0VV1yha665JmyTA4CeLNAoO7kL+ylJUgqhEgAAAIB26PA7lezsbGVnZ7e4bsqUKZ2eEADAz2X68jd2fwMAAABwdh0Kldxutx5++GGtW7dO5eXl8vl8LW7ft29fWCYHAD1Zjcec5W/BRt1UKgEAAABoQ4feqXzrW9/S22+/rW984xvq37+/LBZLuOcFAD1esKdSFy9/CzweoRIAAACAtnToncrrr7+uv//977rkkkvCPR8AQBO3p6mnkkmNutn9DQAAAEBbOrT7W69evdS7d+9wzwUAcBq3ST2VaNQNAAAAoD06FCo9+OCDWrx4sWpqasI9HwBAk+ZG3WZVKtGoGwAAAMDZdeidyqOPPqq9e/cqKytLQ4YMUUJCQovbN2/eHJbJAUBPVtMU6iTbunr3Nxp1AwAAADi3DoVKs2bNCvM0AACf5TJt97em5W8eQiUAAAAAZ9ehdypLliwJ9zwAAJ/hNn35G6ESAAAAgLPrUE8lSaqsrNRvfvMbLViwQBUVFZL8y96OHj0atskBQE/WvPzNpEolQiUAAAAAbejQO5Xt27ersLBQ6enpOnDggG699Vb17t1br7zyig4dOqQVK1aEe54A0OO4TNr9LTkYKtGoGwAAAMDZdahSad68ebr55pu1e/duORyO4PVXXXWV3nnnnbBNDgB6shqTeioFG3V7GmUYRpc+NgAAAIDY0aFQ6YMPPtDtt99+xvUDBgxQaWlppycFAJBcJi9/MwypxkO1EgAAAIDWdShUstvtcjqdZ1z/6aefqm/fvp2eFACguadRShdXKiUmxMlqaTkHAAAAAPisDoVKX/nKV/STn/xEDQ0NkiSLxaJDhw7phz/8ob761a+GdYIA0BN5fYZqG/xVQimOrg2VLBZLsDqKHeAAAAAAnE2HQqVHH31ULpdLffv2VW1traZPn65hw4YpNTVVP/3pT8M9RwDocU4Pc7q6Ubf/MWnWDQAAAKBtHfr4Oz09XWvXrtW///1vbdu2TS6XSxMnTlRhYWG45wcAPVIgVLLFWWWPNyNUimsxDwAAAAD4rJBDJZ/PpxdeeEGvvPKKDhw4IIvFory8PGVnZ8swDFkslkjMEwB6lGA/pS5e+haQEqxUIlQCAAAA0LqQlr8ZhqGvfOUr+ta3vqWjR49q7NixuuCCC3Tw4EHdfPPNuuaaayI1TwDoUarr/GGOGUvf/I/bFCp5CJUAAAAAtC6kj8BfeOEFvfPOO1q3bp0uv/zyFre9+eabmjVrllasWKGbbroprJMEgJ7GFdz5LcGUxw+ESix/AwAAAHA2IVUq/fGPf9QDDzxwRqAkSZ///Od1//336w9/+EPYJgcAPVVg2VmqneVvAAAAAKJTSKHS9u3bNWPGjLPe/sUvflHbtm3r9KQAoKdzmb78LdCom93fAAAAALQupFCpoqJCWVlZZ709KytLp06d6vSkAKCnqw426jZ3+RuVSgAAAADOJqRQyev1Kj7+7Esx4uLi1NjIGxAA6Kzg7m9mLX+zESoBAAAAaFtI71YMw9DNN98su93e6u319fVhmRQA9HTNjbrN3f2NRt0AAAAAziakUGnOnDnnHMPObwDQeWbv/kajbgAAAADnElKo9Pzzz0dqHgCA0wQadac4zFn+1txTiUbdAAAAAFoXUk8lAEDXMH/5W2D3NyqVAAAAALSOUAkAolDULH/zECoBAAAAaB2hEgBEocDyt2STG3XTUwkAAADA2RAqAUAUClQqpZrUUymF3d8AAAAAnAOhEgBEIbfJy98ClUp1DT41en2mzAEAAABAdCNUAoAoVF1v9vK35sd1e9gBDgAAAMCZCJUAIMp4Gn3yNPqrg1JNqlSyx8cpIc4iib5KAAAAAFpHqAQAUeb0EMesSiX/Y9OsGwAAAMDZESoBQJQJNMd2JFgVH2fey3SyjWbdAAAAAM6OUAkAoozL5CbdASnBSiV6KgEAAAA4E6ESAESZQKiU6og3dR6BpXdUKgEAAABoDaESAEQZV525O78F0FMJAAAAQFsIlQAgyjQvfzO3Uim4/M1DqAQAAADgTIRKABBloqWnUqBSieVvAAAAAFpDqAQAUcYdDJXMXf6WwvI3AAAAAG0gVAKAKFPd1FMpJUoadbP7GwAAAIDWECoBQJRh+RsAAACAWECoBABRhuVvAAAAAGIBoRIARJnqKNn9LdlGpRIAAACAsyNUAoAo4wr2VDJ3+Vugp1OgxxMAAAAAnI5QCQCiTLQsf0sNhkoNps4DAAAAQHQiVAKAKBMtjbrTmiqlqFQCAAAA0BpCJQCIMsFQyWFuTyVCJQAAAABtIVQCgCgTCHGiZflbbYNXDV6fqXMBAAAAEH0IlQAgihiGEaxUSouSRt0S1UoAAAAAzkSoBABRpMbjlddnSJJSTQ6VEuKsSrL5q6Vo1g0AAADgswiVACCKOJvCm3irRY4E81+im3eAo1IJAAAAQEvmv2MBAAQFwptUR7wsFovJs2mulnJSqQQAAADgM6IiVHr66ac1ZMgQORwO5efn6/33329z/KpVqzRy5Eg5HA6NHTtWr732WovbDcPQ4sWL1b9/fyUmJqqwsFC7d+8O3n7gwAHdcsstysvLU2JiooYOHaolS5bI4/FE5PwAoL0Cy8zMXvoWEKhUctZSqQQAAACgJdNDpZdeeknz5s3TkiVLtHnzZo0fP15FRUUqLy9vdfz69et1ww036JZbbtGWLVs0a9YszZo1Szt27AiOeeSRR/TEE09o+fLlKi4uVnJysoqKilRXVydJ+uSTT+Tz+fSrX/1KH330kX75y19q+fLleuCBB7rknAHgbJxNlUppifHnGNk1AuEWPZUAAAAAfJbpodJjjz2mW2+9VXPnztXo0aO1fPlyJSUl6bnnnmt1/OOPP64ZM2bovvvu06hRo/Tggw9q4sSJeuqppyT5q5SWLVumhQsXaubMmRo3bpxWrFihkpISrV69WpI0Y8YMPf/887ryyit13nnn6Stf+Yp+8IMf6JVXXjnrPOvr6+V0OltcACDcgsvf7NFRqZRGTyUAAAAAZ2FqqOTxeLRp0yYVFhYGr7NarSosLNSGDRtavc+GDRtajJekoqKi4Pj9+/ertLS0xZj09HTl5+ef9ZiSVFVVpd69e5/19qVLlyo9PT14yc3Nbdc5AkAonLWB5W/RVqlEqAQAAACgJVNDpRMnTsjr9SorK6vF9VlZWSotLW31PqWlpW2OD3wN5Zh79uzRk08+qdtvv/2sc12wYIGqqqqCl8OHD7d9cgDQAc2NuqOtUonlbwAAAABaio6Pwk109OhRzZgxQ9dff71uvfXWs46z2+2y2+1dODMAPVFzo+7oeHlOZfkbAAAAgLMwtVIpMzNTcXFxKisra3F9WVmZsrOzW71PdnZ2m+MDX9tzzJKSEl1++eWaOnWqnn322U6dCwCEQ3WwUXd0VCoFKqacVCoBAAAA+AxTQyWbzaZJkyZp3bp1wet8Pp/WrVungoKCVu9TUFDQYrwkrV27Njg+Ly9P2dnZLcY4nU4VFxe3OObRo0d12WWXadKkSXr++edltZresxwAguFNWpRUKgV2oaNSCQAAAMBnmf6uZd68eZozZ44mT56sKVOmaNmyZXK73Zo7d64k6aabbtKAAQO0dOlSSdJdd92l6dOn69FHH9XVV1+tlStXauPGjcFKI4vForvvvlsPPfSQhg8frry8PC1atEg5OTmaNWuWpOZAafDgwfrFL36h48ePB+dztgopAOgKzT2VTH95ltS8Cx09lQAAAAB8lunvWmbPnq3jx49r8eLFKi0t1YQJE7RmzZpgo+1Dhw61qCKaOnWqXnzxRS1cuFAPPPCAhg8frtWrV2vMmDHBMfPnz5fb7dZtt92myspKTZs2TWvWrJHD4ZDkr2zas2eP9uzZo4EDB7aYj2EYXXDWANC65p5K0bL8jUolAAAAAK2zGKQoHeJ0OpWenq6qqiqlpaWZPR0A3cSMZe/ok9Jq/f6WKbp0eN8OH8ftcStlaYokybXApWRbcoeOs7PEqaue+D9lpti1cWFhh+cTMW63lOI/T7lcUnLHzhMAAABAs/ZmHjQSAoAoEmzUHSWVSoGeSjTqBgAAAPBZhEoAEEWctYHlb6avTpbUvAzP0+hTfaPX5NkAAAAAiCaESgAQJXw+Qy5PoFF3dFQqpdibwy36KgEAAAA4HaESAEQJl6dRgS530VKpFGe1BIMlQiUAAAAApyNUAoAoEQhtbHFWORLiTJ5Ns+Yd4OirBAAAAKAZoRIARIlAaBNojh0tAk3DnbVUKgEAAABoRqgEAFEiENpESz+lACqVAAAAALSGUAkAokQgtImWfkoBzaESlUoAAAAAmhEqAUCUCIQ20RcqNS1/o1IJAAAAwGkIlQAgSgR7KkXt8jcqlQAAAAA0I1QCgCjhjNJKpbREKpUAAAAAnIlQCQCihDPYU4lKJQAAAADRj1AJAKJEtPdUYvc3AAAAAKcjVAKAKNEcKkVXpVJaU8jlrKVSCQAAAEAzQiUAiBLNjbqjq1IpI8kmSaqspVIJAAAAQDNCJQCIEs7a6OyplB5o1E2oBAAAAOA0hEoAECUCy9+irlKpKVSqrPGYPBMAAAAA0YRQCQCiRLT2VApUKrk9XjV4fSbPBgAAAEC0IFQCgChRWeuvBMpIiq5QKS2xeT5VLIEDAAAA0IRQCQCiQF2DV3UN/iqg00OcaBBntSi1aUkeoRIAAACAAEIlAIgCgSbYVouUao+unkpSc/UUoRIAAACAAEIlAIgCgbAmPTFBVqvF5NmcKdBXqaqGUAkAAACAH6ESAESBytNCpWiUkWiTRKUSAAAAgGaESgAQBQIVQOlJNpNn0rpA2FVZ4zF5JgAAAACiBaESAESBaK9USg/2VGo0eSYAAAAAogWhEgBEgUAFUEa0hkqBSqVaKpUAAAAA+BEqAUAUcEZ5pVIg7KKnEgAAAIAAQiUAiAKB5W8ZSdEZKrH7GwAAAIDPIlQCgChQFe2VSklUKgEAAABoiVAJAKJAZU10h0ppwZ5KhEoAAAAA/AiVACAKRH2lUqJNEpVKAAAAAJoRKgFAFKgK9lSymTyT1qUnNfdUMgzD5NkAAAAAiAaESgAQBSprPJKit1F3YPc3j9enugafybMBAAAAEA0IlQDAZD6fEfXL35JscYq3WiRJlbUek2cDAAAAIBoQKgGAyVyeRvmaVpRFa6hksVjYAQ4AAABAC4RKAGCyqqad3+zxVjkS4kyezdkFd4CrIVQCAAAAQKgEAKZrbtIdnVVKAYG+SlQqAQAAAJAIlQDAdNHeTykgML8qKpUAAAAAiFAJAEwXWE6WkWgzeSZty0jyz49KJQAAAAASoRIAmC4Q0qTFSqUSoRIAAAAAESoBgOkqaz2Sor+nUiBUCswXAAAAQM9GqAQAJgv0KIqVnkrs/gYAAABAIlQCANMFd3+L8lCpVzKhEgAAAIBmhEoAYLJgo+4oX/7WO9kuSTrpZvkbAAAAAEIlADBdrDTq7pPs3/2twl1v8kwAAAAARANCJQAwWWVg+VuSzeSZtK1XMFTyyDAMk2cDAAAAwGyESgBgssqapt3fYqRSqcFryFXfaPJsAAAAAJiNUAkATGQYRrBHUe/k6K5UciTEKckWJ8lfrQQAAACgZyNUAgATuT1eeRp9kqQ+KdEdKknNwRfNugEAAAAQKgGAiSpc/nDGkWBVki3e5NmcWyBUCswbAAAAQM9FqAQAJjrZtJNan2S7yTNpn96nNesGAAAA0LMRKgGAiSpipJ9SAMvfAAAAAAQQKgGAiWKlSXdAYAe4UzWESgAAAEBPR6gEACYKVCr1iZFQqVegUomeSgAAAECPR6gEACaKteVvfYI9lepNngkAAAAAsxEqAYCJAhU/vVNiI1Tq3dRQnEbdAAAAAAiVAMBEFcHd32IlVKJRNwAAAAA/QiUAMFHz8je7yTNpn+blb4RKAAAAQE9HqAQAJoq13d8CjbprPF7VNXhNng0AAAAAMxEqAYCJYm33tzRHvBLiLJKoVgIAAAB6OkIlADBJrcerGo+/2idWGnVbLBb1SmIJHAAAAABCJQAwzcmmJt22OKtS7fEmz6b9aNYNAAAAQCJUAgDTVJzWT8lisZg8m/brHWzWXW/yTAAAAACYiVAJAEwSa026A4KVSi4qlQAAAICezPRQ6emnn9aQIUPkcDiUn5+v999/v83xq1at0siRI+VwODR27Fi99tprLW43DEOLFy9W//79lZiYqMLCQu3evbvFmJ/+9KeaOnWqkpKSlJGREe5TAoB2qWgKZfrESD+lgEBT8VM1hEoAAABAT2ZqqPTSSy9p3rx5WrJkiTZv3qzx48erqKhI5eXlrY5fv369brjhBt1yyy3asmWLZs2apVmzZmnHjh3BMY888oieeOIJLV++XMXFxUpOTlZRUZHq6uqCYzwej66//nrdcccdET9HADibipitVLJLolE3AAAA0NOZGio99thjuvXWWzV37lyNHj1ay5cvV1JSkp577rlWxz/++OOaMWOG7rvvPo0aNUoPPvigJk6cqKeeekqSv0pp2bJlWrhwoWbOnKlx48ZpxYoVKikp0erVq4PH+fGPf6x77rlHY8eObfdc6+vr5XQ6W1wAoDNidvlbU2XV8WpCJQAAAKAnMy1U8ng82rRpkwoLC5snY7WqsLBQGzZsaPU+GzZsaDFekoqKioLj9+/fr9LS0hZj0tPTlZ+ff9ZjttfSpUuVnp4evOTm5nbqeAAQaHTdJ8ZCpaxUf6XS8eq6c4wEAAAA0J2ZFiqdOHFCXq9XWVlZLa7PyspSaWlpq/cpLS1tc3zgayjHbK8FCxaoqqoqeDl8+HCnjgcAzcvf7CbPJDRZaQ5JUpmT3d8AAACAnize7AnECrvdLrs9tt74AYhusbr8rV9aU6WSq14+nyGr1WLyjAAAAACYwbRKpczMTMXFxamsrKzF9WVlZcrOzm71PtnZ2W2OD3wN5ZgAYJaTTbu/ZcbY7m+ZKXZZLJLXZwSDMQAAAAA9j2mhks1m06RJk7Ru3brgdT6fT+vWrVNBQUGr9ykoKGgxXpLWrl0bHJ+Xl6fs7OwWY5xOp4qLi896TAAwg2EYKm/qSdQv1WHybEKTEGcN9oEqp68SAAAA0GOZuvxt3rx5mjNnjiZPnqwpU6Zo2bJlcrvdmjt3riTppptu0oABA7R06VJJ0l133aXp06fr0Ucf1dVXX62VK1dq48aNevbZZyVJFotFd999tx566CENHz5ceXl5WrRokXJycjRr1qzg4x46dEgVFRU6dOiQvF6vtm7dKkkaNmyYUlJSuvTfAEDPVF3fqLoGnySpb2rsLa3tl+rQCZdH5c56XZBj9mwAAAAAmMHUUGn27Nk6fvy4Fi9erNLSUk2YMEFr1qwJNto+dOiQrNbmYqqpU6fqxRdf1MKFC/XAAw9o+PDhWr16tcaMGRMcM3/+fLndbt12222qrKzUtGnTtGbNGjkczZUAixcv1u9+97vg3y+88EJJ0ltvvaXLLrsswmcNANLxan+T61R7vBJtcSbPJnRZaXbtPEalEgAAANCTWQzDMMyeRCxyOp1KT09XVVWV0tLSzJ4OgBizYe9J3fDr93ReZrLe/MFlYT++2+NWylJ/5aVrgUvJtuSwHv+HL2/XSxsPa94XRuj7VwwP67FD4nZLgQpTl0tKDu95AgAAAD1RezMP03oqAUBPFqjwicWlb5K/UkmiUgkAAADoyQiVAMAEgeVv/dJiq0l3QN+meZc5602eCQAAAACzECoBgAkCoVLflBitVGqqsCp3UqkEAAAA9FSESgBggvJgpVKMhkpNlUqB8wAAAADQ8xAqAYAJAr2I+sVoT6VAGHa8ul4+H/s9AAAAAD0RoRIAmKC8qRdRrDbqzkyxy2KRGn2GKmo8Zk8HAAAAgAkIlQDABKVNvYj6p8dmo+6EOKv6JNskSWX0VQIAAAB6JEIlAOhi7vpGVdc1SpKy0xNNnk3H9UulrxIAAADQkxEqAUAXC1QppdjjlWKPN3k2HZeVxg5wAAAAQE9GqAQAXay0yh/CZMfo0reAYKWSk0olAAAAoCciVAKALnasKrb7KQUEKpVKqVQCAAAAeiRCJQDoYoHG1llpMR4qNYViNOoGAAAAeiZCJQDoYseqaiXFfqVSToa/yfiRU7UmzwQAAACAGQiVAKCLdZeeSgObQqWSSkIlAAAAoCciVAKALhboqZQd48vfApVKzrpGVdc1mDwbAAAAAF2NUAkAutjRpsqeAb0STZ5J5yTb45WRlCBJKqmkrxIAAADQ0xAqAUAXctc3qrLGX9UzICO2QyVJyklnCRwAAADQUxEqAUAXClQppTnilepIMHk2nReotjpCqAQAAAD0OIRKANCFjpyqkSQN7JVk8kzCYwDNugEAAIAei1AJALrQ0VPdo59SQCBUOlxRY/JMAAAAAHQ1QiUA6EKBZWIDu0molNvbX3FFqAQAAAD0PIRKANCFgpVK3aBJtyQNagqVDhEqAQAAAD0OoRIAdKEjp7pXpdKgPv5Q6VRNg5x1DSbPBgAAAEBXIlQCgC4UqOgZ1DvZ5JmER4o9Xn2SbZKkQyepVgIAAAB6EkIlAOgiVbUNqnB7JEmD+3SP3d+k5mollsABAAAAPQuhEgB0kUAlT2aKXcn2eJNnEz70VQIAAAB6JkIlAOgiB066JUlDulGVkiQNbgqVDjadHwAAAICegVAJALpIoJJncJ/u0U8pIK+v/3z2HSdUAgAAAHoSQiUA6CIHTvhDl+7UT0mShvZNkSTtJVQCAAAAehRCJQDoIoHlb90tVMrL9FcqnXDVq6q2weTZAAAAAOgqhEoA0EUClTznZaaYPJPwSnUkKCvNLknad9xl8mwAAAAAdBVCJQDoAhVujyrcHknS0H7dq6eS1ByU0VcJAAAA6DkIlQCgC+wp91fwDMhIVJIt3uTZhF8gKNtLpRIAAADQYxAqAUAXCIRKw/p1r6VvAcOamnV/WkaoBAAAAPQUhEoA0AUCFTzdNVQa2T9NkvRJqdPkmQAAAADoKoRKANAFunul0sjsVEnSkVO1qq5jBzgAAACgJ+h+jT0AIAoFKnhGZHXPUCkjyabsNIdKnXX6tKxakwb3NntKACKstKpOf958RO/tO6kTLo96JydoypA+un7yQOVkJJo9PQAA0AUIlQAgwk666lXmrJfFIo3MTjN7OhFzfnaqSp11+vgYoRLQnXkafXrqzd1a/s4+eRp9LW77956Teuqt3brtc+fpritGyBZPUTwAAN0ZoRIARNjHx6olSUP6JCvZ3n1fdkf2T9Xbnx7Xx8foqwR0Vydd9brt95u06eApSdLkwb0068IBGtgrUSWVdXp161EV76/Q02/t1Ya9J/XbORepV7LN5FkDAIBI6b7vbgAgSuw8ViVJGtU/1eSZRNaYnHRJ0odHq0yeCYBIOOmq19eefU+7y11KdcRr6bVjdfXY/rJYLMExX88fpDU7jmn+y9u1+VClvv6bYr34rXyCJQAAuilqkgEgwnaW+Ct3RvfvvkvfJGn8wAxJ0sfHnKpv9Jo7GQBhVVXToG/89n3tLncpO82hv3znEn1pXE6LQClgxpj+euU7U5WZYtfHx5y68TfFctLAHwCAbolQCQAiLFC5Mzqne4dKub0TlZGUoAavoV2l1WZPB0CYeH2GvvPiJu085lRmik1/uDX/nDtZDuuXqpW35Sszxa6dx5ya99JW+XxGF80YAAB0FUIlAIigqpoG7T3ultRcydNdWSwWjR3gXwK37QhL4IDu4vF1u/XvPSeVmBCnFd/M19C+7dvFcli/VD1382TZ4q3658fl+uU/P43wTAEAQFcjVAKACNp2pFKSNLhPkvqk2M2dTBeYkJshSdpy6JS5EwEQFu98elxPvrlbkvRf144JueJy3MAMLb1mrCTpyTf36K1d5WGfIwAAMA+hEgBE0JZDlZKaw5bubvKQ3pKkDw5UmDwTAJ1VWlWnu1/aKsOQbpgySNdcOLBDx/nqpIG6qWCwJOm+Vdt10lUfzmkCAAATESoBQARtOeyv2OkpodKkwb1ktUiHK2p1rKrW7OkA6KAGr0/f++NmVbg9Gt0/TUu+PLpTx3vgqlEakZWiE656/fDPH8ow6K8EAEB3QKgEABHS4PXpg/3+ip2Lmip4ursUe7wuyPH3VXp/P9VKQKz6xRu79MGBU0qxx+u/b5woR0Jcp47nSIjTstkXyhZn1T8/LtOL7x8K00wBAICZ4s2eAAB0Vx8erZLb41V6YoJG9+/eO7+dbkpeb314tEob9p7UzAkDzJ5Ou5xw1evT0mqVVdepqsa/9XmSLV6Jtjj1SbFpYEaSstMdssXzWQy6v3/uLNOv3t4nSXrkunEakpkcluOOzknT/Bnn66G/f6wH/7ZTF5/Xp91Nv81mGIZOuj0qd9YrzmpRki1OORmJirNazJ4aAACmIlQCgAjZsPekJCk/r7esPeiNx6XDM/Xbd/fr7U+PyzAMWSzRd+6GYWj93pN6fccxvfXJcR2tPPdSPYtFykp1aECvROVkJConw6GBGf4/9062KSPJpvTEBKU54hUfR/iE2HS4okb3rtomSbp56hBdNbZ/WI//zUvy9Naucv17z0nd89JW/fmOqUqI0udLmbNOf91Wond2n9DGAxWq8Xhb3G6Pt2pkdqqmj+irGWP6h9zEHACA7oBQCQAiZP3eE5KkgqF9TJ5J17r4vD6yx1t1rKpOn5a5dH52qtlTCmrw+vSnjYf123f3a99xd/B6i0Ua3DtJA3slKT0xQbJINfWNcnu8OlFdr6OVtapv9KnUWadSZ502HWx7d7tUe7zSkxLUJ9mmzBS7+qbaNbhPskZkpWhEVqoG9kqMyrANPZun0ac7X9ysqtoGjc/N0ANXjQr7Y1itFv3i+vEq+uU72n6kSk+u2615V54f9sfpjB1Hq/TUm3u09uMyeX3NvZ8sFqlPsk2GIVXXN6q+0adtR6q07UiVnnhzjy4clKFbLz1PMy7I7lEfJAAAejZCJQCIAGddg4r3+XsKXXZ+P5Nn07UcCXG6+Lw+evvT43prV3lUhEqGYegfH5Xp4dc/1oGTNZL8/Z++PL6/vjA6S/l5fZRsP/uPRMMwdMLl0dHKWpU0XY5W1uroqVqVVNXqlLtBVbUNctU3SvK/4ayub9SRU61XQGWl2XXJ0EwVjcnWZef3lT2+c/1qgHB46O87te1IldITE/TUDRdGbLln//RE/fSasfreH7foqbf2aPr5/TRpcK+IPFYoSqvq9ODfdurvHx4LXjd5cC/NGJOtS4Zl6ry+ycHnqs9n6FBFjTYdPKV/fFSqf+06ri2HKvWdP2zWBTlp+n9Xj9LUoZlmnQqiWFVNg/53e4ne23dS2w5XylXfKK/P0KDeSRrdP01fGJ2ly0f2i9oKPgD4LIvB9hsd4nQ6lZ6erqqqKqWlUe4MoKW/bS/RnS9u0Xl9k/XmvZd1+eO7PW6lLPX3KnEtcCnZFp6eKO31+w0HtOjVjzQ+N0OvfveSyD2Q2y2lNPVkcbmk5DPPs7SqTote3aG1O8skSZkpNn3nsmG6fvJApToSwjqdRq9PzrpGVdZ4VFnboJMuj0646lXmrNPe427tLqvW3uMuNXibf/SmOeJ1/eRczb1kiAb2SgrrfID2eumDQ/rhnz+UJP12zmRdMSor4o95z0tb9ZctRzW4T5L+/v1LldJGsBtpa3aU6v5XtquypkEWizRrwgB9e/rQdofi5dV1+v2Gg3rh3wdU3RQuX3vhAC358gVKTwrv6wxiU5mzTk+s260/bz6iugZfm2MzU+y67XN5uqlgSKeb5ANAR7U38yBU6iBCJQBtuWvlFr26tUS3fe68iCwhORezQ6Xj1fXK/69/ymdI/zf/cuX2jlBYco5Qae3OMt37p61y1jUqIc6i2z83VN++bKipb17rGrzadPCU3vqkXH/dXqIyZ70kKc5q0fWTBuqeL4xQVprDtPmFk6u+UQ2NPiXEW5Vsi2PJX5TadLBCNzxbLI/Xp3lfGKHvXzG8Sx7XWdegLy77Px2trNXsybn62XXjuuRxT1fjadRP/rpTKz84LEkaOyBdP79+nEZmd+x3u5Ouei375279ofigfIbUL9WupdeO7ZKQDtGp0evTb97dryfX7Za7qS/XyOxUXT22vyYN6aW+KXZZLNKecrc2HqjQ6q1HdcLlkSQNyEjUg7Mu0OdH8v0DoOsRKkUYoRKAs6nxNGryQ/9UjcerP99RoEmDe3f5HMwOlSTp679+T+v3ntT8GefrO5cNi8yDnCVUavD69LPXP9Fv3t0vSRo/MF2PXDc+Kpbinc7rM/TOp8f123f36909/h5cjgSrbr30PN1x2VAl2WJrlfqu0mr98+MyvfPpce0ud6nC7QneluqI18jsVF00pLdmjMnW2AHphExRYFdptf7jVxtUVdugoguy9MyNk7q0H9B7+07qhl+/J8OQls2eoFkXdt2OkduPVOrulVu174RbFov07elDdU/hiLAs+9t08JTue3lbsHfbf148SAuvHk3VSQ9TXl2n7/9xi95rWg5/4aAMzS8aqYvP633W178Gr09/2XJUj76xK/ihw+zJuVr05dGmfiACoOchVIowQiUAZ/Pq1qO6a+VWDeqdpLfvu8yUN87RECr96YPDmv/n7RrcJ0lv3XtZZN6othIqHa2s1Z0vbtaWQ5WSpFum5emHM0ZGrD9MuGw6WKGf/v1jbW6a98BeiVp67VhdOryvuRM7B6/P0GsfHtPv1h/QxnM0MD/dsH4pmnvJEF174UAl2nijbYYDJ9z6j19tUHl1vS4clKH/uSW/zd5ikfLoG7v05Jt75EiwavV3L+lwlVB7eX2GfvXOXj32xqdq9BnKTnPosdnjw94Dqa7Bq0ff2KVf/58/3B7dP03/feNEDcns+tdjdL3391fozhc3q7y6Xsm2OC35ygW6buLAdv8srPX4v39+++/9Mgz/a+by/5ykYf1SIjxzAPAjVIowQiUAZ3Pjb97Tv/ec1PevGK55XxhhyhyiIVSq8TQq/6frVF3fqP+5JV/Thkegae1nQqV1h1ya96dtqqptUKoj3r/L1AXZ4X/cCDEMQ2t2lOqhv3+so5X+Jt/XTxqohVePjrq+LIZhaO3OMv3ijV36tMwlSYq3WjR9RF9dNrKfJg7K0KDeSUqyxau+0atDFTXacdSpNz8p01ufHFdtg38ZSFaaXfcUjtB1kwYqnsa0XWbr4Urd8sIHOun26PysVL10+8XKSLKZMhevz9DNz7+v/9t9QkP6JOmV71yi3smRmUtJZa3m/WlrsHLkqrHZ+q9rxkb03N/+9LjueWmrKtwepdjjtfTasfry+JyIPR7MZRiGfv1/+/SzNbvk9Rka3i9Fz3QiDHpv30ndvXKrSp11SrHH6xfXj9OMMf3DPGsAOBOhUoQRKgFozadl1bryl+/IapHevi+CvYTOIRpCJUla8uoO/W7DQX1uRF+t+OaU8D/AaaHSL/68UU+9XypJGjcwXU9/faJp//6d5apv1C/+sUu/23BAhiH1TbXroVljoiYgO3DCrSX/+5He/vS4JH+z8bmX5OnG/EHq145+UNV1DfrTxiN67t39wfBseL8UPXD1KF3ew3ZL7GqGYejPm49q4eoPVdfg0+j+aXrhmxepX6q5fbwq3B59+cl3dbSyVhcOytCL37o47BVsr314TAte+VBVtQ1KssXpR1++QNdPHtgl1aSlVf5lUO8f8IdZN+YP0qIvsRyuu3HWNWj+qu1a85H/Z9HMCTn6r2vGdroC8Hh1ve58cbOK9/u/f26ffp7uu/J8gngAEUWoFGGESgBaM//lbfrTxiOacUG2ln9jkmnziJZQ6dDJGl3+6L/k9Rla/d1LNCE3I7wPcFqoNOqel1Vrc+jmqUO04KqRwa2/Y9mmgxWa//J27W3qy/KV8Tn60VcuiFgVx7nUNXj13//aq+Vv75Wn0SdbnFXfujRPt08fqvTE0Cup6hu9+v2Gg3rqrT2qrGmQJF0xsp8WfWk0S4Qi4NOyai197WO9tcsfBn5uRF/9940To6ZPy57yan31GX9/p8vP76tn/nNSWEKX6roG/eSvO7Vq0xFJ/tD58a9dqLwu/h5r9Pr0y39+qqff2ivJ36z5yRsu1PCs6Or1ho75+JhTd/zPJh04WaOEOIsWf2m0/vPiwWELLRu9Pj18Wq/AqUP76IkbLlRmij0sxweAzyJUijBCJQCfte+4S1/45Tvy+gzTGnQHREuoJEn3/mmb/rz5iC4a0kt/ur0grFUBa97bqxkF/ibgU+5frR9/fYq+OLZ7LQuoa/DqyTd3a/nb++T1GcpMsemhWWO6fPnDW7vKteTVj3SookaSdOnwTP1k5piwvDGvqm3Q02/t0XPv7lejzwiGVd+9fJgpPX7MZBiGPimt1r/3nNDHx6q1p7xa5dX1qqxpkNdnyGqV0hMT1DfVrr4pduVkJGpgryTl9vZ/HZCRqLTEeCVYrXLWNaiksk4bD1Zo7c4y/d9ufzN4W5xV93xhhG69NC/qKh02HazQ139drPpGnwrO66Nnb5qkVEfHl36+8+lx3f/n7SqpqpPFIt0xfaju+cIIJZh43m9/elz3/mmrTrg8ciRYtfhLF+iGKbk0ro9hL286Eqz+G5CRqKdvnBj+D1Ga/G17iea/vF01Hq+y0uz67xsnmvr7BoDui1ApwgiVAHzWbSs26o2dZbr8/L56fm4ElnqFIJpCpZLKWl3x6NuqbfDqka+O039clNvpY1bWePTTv3+sv23Yo49/eZ0k6cihcg3Mje6m1p2x/UilfrBqW7B/0dXj+mvJl0a3a7lZZ5RU1uonf90ZXM6RnebQ4i+P1hfHZIf9TfCecpd+8redeqdpWV12mkMLrhqpr4zP6dZvuH0+Q+/tO6mXNx/RO58eD24nHm5Wi1R0QbbuvXKEhvWL3uqY9XtO6NYVG+X2eDWqf5qevOHCkPvRnHDV65E1n+hPG/3VSbm9E/Xz68br4vP6RGLKITteXa97V20Lfq/PuCBbD10zhqqTGFNd16DFr36kv2w5KkmaPqKvls2eoF4RribdU16t23+/SXuPuxVvteiBq0Zp7iVDuvXrJICuR6gUYYRKAE73+ofHdMcfNiveatHfvj8t4rsXnUs0hUqS9Ku392rp658oMSFO/3vnJR1e7mEYhv66/Zh+8tePdMLlUVJDnXY+5g+VAru/dWf1jV49uW6Pnnl7r7w+Q8m2ON35+eH65rQhYV/uV9fg1QvrD+iJdbtV4/EqzmrRNy8ZorsKR0R0uVSgAfiDf9+pwxX+fktT8nrrR1++QKNzutfP2yOnavTypiN6edMRHTlVG7w+MSFO+ef11sRBvTS8X4pyMhLVK8mm+DiLvD5DlTUNOu6qU7mzXkcra3XkVK0OV9ToyKlalVXX6fTf7NITEzRuYLouPq+PvjwuR4P6xEafsQ+PVOnm59/XSbe/mue+opG6MX/QOZfDVbg9+v2Gg3r2nb1ye/zN4G+eOkTzZ5yvJFt0Vb35fIZ+++5+PfKPT9TgNZSemKD/d9WoLuvzhM7ZdPCU7n5piw5X1Mpqke4uHKE7Lx8WmZ1OW+Gqb9T9f96uv20/JskfaC29dqxyMhK75PEBdH+EShFGqAQg4OBJt7785Lty1jXqu5cP1X1FI82eUtSFSl6foW/8tljr955UTrpDL91eEHIT7W2HK/WzNZ9o/d6TkvzbK/9sxnmadMEg/4AeECoF7DhapYWrd2jr4UpJ0uA+Sfr+54dr5oScTi9n8jT69NLGw3py3W6VV9dLkiYN7qWHZo3RqP5d9/OursGrX7+zT0//a4/qGnyyWqQb8wfr7sLh6hPD1Rx1DV7946NSrdp4RP/eeyIYAKXa4/XlCTn68rgcTRrcS7b4jv0/Nnh9qm3wytPoU6ojPqZ7i5VW1ekHq7bp3T3+ZXtZaXbdmD9Yl53fV6P7pyk+ziqfz9AJV72K91fozU/K9fcPj8nT6JPk75206EujddGQ6F4atONolea/vF07jzkl+UPUBV8cqQsH9TJ5ZmiNs65Bj73xqVZsOCCfIQ3ISNTjX5ugySZ8nxmGod+tP6D/ev0TeRp9SrHH64GrRulrF+V2WbgFoPsiVIowQiUAknSsqlazf/WeDlXU6MJBGXrptoIOvxkMp2gLlSR/BcF1y9dr33G3MlNseuw/JuhzI9perubzGXpn93H9bv2BYHNhW5xVd35+mG6ffp7s9XXBRt09KVSS/P82q7ce1cOvfxIMf3J7J+rG/MG6btLAkJfRlDvr9KeNh/WH4kM6VlUnyf9mad4XRuiaCweY9gblaGWt/uu1j/X3pk/j7fFW/cfkXH3r0jwN7hMb/98+n6FNh05p9Zaj+uu2EjnrGoO3TR3aR/8xOVdFF2SHfbez7sDnM/THDw7pqTf3BL8vA1Id8apv8Mnj9bW4fsyANN32uaH60tj+MfPGutHr03P/3q9frt2t2gZ/hVXhqH665wsjdEFOusmzg+SvFP1j8SE99dZenXD5X3OvuXCAfjzzAqV1ou9XOOwpd2n+y9u0+VClJP9z4P4Zo3TJsD5UvQHosJgKlZ5++mn9/Oc/V2lpqcaPH68nn3xSU6acvR/JqlWrtGjRIh04cEDDhw/Xz372M1111VXB2w3D0JIlS/TrX/9alZWVuuSSS/TMM89o+PDhwTEVFRX63ve+p7/+9a+yWq366le/qscff1wpKe1bs0+oBOCDAxW688XNKnPWa1DvJK36doGyItzfpr2iMVSS/JUH33zhg+An8pcOz9S1Ewfogpx0DchIVKPX0Al3vT4+5tR7+05q7c4ylTn9v7xbLdI1Fw7U3YXDm6ucTtv9raeFSgHu+kat2HBQv/m/fTrp9vfiibNadNGQXrr8/H4an5uhUdlpSkuMD765MAz/EqpdZdXadPCU/rWrXBsPngpWzfRNtet7nx+m2RflRk2ly/q9J/Tw659o+5EqSf7vh0uH99U1Fw7QlRdkRd3SJsMw9FGJU3//8Jj+d2uJjlY2L28bkJGo6yYN1HWTBoZcsddTeRp9enXrUa3dWab1e0/KVd8czFks0oh+qfrciEzNGNNfEwdlxOwb6SOnarTsn7v1yuYj8jU9Hy8a0ktfzx+kL47pH5bd8KKBu75Rx6rqVFXrkbO2UVW1DXLVN+r0NyVxFovSEuOVnpig9MQE9UqyKSvN0eUf3JRX12nl+4f1h+KDwZ9HeZnJ+snMC3Tp8Ojp4+f1GXph/QH9cu2nwefH+NwM3TItT0UXZEXNazmA2BEzodJLL72km266ScuXL1d+fr6WLVumVatWadeuXerXr98Z49evX6/Pfe5zWrp0qb70pS/pxRdf1M9+9jNt3rxZY8aMkST97Gc/09KlS/W73/1OeXl5WrRokT788EPt3LlTDof/Dd8Xv/hFHTt2TL/61a/U0NCguXPn6qKLLtKLL77YrnkTKgE9k2EY2nnMqefePaBXthyRYUjD+6Xo+bkXaWCv6HlzGK2hkiTVeBr183/s0ooNB+X1nftHUKo9XtdNHqibCoacudMYoVJQrcerv24r0R/eP6RtTcviTudIsCrNkSCf4X9DF6iGON2kwb30jYsH64tjs6PyDYhhGHpvX4V+9c5e/aupck2Skmxxmjq0jy4ZlqmpQzM1rF+K4rq4QsXnM7TvhFvbDldq/d6Temf3cR1vqiCTpBR7vGaMydY1Fw5QwXl9YqaCJhr5+0p5dKqmQY4Eq7LSHKbu5hYJe8pdWvbPT/X6jtLg62SqPV6XDMvU5SP76pJhmRqQkRiV4ZlhGDpV06Cjp2p1tNLf6+toZW3T3/2XypqGDh3bYlFw18MBGYnKyXA0fW2+9EpK6NS/i9dn6JNSp97bV6G1O0v1/v6KYMCXnebQ964Ypv+YnBu133MnXfV68s09evH9Q8GloGmOeH1xTH99bkRfXXxe75heQgyg68RMqJSfn6+LLrpITz31lCTJ5/MpNzdX3/ve93T//fefMX727Nlyu93629/+Frzu4osv1oQJE7R8+XIZhqGcnBzde++9+sEPfiBJqqqqUlZWll544QV97Wtf08cff6zRo0frgw8+0OTJkyVJa9as0VVXXaUjR44oJyfnnPMmVAK6vwavT1W1DSqprNX+E25tPVypf+85Edx9S5KunzRQi788ulNbXkdCNIdKAYcrarTyg0N6d89J7St3qbrpk1VHglXnZ6dp7IA0XTEyS1OH9Tl7wEGo1KrDFTX658dl2rD3pHYcrVLJZ5YNBfRPd2jioF66aEgvXXlBdkw1eD1wwq2/bDmq1VuP6uDJmha3JSbEaUR2qkZmpWpgr0RlpzvUPz1RWWl2pTjilWyPV1JCXLv7T/l8huoavXLVNeqEy6OT7nqddHl0tLJWB064deCkW58cqw5+D58+j0uHZ2rmhAG6YlS/blNlgq5TWlWnVRsPa+UHh1tUu0lS72SbLshJ0/lN3+cDeyUpK80RrOxJdcSHJbwMfP/XeryqbfCqqrZBp9wNqqjx6JTbo5Nuj0qralVSWaeSylqVVNWqrsF3zuOm2uPVK9kWrEZKscfLeloY1OA15KxrkLO2QVW1Dapwe1TfeO7jOhKswdCpX2rzv0daYrySbfGSRbJIslgs8jT6VFnrUVVNg45U1mrfcbf2n3CdMf9oD9xbc8JVr99vOKiXPjisUmfLnwEjslI0IitVw/ulakhmkvqm2tU3xa7MFLvSExMIvQFIipFQyePxKCkpSS+//LJmzZoVvH7OnDmqrKzUq6++esZ9Bg0apHnz5unuu+8OXrdkyRKtXr1a27Zt0759+zR06FBt2bJFEyZMCI6ZPn26JkyYoMcff1zPPfec7r33Xp06dSp4e2NjoxwOh1atWqVrrrnmjMetr69XfX3zJ45Op1O5ubkxHSp947fFqvWc+Un16drzzdGeb6H2HacdY9pxnPYcKHzzacdjtec4YTr3cD2du/Tc2zWf8PyftmeQzzDkqvfKVd9w1l+KbfFWFY7qp9s+N1QTcjPa88hdLhZCpdMZhiG3xyt7vDW0T38Jldql1uPV8ep6OesaFGe1KDEhTtnpjm4RcgSWmf17zwm9u+eEPjhQ0a43tJL/zWdiQpwsFov876EssjS94TTkb6rdWs+eto43JiddEwf30vQRfTV5SK+YeQOK6ObzGdpRUqW3Pjmut3aV68OjVees9LRY/MFmQpz/ddUWZ1FC02ts4HvcMAwZhv/PvuCfDdU3+FTX4FVdCN//n5WZYteAXokamJHo/9rLH/QMaPoa6ocxhmGowu1RSWWdjlbW6GhTiHX0VK2OVdXqaGVdsNdRZ6XY4zV5SC9NG5apoguyY3qZqtdnqHjfSa1t+qDhk9Lqc97HHm+VIyFOjgT/V1ucVVZL0+tj0+tlq3/vgvMBYsl/TM7Vf1yUa/Y0Oqy9oZKpDQhOnDghr9errKysFtdnZWXpk08+afU+paWlrY4vLS0N3h64rq0xn11aFx8fr969ewfHfNbSpUv14x//uJ1nFhu2HKps0ZMAQOv6pdo1qHeSxgxI14WDMnTZ+f2UnhhdlUmxzmKxRHSb+p4u0RYXM1vJh8pisWjMgHSNGZCu26cPlddn6MBJtz4+5tTuMpeOVdXqWFWdSqvqVF5dL3d9oxqb3ozXNfjaHUBJ/j5OvZNt6pNsV2aqTf1SHcrLTNaQzGQN65uiEVkpnd59D2iN1WrRuIEZGjcwQ3cVDlddg1e7Squ1o6RK+467dfRUrQ6fqtEJV72qav0fihiGVOPxSmr7A8RQ2OKtykhMUO9km3ol2dQ72aaMpAT1b6oGzGlakpad7gh7oGqxWNQnxa4+KXaNHdh68/L6Rq9Kq+p0tNJfOVVeXRfs2eSsbVBtg9cfpMn/wVdCnFUZSQnKSExQVppDQ/sl67zMFOX2TuryJbSREme1aOqwTE0dlinJX8G07XCl9pS7tKfcpUMV/u+bEy6Pqmr9yxLrG32qb/SpqratIwM4l0uannfdHb/Bt9OCBQs0b9684N8DlUqx7JezJ7Srn0l7lqW358due9a3t+84YRrTnkeLxXNvx5HC9X/avn+frptPu/6dzzHEIinJFq9Uh/+SbI+P2r4JAM4UZ7VoaN8UDe3b+sYbhmHI4/Wppt4rV32j6hq8Las0DP+fLRY1fVIfJ0fwU/u4bvNGE7HNkRCn8bkZGn+Watn6Rv8ytTqPv9Ko4bRLfaNPMvw/My2nVZycXq0XqFRJbPq+T0yIkz3eGvXLouzxcRrcJzlmdoY0Q2aKXVeMytIVo7LOuM3T6JOzriFYpeb/6vVXqxmSr+n1sfk102h6zVS73lMg2vF/GG7D+rVvE7BYZ2qolJmZqbi4OJWVlbW4vqysTNnZ2a3eJzs7u83xga9lZWXq379/izGB5XDZ2dkqLy9vcYzGxkZVVFSc9XHtdrvs9u7V1O4Lo8/8YQIAQHdmsVhkj4+TPT5OvZJtZk8HiAh7fJz6pbL0EqGxxVuVSRNvACEy9eN3m82mSZMmad26dcHrfD6f1q1bp4KCglbvU1BQ0GK8JK1duzY4Pi8vT9nZ2S3GOJ1OFRcXB8cUFBSosrJSmzZtCo5588035fP5lJ+fH7bzAwAAAAAA6K5MX/42b948zZkzR5MnT9aUKVO0bNkyud1uzZ07V5J00003acCAAVq6dKkk6a677tL06dP16KOP6uqrr9bKlSu1ceNGPfvss5L8n0DefffdeuihhzR8+HDl5eVp0aJFysnJCTYDHzVqlGbMmKFbb71Vy5cvV0NDg+6880597Wtfa9fObwAAAAAAAD2d6aHS7Nmzdfz4cS1evFilpaWaMGGC1qxZE2y0fejQIVmtzQVVU6dO1YsvvqiFCxfqgQce0PDhw7V69WqNGTMmOGb+/Plyu9267bbbVFlZqWnTpmnNmjVyOBzBMX/4wx9055136oorrpDVatVXv/pVPfHEE1134gAAAAAAADHMYoRrD/Iepr3b6wGAGdwet1KW+psDuha4lGzrpk1L3W4ppakJosslJXfT8wQAAAC6UHszD7Y0AgAAAAAAQMgIlQAAAAAAABAyQiUAAAAAAACEjFAJAAAAAAAAISNUAgAAAAAAQMgIlQAAAAAAABAyQiUAAAAAAACEjFAJAAAAAAAAISNUAgAAAAAAQMgIlQAAAAAAABAyQiUAAAAAAACEjFAJAAAAAAAAISNUAgAAAAAAQMjizZ5ArDIMQ5LkdDpNngkAnMntcUt1/j87nU55bV5zJxQpbnfzn51OydtNzxMAAADoQoGsI5B9nI3FONcItOrIkSPKzc01exoAAAAAAAARcfjwYQ0cOPCstxMqdZDP51NJSYlSU1NlsVjMno7pnE6ncnNzdfjwYaWlpZk9HaDH4rkIRA+ej0B04LkIRAeei7HFMAxVV1crJydHVuvZOyex/K2DrFZrm2ldT5WWlsYLBBAFeC4C0YPnIxAdeC4C0YHnYuxIT08/5xgadQMAAAAAACBkhEoAAAAAAAAIGaESwsJut2vJkiWy2+1mTwXo0XguAtGD5yMQHXguAtGB52L3RKNuAAAAAAAAhIxKJQAAAAAAAISMUAkAAAAAAAAhI1QCAAAAAABAyAiVAAAAAAAAEDJCJQAAAAAAAISMUAlt+ulPf6qpU6cqKSlJGRkZrY45dOiQrr76aiUlJalfv36677771NjY2GLMv/71L02cOFF2u13Dhg3TCy+8cMZxnn76aQ0ZMkQOh0P5+fl6//33I3BGQPfG8wgIr3feeUdf/vKXlZOTI4vFotWrV7e43TAMLV68WP3791diYqIKCwu1e/fuFmMqKip04403Ki0tTRkZGbrlllvkcrlajNm+fbsuvfRSORwO5ebm6pFHHon0qQExZenSpbrooouUmpqqfv36adasWdq1a1eLMXV1dfrud7+rPn36KCUlRV/96ldVVlbWYky4fm8FeqpnnnlG48aNU1pamtLS0lRQUKDXX389eDvPw56HUAlt8ng8uv7663XHHXe0ervX69XVV18tj8ej9evX63e/+51eeOEFLV68ODhm//79uvrqq3X55Zdr69atuvvuu/Wtb31L//jHP4JjXnrpJc2bN09LlizR5s2bNX78eBUVFam8vDzi5wh0FzyPgPBzu90aP368nn766VZvf+SRR/TEE09o+fLlKi4uVnJysoqKilRXVxccc+ONN+qjjz7S2rVr9be//U3vvPOObrvttuDtTqdTV155pQYPHqxNmzbp5z//uX70ox/p2Wefjfj5AbHi7bff1ne/+1299957Wrt2rRoaGnTllVfK7XYHx9xzzz3661//qlWrVuntt99WSUmJrr322uDt4fq9FejJBg4cqIcfflibNm3Sxo0b9fnPf14zZ87URx99JInnYY9kAO3w/PPPG+np6Wdc/9prrxlWq9UoLS0NXvfMM88YaWlpRn19vWEYhjF//nzjggsuaHG/2bNnG0VFRcG/T5kyxfjud78b/LvX6zVycnKMpUuXhvlMgO6L5xEQWZKMv/zlL8G/+3w+Izs72/j5z38evK6ystKw2+3GH//4R8MwDGPnzp2GJOODDz4Ijnn99dcNi8ViHD161DAMw/jv//5vo1evXsGfm4ZhGD/84Q+N888/P8JnBMSu8vJyQ5Lx9ttvG4bhf+4lJCQYq1atCo75+OOPDUnGhg0bDMMI3++tAFrq1auX8Zvf/IbnYQ9FpRI6ZcOGDRo7dqyysrKC1xUVFcnpdAbT6g0bNqiwsLDF/YqKirRhwwZJ/mqoTZs2tRhjtVpVWFgYHAOgbTyPgK63f/9+lZaWtnjepaenKz8/P/i827BhgzIyMjR58uTgmMLCQlmtVhUXFwfHfO5zn5PNZguOKSoq0q5du3Tq1KkuOhsgtlRVVUmSevfuLUnatGmTGhoaWjwfR44cqUGDBrV4Pnb291YAzbxer1auXCm3262CggKehz0UoRI6pbS0tMULgqTg30tLS9sc43Q6VVtbqxMnTsjr9bY6JnAMAG3jeQR0vcBzq63nXWlpqfr169fi9vj4ePXu3fucPydPfwwAzXw+n+6++25dcsklGjNmjCT/c8Vms53RA/Szz8fO/t4KQPrwww+VkpIiu92ub3/72/rLX/6i0aNH8zzsoQiVeqD7779fFoulzcsnn3xi9jQBAACAM3z3u9/Vjh07tHLlSrOnAvRI559/vrZu3ari4mLdcccdmjNnjnbu3Gn2tGCSeLMngK5377336uabb25zzHnnndeuY2VnZ5+xu1Sgu392dnbw62c7/peVlSktLU2JiYmKi4tTXFxcq2MCxwDQtszMTJ5HQBcLPLfKysrUv3//4PVlZWWaMGFCcMxnm+U3NjaqoqLinD8nT38MAH533nlnsOH9wIEDg9dnZ2fL4/GosrKyRZXE6T8Hw/F7KwDJZrNp2LBhkqRJkybpgw8+0OOPP67Zs2fzPOyBqFTqgfr27auRI0e2eTm9r0NbCgoK9OGHH7b4hXnt2rVKS0vT6NGjg2PWrVvX4n5r165VQUGBJP+L0qRJk1qM8fl8WrduXXAMgLbxPAK6Xl5enrKzs1s875xOp4qLi4PPu4KCAlVWVmrTpk3BMW+++aZ8Pp/y8/ODY9555x01NDQEx6xdu1bnn3++evXq1UVnA0Q3wzB055136i9/+YvefPNN5eXltbh90qRJSkhIaPF83LVrlw4dOtTi+djZ31sBnMnn86m+vp7nYU9ldqdwRLeDBw8aW7ZsMX784x8bKSkpxpYtW4wtW7YY1dXVhmEYRmNjozFmzBjjyiuvNLZu3WqsWbPG6Nu3r7FgwYLgMfbt22ckJSUZ9913n/Hxxx8bTz/9tBEXF2esWbMmOGblypWG3W43XnjhBWPnzp3GbbfdZmRkZLTYFQBA23geAeFXXV0d/NknyXjssceMLVu2GAcPHjQMwzAefvhhIyMjw3j11VeN7du3GzNnzjTy8vKM2tra4DFmzJhhXHjhhUZxcbHx7rvvGsOHDzduuOGG4O2VlZVGVlaW8Y1vfMPYsWOHsXLlSiMpKcn41a9+1eXnC0SrO+64w0hPTzf+9a9/GceOHQteampqgmO+/e1vG4MGDTLefPNNY+PGjUZBQYFRUFAQvD1cv7cCPdn9999vvP3228b+/fuN7du3G/fff79hsViMN954wzAMnoc9EaES2jRnzhxD0hmXt956KzjmwIEDxhe/+EUjMTHRyMzMNO69916joaGhxXHeeustY8KECYbNZjPOO+884/nnnz/jsZ588klj0KBBhs1mM6ZMmWK89957ET47oPvheQSE11tvvdXqz8E5c+YYhmEYPp/PWLRokZGVlWXY7XbjiiuuMHbt2tXiGCdPnjRuuOEGIyUlxUhLSzPmzp0b/HAmYNu2bca0adMMu91uDBgwwHj44Ye76hSBmNDa81BSi98pa2trje985ztGr169jKSkJOOaa64xjh071uI44fq9FeipvvnNbxqDBw82bDab0bdvX+OKK64IBkqGwfOwJ7IYhmF0eXkUAAAAAAAAYho9lQAAAAAAABAyQiUAAAAAAACEjFAJAAAAAAAAISNUAgAAAAAAQMgIlQAAAAAAABAyQiUAAAAAAACEjFAJAAAAAAAAISNUAgAAAAAAQMgIlQAAAAAAABAyQiUAAAAAAACEjFAJAAAAAAAAIfv/Iiu+v/DsYqIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "ax = sales['Unit_Cost'].plot(kind='density', figsize=(14,6)) # kde\n", + "ax.axvline(sales['Unit_Cost'].mean(), color='red')\n", + "ax.axvline(sales['Unit_Cost'].median(), color='green')" ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAFzCAYAAADmGTLlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAb9ElEQVR4nO3dfbRldXkf8O/jjEQ08mKk1ABmqGGlC01CyBRJTKxKy4skYl3GYhMlLFbIqphgk7RB80KqsdG0xoZVJSWVCKkNEhIjjURK8SUrXQUZwKCAlCligKCQgGA0gujTP86e5opz7/xg5tx7Zu7ns9ZdZ59n//Y+z1lrz7nzvXvv36nuDgAAACt7wlo3AAAAsDsQngAAAAYITwAAAAOEJwAAgAHCEwAAwADhCQAAYMDGtW5gtT396U/vTZs2rXUbAADAgrr22mv/qrsPeHR93YWnTZs2ZcuWLWvdBgAAsKCq6jPbq7tsDwAAYIDwBAAAMEB4AgAAGCA8AQAADBCeAAAABghPAAAAA4QnAACAAcITAADAAOEJAABggPAEAAAwQHgCAAAYIDwBAAAMEJ4AAAAGbFzrBtazTWd9YK1bWFi3v+XEtW4BAAC+jjNPAAAAA4QnAACAAcITAADAAOEJAABggPAEAAAwQHgCAAAYIDwBAAAMEJ4AAAAGCE8AAAADhCcAAIABwhMAAMAA4QkAAGCA8AQAADBAeAIAABggPAEAAAwQngAAAAYITwAAAAOEJwAAgAHCEwAAwADhCQAAYIDwBAAAMGCu4amq/lVV3VhVn6yq36uqJ1XVoVV1dVVtrar3VtVe09hvmp5vndZvWrKf10/1W6rquCX146fa1qo6a57vBQAAWN/mFp6q6qAkP51kc3c/J8mGJCcneWuSt3f3tye5P8lp0yanJbl/qr99GpeqOnza7tlJjk/yzqraUFUbkrwjyQlJDk/yymksAADALjfvy/Y2Jtm7qjYmeXKSu5O8KMkl0/oLkrx0Wj5pep5p/TFVVVP9ou5+qLs/nWRrkqOmn63dfVt3P5zkomksAADALje38NTddyX5D0n+IrPQ9ECSa5N8vrsfmYbdmeSgafmgJHdM2z4yjf+WpfVHbbNc/RtU1elVtaWqttx77707/+YAAIB1Z56X7e2f2ZmgQ5N8a5KnZHbZ3arr7vO6e3N3bz7ggAPWogUAAGA3N8/L9v5Jkk93973d/ZUkf5jkeUn2my7jS5KDk9w1Ld+V5JAkmdbvm+Svl9Yftc1ydQAAgF1unuHpL5IcXVVPnu5dOibJTUk+nOTl05hTkrx/Wr50ep5p/Ye6u6f6ydNsfIcmOSzJx5Jck+Swafa+vTKbVOLSOb4fAABgHdu44yGPT3dfXVWXJLkuySNJrk9yXpIPJLmoqn51qr1r2uRdSX63qrYmuS+zMJTuvrGqLs4seD2S5Izu/mqSVNVrk1ye2Ux+53f3jfN6PwAAwPo2t/CUJN19dpKzH1W+LbOZ8h499stJfmSZ/bw5yZu3U78syWU73ykAAMDK5j1VOQAAwB5BeAIAABggPAEAAAwQngAAAAYITwAAAAOEJwAAgAHCEwAAwADhCQAAYIDwBAAAMEB4AgAAGCA8AQAADBCeAAAABghPAAAAA4QnAACAAcITAADAAOEJAABggPAEAAAwQHgCAAAYIDwBAAAMEJ4AAAAGCE8AAAADhCcAAIABwhMAAMAA4QkAAGCA8AQAADBAeAIAABggPAEAAAwQngAAAAYITwAAAAOEJwAAgAHCEwAAwADhCQAAYIDwBAAAMEB4AgAAGCA8AQAADBCeAAAABghPAAAAA4QnAACAAcITAADAAOEJAABggPAEAAAwQHgCAAAYIDwBAAAMEJ4AAAAGCE8AAAADhCcAAIABwhMAAMAA4QkAAGCA8AQAADBAeAIAABggPAEAAAwQngAAAAYITwAAAAOEJwAAgAHCEwAAwADhCQAAYIDwBAAAMEB4AgAAGCA8AQAADBCeAAAABghPAAAAA4QnAACAAXMNT1W1X1VdUlWfqqqbq+r7quppVXVFVd06Pe4/ja2qOqeqtlbVDVV15JL9nDKNv7WqTllS/96q+sS0zTlVVfN8PwAAwPo17zNPv5nkg939D5N8d5Kbk5yV5MruPizJldPzJDkhyWHTz+lJzk2SqnpakrOTPDfJUUnO3ha4pjE/sWS74+f8fgAAgHVqbuGpqvZN8vwk70qS7n64uz+f5KQkF0zDLkjy0mn5pCQX9sxVSfarqmckOS7JFd19X3ffn+SKJMdP6/bp7qu6u5NcuGRfAAAAu9Q8zzwdmuTeJL9TVddX1X+pqqckObC7757GfDbJgdPyQUnuWLL9nVNtpfqd26kDAADscvMMTxuTHJnk3O7+niRfzN9dopckmc4Y9Rx7SJJU1elVtaWqttx7773zfjkAAGAPNM/wdGeSO7v76un5JZmFqc9Nl9xlerxnWn9XkkOWbH/wVFupfvB26t+gu8/r7s3dvfmAAw7YqTcFAACsT3MLT9392SR3VNV3TKVjktyU5NIk22bMOyXJ+6flS5O8epp17+gkD0yX912e5Niq2n+aKOLYJJdP6x6sqqOnWfZevWRfAAAAu9TGOe//p5K8p6r2SnJbklMzC2wXV9VpST6T5BXT2MuSvDjJ1iRfmsamu++rqjcluWYa98buvm9afk2SdyfZO8mfTD8AAAC73FzDU3d/PMnm7aw6ZjtjO8kZy+zn/CTnb6e+JclzdrJNAACAHZr39zwBAADsEYQnAACAAcITAADAAOEJAABggPAEAAAwQHgCAAAYIDwBAAAM2GF4qqpfr6p9quqJVXVlVd1bVT+2Gs0BAAAsipEzT8d294NJfijJ7Um+Pcm/nmdTAAAAi2YkPG2cHk9M8vvd/cAc+wEAAFhIG3c8JH9cVZ9K8rdJ/mVVHZDky/NtCwAAYLHs8MxTd5+V5PuTbO7uryT5UpKT5t0YAADAIhmZMOLJSV6T5Nyp9K1JNs+zKQAAgEUzcs/T7yR5OLOzT0lyV5JfnVtHAAAAC2gkPD2ru389yVeSpLu/lKTm2hUAAMCCGQlPD1fV3kk6SarqWUkemmtXAAAAC2Zktr2zk3wwySFV9Z4kz0vy4/NsCgAAYNHsMDx19xVVdV2SozO7XO/M7v6ruXcGAACwQJYNT1V15KNKd0+Pz6yqZ3b3dfNrCwAAYLGsdObpbSus6yQv2sW9AAAALKxlw1N3v3A1GwEAAFhkIxNGpKqek+TwJE/aVuvuC+fVFAAAwKLZYXiqqrOTvCCz8HRZkhOS/FkS4QkAAFg3Rr7n6eVJjkny2e4+Ncl3J9l3rl0BAAAsmJHw9Lfd/bUkj1TVPknuSXLIfNsCAABYLCP3PG2pqv2S/HaSa5P8TZL/PdeuAAAAFszIl+S+Zlr8rar6YJJ9uvuG+bYFAACwWFb6ktxvS/L57n5gev7CJC9N8pmq+lR3P7xKPQIAAKy5le55ujjJU5Kkqo5I8vtJ/iKzCSPeOf/WAAAAFsdKl+3t3d1/OS3/WJLzu/ttVfWEJB+ff2sAAACLY6UzT7Vk+UVJrkySaeY9AACAdWWlM08fqqqLk9ydZP8kH0qSqnpGEvc7AQAA68pK4el1Sf55kmck+YHu/spU//tJfmHejQEAACySZcNTd3eSi7ZTv36uHQEAACygle55AgAAYCI8AQAADFg2PFXVldPjW1evHQAAgMW00oQRz6iq70/ykqq6KF8/dXm6+7q5dgYAALBAVgpPv5zkl5IcnOQ3HrWuM/vuJwAAgHVhpdn2LklySVX9Une/aRV7AgAAWDgrnXlKknT3m6rqJUmeP5U+0t1/PN+2AAAAFssOZ9urql9LcmaSm6afM6vq3827MQAAgEWywzNPSU5MckR3fy1JquqCJNcnecM8GwMAAFgko9/ztN+S5X3n0QgAAMAiGznz9GtJrq+qD2c2Xfnzk5w1164AAAAWzMiEEb9XVR9J8o+m0s9392fn2hUAAMCCGTnzlO6+O8mlc+4FAABgYY3e8wQAALCuCU8AAAADVgxPVbWhqj61Ws0AAAAsqhXDU3d/NcktVfXMVeoHAABgIY1MGLF/khur6mNJvrit2N0vmVtXAAAAC2YkPP3S3LsAAABYcCPf8/TRqvq2JId19/+sqicn2TD/1gAAABbHDmfbq6qfSHJJkv88lQ5K8kfzbAoAAGDRjExVfkaS5yV5MEm6+9Ykf2+eTQEAACyakfD0UHc/vO1JVW1M0vNrCQAAYPGMhKePVtUbkuxdVf80ye8n+e/zbQsAAGCxjISns5Lcm+QTSX4yyWVJfnGeTQEAACyakdn2vlZVFyS5OrPL9W7pbpftAQAA68oOw1NVnZjkt5L83ySV5NCq+snu/pN5NwcAALAoRr4k921JXtjdW5Okqp6V5ANJhCcAAGDdGLnn6QvbgtPktiRfmFM/AAAAC2nZ8FRVL6uqlyXZUlWXVdWPV9Upmc20d83oC1TVhqq6vqr+eHp+aFVdXVVbq+q9VbXXVP+m6fnWaf2mJft4/VS/paqOW1I/fqptraqzHvO7BwAAGLTSmacfnn6elORzSf5xkhdkNvPe3o/hNc5McvOS529N8vbu/vYk9yc5baqfluT+qf72aVyq6vAkJyd5dpLjk7xzCmQbkrwjyQlJDk/yymksAADALrfsPU/dferO7ryqDk5yYpI3J/mZqqokL0ryL6YhFyT5lSTnJjlpWk6SS5L8p2n8SUku6u6Hkny6qrYmOWoat7W7b5te66Jp7E072zcAAMCjjcy2d2iSn0qyaen47n7JwP7/Y5J/k+Sp0/NvSfL57n5ken5nkoOm5YOS3DHt+5GqemAaf1CSq5bsc+k2dzyq/txl3sPpSU5Pkmc+85kDbQMAAHy9kdn2/ijJuzK71+lrozuuqh9Kck93X1tVL3h87e0a3X1ekvOSZPPmzb6jCgAAeMxGwtOXu/ucx7Hv5yV5SVW9OLP7pvZJ8ptJ9quqjdPZp4OT3DWNvyvJIUnurKqNSfZN8tdL6tss3Wa5OgAAwC41MlX5b1bV2VX1fVV15LafHW3U3a/v7oO7e1NmEz58qLt/NMmHk7x8GnZKkvdPy5dOzzOt/1B391Q/eZqN79AkhyX5WGYz/h02zd631/Qal468aQAAgMdq5MzTdyZ5VWYTPWy7bK+n54/Hzye5qKp+Ncn1mV0SmOnxd6cJIe7LLAylu2+sqoszmwjikSRndPdXk6SqXpvk8iQbkpzf3Tc+zp4AAABWNBKefiTJP+juhx/vi3T3R5J8ZFq+LX83W97SMV+eXmt72785sxn7Hl2/LMllj7cvAACAUSOX7X0yyX7zbgQAAGCRjZx52i/Jp6rqmiQPbSsOTlUOAACwRxgJT2fPvQsAAIAFt8Pw1N0fXY1GAAAAFtkOw1NVfSGz2fWSZK8kT0zyxe7eZ56NAQAALJKRM09P3bZcVZXkpCRHz7MpAACARTMy297/1zN/lOS4OfUDAACwkEYu23vZkqdPSLI5yZfn1hEAAMACGplt74eXLD+S5PbMLt0DAABYN0bueTp1NRoBAABYZMuGp6r65RW26+5+0xz6AQAAWEgrnXn64nZqT0lyWpJvSSI8AQAA68ay4am737ZtuaqemuTMJKcmuSjJ25bbDgAAYE+04j1PVfW0JD+T5EeTXJDkyO6+fzUaAwAAWCQr3fP075O8LMl5Sb6zu/9m1boCAABYMCt9Se7PJvnWJL+Y5C+r6sHp5wtV9eDqtAcAALAYVrrnaaVgBQAAsK4ISAAAAAOEJwAAgAHCEwAAwADhCQAAYIDwBAAAMEB4AgAAGCA8AQAADBCeAAAABghPAAAAA4QnAACAAcITAADAAOEJAABggPAEAAAwQHgCAAAYIDwBAAAMEJ4AAAAGCE8AAAADhCcAAIABwhMAAMAA4QkAAGCA8AQAADBAeAIAABggPAEAAAwQngAAAAYITwAAAAOEJwAAgAHCEwAAwADhCQAAYIDwBAAAMEB4AgAAGCA8AQAADBCeAAAABghPAAAAA4QnAACAAcITAADAAOEJAABggPAEAAAwQHgCAAAYIDwBAAAMEJ4AAAAGCE8AAAADhCcAAIABwhMAAMAA4QkAAGCA8AQAADBgbuGpqg6pqg9X1U1VdWNVnTnVn1ZVV1TVrdPj/lO9quqcqtpaVTdU1ZFL9nXKNP7WqjplSf17q+oT0zbnVFXN6/0AAADr2zzPPD2S5Ge7+/AkRyc5o6oOT3JWkiu7+7AkV07Pk+SEJIdNP6cnOTeZha0kZyd5bpKjkpy9LXBNY35iyXbHz/H9AAAA69jcwlN3393d103LX0hyc5KDkpyU5IJp2AVJXjotn5Tkwp65Ksl+VfWMJMcluaK77+vu+5NckeT4ad0+3X1Vd3eSC5fsCwAAYJdalXueqmpTku9JcnWSA7v77mnVZ5McOC0flOSOJZvdOdVWqt+5nfr2Xv/0qtpSVVvuvffenXovAADA+jT38FRV35zkD5K8rrsfXLpuOmPU8+6hu8/r7s3dvfmAAw6Y98sBAAB7oLmGp6p6YmbB6T3d/YdT+XPTJXeZHu+Z6nclOWTJ5gdPtZXqB2+nDgAAsMvNc7a9SvKuJDd3928sWXVpkm0z5p2S5P1L6q+eZt07OskD0+V9lyc5tqr2nyaKODbJ5dO6B6vq6Om1Xr1kXwAAALvUxjnu+3lJXpXkE1X18an2hiRvSXJxVZ2W5DNJXjGtuyzJi5NsTfKlJKcmSXffV1VvSnLNNO6N3X3ftPyaJO9OsneSP5l+AAAAdrm5hafu/rMky33v0jHbGd9JzlhmX+cnOX879S1JnrMTbQIAAAxZldn2AAAAdnfCEwAAwADhCQAAYIDwBAAAMEB4AgAAGCA8AQAADBCeAAAABghPAAAAA4QnAACAAcITAADAAOEJAABggPAEAAAwQHgCAAAYIDwBAAAMEJ4AAAAGCE8AAAADhCcAAIABwhMAAMAA4QkAAGCA8AQAADBAeAIAABggPAEAAAwQngAAAAYITwAAAAOEJwAAgAHCEwAAwADhCQAAYIDwBAAAMEB4AgAAGCA8AQAADBCeAAAABghPAAAAA4QnAACAAcITAADAAOEJAABggPAEAAAwQHgCAAAYIDwBAAAMEJ4AAAAGCE8AAAADhCcAAIABwhMAAMAA4QkAAGCA8AQAADBg41o3AABradNZH1jrFhbW7W85ca1bAFgozjwBAAAMEJ4AAAAGCE8AAAADhCcAAIABJoxgIbmBe3lu4AYAWBvOPAEAAAwQngAAAAYITwAAAAOEJwAAgAEmjAAAgFVgQqzl7S4TYjnzBAAAMMCZJ2CP4S96y9td/qLHYvFvann+TcH65MwTAADAAGeeYDfjL8EAAGtDeAIAeIz8IWt5LmlkTyY8AawD/qMHADvPPU8AAAADdvvwVFXHV9UtVbW1qs5a634AAIA9024dnqpqQ5J3JDkhyeFJXllVh69tVwAAwJ5od7/n6agkW7v7tiSpqouSnJTkpjXtCgBgnXKPJXuy3frMU5KDktyx5PmdUw0AAGCX2t3PPA2pqtOTnD49/ZuqumUt+1ni6Un+aq2bgDgWWSyORxaJ45FFsUcfi/XWte7gG3zb9oq7e3i6K8khS54fPNW+Tnefl+S81WpqVFVt6e7Na90HOBZZJI5HFonjkUXhWFwMu/tle9ckOayqDq2qvZKcnOTSNe4JAADYA+3WZ566+5Gqem2Sy5NsSHJ+d9+4xm0BAAB7oN06PCVJd1+W5LK17uNxWrhLCVm3HIssEscji8TxyKJwLC6A6u617gEAAGDh7e73PAEAAKwK4WkNVNXxVXVLVW2tqrPWuh/Wh6q6vao+UVUfr6otU+1pVXVFVd06Pe4/1auqzpmO0Ruq6si17Z7dXVWdX1X3VNUnl9Qe8/FXVadM42+tqlPW4r2we1vmWPyVqrpr+nz8eFW9eMm610/H4i1VddySut/l7JSqOqSqPlxVN1XVjVV15lT32bjAhKdVVlUbkrwjyQlJDk/yyqo6fG27Yh15YXcfsWSq07OSXNndhyW5cnqezI7Pw6af05Ocu+qdsqd5d5LjH1V7TMdfVT0tydlJnpvkqCRnb/tPBTwG7843HotJ8vbp8/GI6X7qTL+fT07y7Gmbd1bVBr/L2UUeSfKz3X14kqOTnDEdRz4bF5jwtPqOSrK1u2/r7oeTXJTkpDXuifXrpCQXTMsXJHnpkvqFPXNVkv2q6hlr0SB7hu7+0yT3Par8WI+/45Jc0d33dff9Sa7I9v8TDMta5lhczklJLuruh7r700m2ZvZ73O9ydlp3393d103LX0hyc5KD4rNxoQlPq++gJHcseX7nVIN56yT/o6qurarTp9qB3X33tPzZJAdOy45TVsNjPf4cl8zTa6dLoc5f8ld7xyKroqo2JfmeJFfHZ+NCE55g/fiB7j4ys9P+Z1TV85eu7NnUm6bfZE04/lhj5yZ5VpIjktyd5G1r2w7rSVV9c5I/SPK67n5w6TqfjYtHeFp9dyU5ZMnzg6cazFV33zU93pPkfZlddvK5bZfjTY/3TMMdp6yGx3r8OS6Zi+7+XHd/tbu/luS3M/t8TByLzFlVPTGz4PSe7v7DqeyzcYEJT6vvmiSHVdWhVbVXZjeiXrrGPbGHq6qnVNVTty0nOTbJJzM79rbNynNKkvdPy5cmefU0s8/RSR5YcgkB7CqP9fi7PMmxVbX/dFnVsVMNdsqj7un8Z5l9PiazY/Hkqvqmqjo0sxv1Pxa/y9kFqqqSvCvJzd39G0tW+WxcYBvXuoH1prsfqarXZnZQb0hyfnffuMZtsec7MMn7Zp/T2Zjkv3X3B6vqmiQXV9VpST6T5BXT+MuSvDizm6O/lOTU1W+ZPUlV/V6SFyR5elXdmdnMUG/JYzj+uvu+qnpTZv9xTZI3dvfojf+QZNlj8QVVdURml0fdnuQnk6S7b6yqi5PclNnMaGd091en/fhdzs56XpJXJflEVX18qr0hPhsXWs0upQQAAGAlLtsDAAAYIDwBAAAMEJ4AAAAGCE8AAAADhCcAAIABwhMAe5Sq+pWq+rkV1r+7ql4+LX+kqjavXncA7M6EJwAYVFUb1roHANaO8ATAbq+qfqGq/k9V/VmS75hqR1TVVVV1Q1W9r6r238E+zq2qLVV1Y1X92yX126vqrVV1XZIfqaqfrqqbpv1eNN93BsAi2bjWDQDAzqiq701ycpIjMvu9dl2Sa5NcmOSnuvujVfXGJGcned0Ku/qF7r5vOrt0ZVV9V3ffMK376+4+cnq9v0xyaHc/VFX7zeltAbCAnHkCYHf3g0ne191f6u4Hk1ya5ClJ9uvuj05jLkjy/B3s5xXT2aXrkzw7yeFL1r13yfINSd5TVT+W5JFd8QYA2D0ITwCse1V1aJKfS3JMd39Xkg8kedKSIV9csnxiknckOTLJNVXlKg6AdUJ4AmB396dJXlpVe1fVU5P8cGZh5/6q+sFpzKuSfHS5HSTZZ9rmgao6MMkJ2xtUVU9Ickh3fzjJzyfZN8k375q3AcCi89cyAHZr3X1dVb03yZ8nuSfJNdOqU5L8VlU9OcltSU5dYR9/XlXXJ/lUkjuS/K9lhm5I8l+rat8kleSc7v78rnknACy66u617gEAAGDhuWwPAABggPAEAAAwQHgCAAAYIDwBAAAMEJ4AAAAGCE8AAAADhCcAAIABwhMAAMCA/wc0nLaU4oI0lAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gYRl1KbgqTy8", + "outputId": "817542fc-cea1-4f90-c882-57c14a252d01", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 0, 'dollars')" + ] + }, + "metadata": {}, + "execution_count": 31 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAINCAYAAAB22hVHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPD5JREFUeJzt3XuYVnW9///XcEZwBhE5JQkpiXhC0JDSDl9IVOyraX212ElEsjNIBVNhl2h2wGjbNsswdxb6TdPsm5agGGFCKaKipiKQJoY7G7Q4DKJymvX7o7h/TloyunAYfDyua66Le63P3Pd7zXUtGZ+se91VRVEUAQAAAIA3qEVTDwAAAADAzkFoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFK0auoBdhb19fV55plnsuuuu6aqqqqpxwEAAAAoRVEUWbduXXr27JkWLf71NUtCU0meeeaZ9OrVq6nHAAAAANgunn766ey5557/co3QVJJdd901yd9+6NXV1U08DQAAAEA56urq0qtXr0r7+FeEppJsfbtcdXW10AQAAADsdLblVkFuBg4AAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUIpWTT0AO5bek2Y19Qj83VMXj2jqEQAAAKBRXNEEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUTRqatmzZkvPPPz99+vRJ+/bts/fee+fLX/5yiqKorCmKIlOmTEmPHj3Svn37DBs2LI8//niD51m1alVGjhyZ6urqdOrUKWPGjMnzzz/fYM3DDz+cI488Mu3atUuvXr0ybdq0V8xz4403pl+/fmnXrl0OPPDA3HrrrdvnwAEAAAB2Qk0amr7+9a9n+vTp+c53vpMlS5bk61//eqZNm5Zvf/vblTXTpk3LZZddliuuuCILFy5Mhw4dMnz48Lz00kuVNSNHjszixYszZ86czJw5M/Pnz8/YsWMr++vq6nLUUUdlr732yqJFi/KNb3wjF154Ya688srKmrvvvjsf+9jHMmbMmDz44IM54YQTcsIJJ+TRRx99c34YAAAAAM1cVfHyy4feZMcdd1y6deuWq666qrLtpJNOSvv27fOjH/0oRVGkZ8+eOfvss/P5z38+SbJ27dp069YtM2bMyCmnnJIlS5akf//+ue+++3LooYcmSWbPnp1jjz02//M//5OePXtm+vTp+cIXvpDa2tq0adMmSTJp0qTcfPPNWbp0aZLk5JNPzvr16zNz5szKLIcffngGDBiQK6644jWPpa6uLjU1NVm7dm2qq6tL+xm92XpPmtXUI/B3T108oqlHAAAAgEY1jya9ound73535s6dm9///vdJkt/97nf57W9/m2OOOSZJsnz58tTW1mbYsGGV76mpqcngwYOzYMGCJMmCBQvSqVOnSmRKkmHDhqVFixZZuHBhZc173/veSmRKkuHDh2fZsmVZvXp1Zc3LX2frmq2v8482bNiQurq6Bl8AAAAAb2WtmvLFJ02alLq6uvTr1y8tW7bMli1b8tWvfjUjR45MktTW1iZJunXr1uD7unXrVtlXW1ubrl27NtjfqlWrdO7cucGaPn36vOI5tu7bbbfdUltb+y9f5x9NnTo1X/rSl17PYQMAAADslJr0iqaf/OQnufbaa3PdddflgQceyNVXX53//M//zNVXX92UY22TyZMnZ+3atZWvp59+uqlHAgAAAGhSTXpF0znnnJNJkybllFNOSZIceOCB+eMf/5ipU6dm1KhR6d69e5Jk5cqV6dGjR+X7Vq5cmQEDBiRJunfvnmeffbbB827evDmrVq2qfH/37t2zcuXKBmu2Pn6tNVv3/6O2bdumbdu2r+ewAQAAAHZKTXpF0wsvvJAWLRqO0LJly9TX1ydJ+vTpk+7du2fu3LmV/XV1dVm4cGGGDBmSJBkyZEjWrFmTRYsWVdbccccdqa+vz+DBgytr5s+fn02bNlXWzJkzJ/vuu2922223ypqXv87WNVtfBwAAAIB/rUlD04c+9KF89atfzaxZs/LUU0/lpptuyje/+c18+MMfTpJUVVXlrLPOyle+8pX84he/yCOPPJJTTz01PXv2zAknnJAk2W+//XL00UfntNNOy7333pu77ror48ePzymnnJKePXsmST7+8Y+nTZs2GTNmTBYvXpwbbrgh3/rWtzJx4sTKLGeeeWZmz56dSy65JEuXLs2FF16Y+++/P+PHj3/Tfy4AAAAAzVGTvnXu29/+ds4///x89rOfzbPPPpuePXvm3//93zNlypTKmnPPPTfr16/P2LFjs2bNmhxxxBGZPXt22rVrV1lz7bXXZvz48Rk6dGhatGiRk046KZdddlllf01NTX75y19m3LhxGTRoULp06ZIpU6Zk7NixlTXvfve7c9111+WLX/xi/uM//iN9+/bNzTffnAMOOODN+WEAAAAANHNVRVEUTT3EzqCuri41NTVZu3Ztqqurm3qc1633pFlNPQJ/99TFI5p6BAAAAGhU82jSt84BAAAAsPMQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKEWTh6Y//elP+bd/+7fsvvvuad++fQ488MDcf//9lf1FUWTKlCnp0aNH2rdvn2HDhuXxxx9v8ByrVq3KyJEjU11dnU6dOmXMmDF5/vnnG6x5+OGHc+SRR6Zdu3bp1atXpk2b9opZbrzxxvTr1y/t2rXLgQcemFtvvXX7HDQAAADATqhJQ9Pq1avznve8J61bt85tt92Wxx57LJdcckl22223yppp06blsssuyxVXXJGFCxemQ4cOGT58eF566aXKmpEjR2bx4sWZM2dOZs6cmfnz52fs2LGV/XV1dTnqqKOy1157ZdGiRfnGN76RCy+8MFdeeWVlzd13352PfexjGTNmTB588MGccMIJOeGEE/Loo4++OT8MAAAAgGauqiiKoqlefNKkSbnrrrvym9/85lX3F0WRnj175uyzz87nP//5JMnatWvTrVu3zJgxI6ecckqWLFmS/v3757777suhhx6aJJk9e3aOPfbY/M///E969uyZ6dOn5wtf+EJqa2vTpk2bymvffPPNWbp0aZLk5JNPzvr16zNz5szK6x9++OEZMGBArrjiitc8lrq6utTU1GTt2rWprq5+Qz+XptR70qymHoG/e+riEU09AgAAADSqeTTpFU2/+MUvcuihh+ajH/1ounbtmkMOOST//d//Xdm/fPny1NbWZtiwYZVtNTU1GTx4cBYsWJAkWbBgQTp16lSJTEkybNiwtGjRIgsXLqysee9731uJTEkyfPjwLFu2LKtXr66sefnrbF2z9XX+0YYNG1JXV9fgCwAAAOCtrElD05NPPpnp06enb9++uf3223P66afnjDPOyNVXX50kqa2tTZJ069atwfd169atsq+2tjZdu3ZtsL9Vq1bp3LlzgzWv9hwvf41/tmbr/n80derU1NTUVL569erV6OMHAAAA2Jk0aWiqr6/PwIED87WvfS2HHHJIxo4dm9NOO22b3qrW1CZPnpy1a9dWvp5++ummHgkAAACgSTVpaOrRo0f69+/fYNt+++2XFStWJEm6d++eJFm5cmWDNStXrqzs6969e5599tkG+zdv3pxVq1Y1WPNqz/Hy1/hna7bu/0dt27ZNdXV1gy8AAACAt7ImDU3vec97smzZsgbbfv/732evvfZKkvTp0yfdu3fP3LlzK/vr6uqycOHCDBkyJEkyZMiQrFmzJosWLaqsueOOO1JfX5/BgwdX1syfPz+bNm2qrJkzZ0723XffyifcDRkypMHrbF2z9XUAAAAA+NeaNDRNmDAh99xzT772ta/liSeeyHXXXZcrr7wy48aNS5JUVVXlrLPOyle+8pX84he/yCOPPJJTTz01PXv2zAknnJDkb1dAHX300TnttNNy77335q677sr48eNzyimnpGfPnkmSj3/842nTpk3GjBmTxYsX54Ybbsi3vvWtTJw4sTLLmWeemdmzZ+eSSy7J0qVLc+GFF+b+++/P+PHj3/SfCwAAAEBz1KopX/ywww7LTTfdlMmTJ+eiiy5Knz59cumll2bkyJGVNeeee27Wr1+fsWPHZs2aNTniiCMye/bstGvXrrLm2muvzfjx4zN06NC0aNEiJ510Ui677LLK/pqamvzyl7/MuHHjMmjQoHTp0iVTpkzJ2LFjK2ve/e5357rrrssXv/jF/Md//Ef69u2bm2++OQcccMCb88MAAAAAaOaqiqIomnqInUFdXV1qamqydu3aZn2/pt6TZjX1CPzdUxePaOoRAAAAoFHNo0nfOgcAAADAzkNoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACU4g2Hpi1btuShhx7K6tWry5gHAAAAgGaq0aHprLPOylVXXZXkb5Hpfe97XwYOHJhevXrlzjvvLHs+AAAAAJqJRoemn/70pzn44IOTJLfcckuWL1+epUuXZsKECfnCF75Q+oAAAAAANA+NDk1/+ctf0r179yTJrbfemo9+9KN55zvfmU996lN55JFHSh8QAAAAgOah0aGpW7dueeyxx7Jly5bMnj07H/zgB5MkL7zwQlq2bFn6gAAAAAA0D60a+w2jR4/O//k//yc9evRIVVVVhg0bliRZuHBh+vXrV/qAAAAAADQPjQ5NF154YQ444IA8/fTT+ehHP5q2bdsmSVq2bJlJkyaVPiAAAAAAzUOjQ1OSfOQjH0mSvPTSS5Vto0aNKmciAAAAAJqlRt+jacuWLfnyl7+ct73tbenYsWOefPLJJMn555+fq666qvQBAQAAAGgeGh2avvrVr2bGjBmZNm1a2rRpU9l+wAEH5Pvf/36pwwEAAADQfDQ6NF1zzTW58sorM3LkyAafMnfwwQdn6dKlpQ4HAAAAQPPR6ND0pz/9Kfvss88rttfX12fTpk2lDAUAAABA89Po0NS/f//85je/ecX2n/70pznkkENKGQoAAACA5qfRnzo3ZcqUjBo1Kn/6059SX1+fn/3sZ1m2bFmuueaazJw5c3vMCAAAAEAz0Ogrmo4//vjccsst+dWvfpUOHTpkypQpWbJkSW655ZZ88IMf3B4zAgAAANAMNPqKpiQ58sgjM2fOnLJnAQAAAKAZa/QVTQAAAADwarbpiqbddtstVVVV2/SEq1atekMDAQAAANA8bVNouvTSS7fzGAAAAAA0d9sUmkaNGrW95wAAAACgmXtdNwPf6qWXXsrGjRsbbKuurn5DAwEAAADQPDX6ZuDr16/P+PHj07Vr13To0CG77bZbgy8AAAAA3poaHZrOPffc3HHHHZk+fXratm2b73//+/nSl76Unj175pprrtkeMwIAAADQDDT6rXO33HJLrrnmmrz//e/P6NGjc+SRR2afffbJXnvtlWuvvTYjR47cHnMCAAAAsINr9BVNq1atyjve8Y4kf7sf06pVq5IkRxxxRObPn1/udAAAAAA0G40OTe94xzuyfPnyJEm/fv3yk5/8JMnfrnTq1KlTqcMBAAAA0Hw0OjSNHj06v/vd75IkkyZNyuWXX5527dplwoQJOeecc0ofEAAAAIDmodH3aJowYULlz8OGDcuSJUvywAMPZJ999slBBx1U6nAAAAAANB+NDk3/qHfv3undu3cJowAAAADQnG3zW+cWLFiQmTNnNth2zTXXpE+fPunatWvGjh2bDRs2lD4gAAAAAM3DNoemiy66KIsXL648fuSRRzJmzJgMGzYskyZNyi233JKpU6dulyEBAAAA2PFtc2h66KGHMnTo0Mrj66+/PoMHD85///d/Z+LEibnssssqn0AHAAAAwFvPNoem1atXp1u3bpXH8+bNyzHHHFN5fNhhh+Xpp58udzoAAAAAmo1tDk3dunXL8uXLkyQbN27MAw88kMMPP7yyf926dWndunX5EwIAAADQLGxzaDr22GMzadKk/OY3v8nkyZOzyy675Mgjj6zsf/jhh7P33ntvlyEBAAAA2PG12taFX/7yl3PiiSfmfe97Xzp27Jirr746bdq0qez/wQ9+kKOOOmq7DAkAAADAjm+bQ1OXLl0yf/78rF27Nh07dkzLli0b7L/xxhvTsWPH0gcEAAAAoHnY5tC0VU1Nzatu79y58xseBgAAAIDma5vv0QQAAAAA/4rQBAAAAEAphCYAAAAASrFNoWngwIFZvXp1kuSiiy7KCy+8sF2HAgAAAKD52abQtGTJkqxfvz5J8qUvfSnPP//8dh0KAAAAgOZnmz51bsCAARk9enSOOOKIFEWR//zP/0zHjh1fde2UKVNKHRAAAACA5mGbQtOMGTNywQUXZObMmamqqsptt92WVq1e+a1VVVVCEwAAAMBb1DaFpn333TfXX399kqRFixaZO3duunbtul0HAwAAAKB52abQ9HL19fXbYw4AAAAAmrlGh6Yk+cMf/pBLL700S5YsSZL0798/Z555Zvbee+9ShwMAAACg+dimT517udtvvz39+/fPvffem4MOOigHHXRQFi5cmP333z9z5szZHjMCAAAA0Aw0+oqmSZMmZcKECbn44otfsf28887LBz/4wdKGAwAAAKD5aPQVTUuWLMmYMWNesf1Tn/pUHnvssVKGAgAAAKD5aXRo2mOPPfLQQw+9YvtDDz3kk+gAAAAA3sIa/da50047LWPHjs2TTz6Zd7/73UmSu+66K1//+tczceLE0gcEAAAAoHlodGg6//zzs+uuu+aSSy7J5MmTkyQ9e/bMhRdemDPOOKP0AQEAAABoHhodmqqqqjJhwoRMmDAh69atS5LsuuuupQ8GAAAAQPPS6ND0cgITAAAAAFs1+mbgAAAAAPBqhCYAAAAASiE0AQAAAFCKRoWmTZs2ZejQoXn88ce31zwAAAAANFONCk2tW7fOww8/vL1mAQAAAKAZa/Rb5/7t3/4tV1111faYBQAAAIBmrFVjv2Hz5s35wQ9+kF/96lcZNGhQOnTo0GD/N7/5zdKGAwAAAKD5aHRoevTRRzNw4MAkye9///sG+6qqqsqZCgAAAIBmp9Gh6de//vX2mAMAAACAZq7R92ja6oknnsjtt9+eF198MUlSFEVpQwEAAADQ/DQ6NP31r3/N0KFD8853vjPHHnts/vznPydJxowZk7PPPrv0AQEAAABoHhodmiZMmJDWrVtnxYoV2WWXXSrbTz755MyePbvU4QAAAABoPhp9j6Zf/vKXuf3227Pnnns22N63b9/88Y9/LG0wAAAAAJqXRl/RtH79+gZXMm21atWqtG3btpShAAAAAGh+Gh2ajjzyyFxzzTWVx1VVVamvr8+0adPygQ98oNThAAAAAGg+Gv3WuWnTpmXo0KG5//77s3Hjxpx77rlZvHhxVq1albvuumt7zAgAAABAM9DoK5oOOOCA/P73v88RRxyR448/PuvXr8+JJ56YBx98MHvvvff2mBEAAACAZqDRVzQlSU1NTb7whS+UPQsAAAAAzdjrCk2rV6/OVVddlSVLliRJ+vfvn9GjR6dz586lDgcAAABA89Hot87Nnz8/vXv3zmWXXZbVq1dn9erVueyyy9KnT5/Mnz9/e8wIAAAAQDPQ6Cuaxo0bl5NPPjnTp09Py5YtkyRbtmzJZz/72YwbNy6PPPJI6UMCAAAAsONr9BVNTzzxRM4+++xKZEqSli1bZuLEiXniiSdKHQ4AAACA5qPRoWngwIGVezO93JIlS3LwwQeXMhQAAAAAzc82vXXu4Ycfrvz5jDPOyJlnnpknnngihx9+eJLknnvuyeWXX56LL754+0wJAAAAwA6vqiiK4rUWtWjRIlVVVXmtpVVVVdmyZUtpwzUndXV1qampydq1a1NdXd3U47xuvSfNauoR+LunLh7R1CMAAABAo5rHNr11bvny5XnyySezfPnyf/n15JNPvu6hL7744lRVVeWss86qbHvppZcybty47L777unYsWNOOumkrFy5ssH3rVixIiNGjMguu+ySrl275pxzzsnmzZsbrLnzzjszcODAtG3bNvvss09mzJjxite//PLL07t377Rr1y6DBw/Ovffe+7qPBQAAAOCtaJveOrfXXntt1yHuu+++fO9738tBBx3UYPuECRMya9as3Hjjjampqcn48eNz4okn5q677kryt0+7GzFiRLp375677747f/7zn3PqqaemdevW+drXvpbkb5FsxIgR+cxnPpNrr702c+fOzac//en06NEjw4cPT5LccMMNmThxYq644ooMHjw4l156aYYPH55ly5ala9eu2/XYAQAAAHYW2/TWuX/0zDPP5Le//W2effbZ1NfXN9h3xhlnNOq5nn/++QwcODDf/e5385WvfCUDBgzIpZdemrVr12aPPfbIddddl4985CNJkqVLl2a//fbLggULcvjhh+e2227Lcccdl2eeeSbdunVLklxxxRU577zz8txzz6VNmzY577zzMmvWrDz66KOV1zzllFOyZs2azJ49O0kyePDgHHbYYfnOd76TJKmvr0+vXr3yuc99LpMmTdqm4/DWOcrmrXMAAADsCBrTPLbpiqaXmzFjRv793/89bdq0ye67756qqqrKvqqqqkaHpnHjxmXEiBEZNmxYvvKVr1S2L1q0KJs2bcqwYcMq2/r165e3v/3tldC0YMGCHHjggZXIlCTDhw/P6aefnsWLF+eQQw7JggULGjzH1jVb36K3cePGLFq0KJMnT67sb9GiRYYNG5YFCxY06lgAAAAA3soaHZrOP//8TJkyJZMnT06LFtt0i6d/6vrrr88DDzyQ++677xX7amtr06ZNm3Tq1KnB9m7duqW2tray5uWRaev+rfv+1Zq6urq8+OKLWb16dbZs2fKqa5YuXfpPZ9+wYUM2bNhQeVxXV/caRwsAAACwc2t0KXrhhRdyyimnvOHI9PTTT+fMM8/Mtddem3bt2r2h52oKU6dOTU1NTeWrV69eTT0SAAAAQJNqdC0aM2ZMbrzxxjf8wosWLcqzzz6bgQMHplWrVmnVqlXmzZuXyy67LK1atUq3bt2ycePGrFmzpsH3rVy5Mt27d0+SdO/e/RWfQrf18Wutqa6uTvv27dOlS5e0bNnyVddsfY5XM3ny5Kxdu7by9fTTT7+unwMAAADAzqLRb52bOnVqjjvuuMyePTsHHnhgWrdu3WD/N7/5zW16nqFDh+aRRx5psG306NHp169fzjvvvPTq1SutW7fO3Llzc9JJJyVJli1blhUrVmTIkCFJkiFDhuSrX/1qnn322cqnw82ZMyfV1dXp379/Zc2tt97a4HXmzJlTeY42bdpk0KBBmTt3bk444YQkf7sZ+Ny5czN+/Ph/On/btm3Ttm3bbTpWAAAAgLeC1xWabr/99uy7775J8oqbgW+rXXfdNQcccECDbR06dMjuu+9e2T5mzJhMnDgxnTt3TnV1dT73uc9lyJAhOfzww5MkRx11VPr3759PfOITmTZtWmpra/PFL34x48aNq0Sgz3zmM/nOd76Tc889N5/61Kdyxx135Cc/+Ulmzfr/P11t4sSJGTVqVA499NC8613vyqWXXpr169dn9OjRjf3xAAAAALxlNTo0XXLJJfnBD36QT37yk9thnIb+67/+Ky1atMhJJ52UDRs2ZPjw4fnud79b2d+yZcvMnDkzp59+eoYMGZIOHTpk1KhRueiiiypr+vTpk1mzZmXChAn51re+lT333DPf//73M3z48Mqak08+Oc8991ymTJmS2traDBgwILNnz37FDcIBAAAA+OeqiqIoGvMN3bt3z29+85v07dt3e83ULNXV1aWmpiZr165NdXV1U4/zuvWeNOu1F/GmeOriEU09AgAAADSqeTT6ZuBnnnlmvv3tb7/u4QAAAADYOTX6rXP33ntv7rjjjsycOTP777//K24G/rOf/ay04QAAAABoPhodmjp16pQTTzxxe8wCAAAAQDPW6ND0wx/+cHvMAQAAAEAz1+h7NAEAAADAq2n0FU19+vRJVVXVP93/5JNPvqGBAAAAAGieGh2azjrrrAaPN23alAcffDCzZ8/OOeecU9ZcAAAAADQzjQ5NZ5555qtuv/zyy3P//fe/4YEAAAAAaJ5Ku0fTMccck//3//5fWU8HAAAAQDNTWmj66U9/ms6dO5f1dAAAAAA0M41+69whhxzS4GbgRVGktrY2zz33XL773e+WOhwAAAAAzUejQ9MJJ5zQ4HGLFi2yxx575P3vf3/69etX1lwAAAAANDONDk0XXHDB9pgDAAAAgGautHs0AQAAAPDWts1XNLVo0aLBvZleTVVVVTZv3vyGhwIAAACg+dnm0HTTTTf9030LFizIZZddlvr6+lKGAgAAAKD52ebQdPzxx79i27JlyzJp0qTccsstGTlyZC666KJShwMAAACg+Xhd92h65plnctppp+XAAw/M5s2b89BDD+Xqq6/OXnvtVfZ8AAAAADQTjQpNa9euzXnnnZd99tknixcvzty5c3PLLbfkgAMO2F7zAQAAANBMbPNb56ZNm5avf/3r6d69e3784x+/6lvpAAAAAHjrqiqKotiWhS1atEj79u0zbNiwtGzZ8p+u+9nPflbacM1JXV1dampqsnbt2lRXVzf1OK9b70mzmnoE/u6pi0c09QgAAADQqOaxzVc0nXrqqamqqnrDwwEAAACwc9rm0DRjxoztOAYAAAAAzd3r+tQ5AAAAAPhHQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAoRZOGpqlTp+awww7Lrrvumq5du+aEE07IsmXLGqx56aWXMm7cuOy+++7p2LFjTjrppKxcubLBmhUrVmTEiBHZZZdd0rVr15xzzjnZvHlzgzV33nlnBg4cmLZt22afffbJjBkzXjHP5Zdfnt69e6ddu3YZPHhw7r333tKPGQAAAGBn1aShad68eRk3blzuueeezJkzJ5s2bcpRRx2V9evXV9ZMmDAht9xyS2688cbMmzcvzzzzTE488cTK/i1btmTEiBHZuHFj7r777lx99dWZMWNGpkyZUlmzfPnyjBgxIh/4wAfy0EMP5ayzzsqnP/3p3H777ZU1N9xwQyZOnJgLLrggDzzwQA4++OAMHz48zz777JvzwwAAAABo5qqKoiiaeoitnnvuuXTt2jXz5s3Le9/73qxduzZ77LFHrrvuunzkIx9JkixdujT77bdfFixYkMMPPzy33XZbjjvuuDzzzDPp1q1bkuSKK67Ieeedl+eeey5t2rTJeeedl1mzZuXRRx+tvNYpp5ySNWvWZPbs2UmSwYMH57DDDst3vvOdJEl9fX169eqVz33uc5k0adJrzl5XV5eampqsXbs21dXVZf9o3jS9J81q6hH4u6cuHtHUIwAAAECjmscOdY+mtWvXJkk6d+6cJFm0aFE2bdqUYcOGVdb069cvb3/727NgwYIkyYIFC3LggQdWIlOSDB8+PHV1dVm8eHFlzcufY+uarc+xcePGLFq0qMGaFi1aZNiwYZU1AAAAAPxrrZp6gK3q6+tz1lln5T3veU8OOOCAJEltbW3atGmTTp06NVjbrVu31NbWVta8PDJt3b91379aU1dXlxdffDGrV6/Oli1bXnXN0qVLX3XeDRs2ZMOGDZXHdXV1jTxiAAAAgJ3LDnNF07hx4/Loo4/m+uuvb+pRtsnUqVNTU1NT+erVq1dTjwQAAADQpHaI0DR+/PjMnDkzv/71r7PnnntWtnfv3j0bN27MmjVrGqxfuXJlunfvXlnzj59Ct/Xxa62prq5O+/bt06VLl7Rs2fJV12x9jn80efLkrF27tvL19NNPN/7AAQAAAHYiTRqaiqLI+PHjc9NNN+WOO+5Inz59GuwfNGhQWrdunblz51a2LVu2LCtWrMiQIUOSJEOGDMkjjzzS4NPh5syZk+rq6vTv37+y5uXPsXXN1udo06ZNBg0a1GBNfX195s6dW1nzj9q2bZvq6uoGXwAAAABvZU16j6Zx48bluuuuy89//vPsuuuulXsq1dTUpH379qmpqcmYMWMyceLEdO7cOdXV1fnc5z6XIUOG5PDDD0+SHHXUUenfv38+8YlPZNq0aamtrc0Xv/jFjBs3Lm3btk2SfOYzn8l3vvOdnHvuufnUpz6VO+64Iz/5yU8ya9b//wlrEydOzKhRo3LooYfmXe96Vy699NKsX78+o0ePfvN/MAAAAADNUJOGpunTpydJ3v/+9zfY/sMf/jCf/OQnkyT/9V//lRYtWuSkk07Khg0bMnz48Hz3u9+trG3ZsmVmzpyZ008/PUOGDEmHDh0yatSoXHTRRZU1ffr0yaxZszJhwoR861vfyp577pnvf//7GT58eGXNySefnOeeey5TpkxJbW1tBgwYkNmzZ7/iBuEAAAAAvLqqoiiKph5iZ1BXV5eampqsXbu2Wb+NrvekWa+9iDfFUxePaOoRAAAAoFHNY4e4GTgAAAAAzZ/QBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFIITQAAAACUQmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCmEJgAAAABKITQBAAAAUAqhCQAAAIBSCE0AAAAAlEJoAgAAAKAUQhMAAAAApWjV1AMAAPD69J40q6lHIMlTF49o6hEAYIfhiiYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKVo1dQDAK/OR1bvOHxsNQAAwLZxRRMAAAAApRCaAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqEJAAAAgFK0auoBAAAAgPL1njSrqUfg7566eERTj/CmcUUTAAAAAKVwRRMAzYJ/kdtxvJX+RQ4AgMYRmgAA4A0QwnccQjhA0/PWOQAAAABK4YomgNfgX6oBAAC2jSuaAAAAACiFK5oAAICdgquQdxzulwVvXUITANAo/kcOAIB/xlvnAAAAACiF0AQAAABAKYQmAAAAAEohNAEAAABQCqHpH1x++eXp3bt32rVrl8GDB+fee+9t6pEAAAAAmgWfOvcyN9xwQyZOnJgrrrgigwcPzqWXXprhw4dn2bJl6dq1a1OPBwAA0Cz4hFJ463JF08t885vfzGmnnZbRo0enf//+ueKKK7LLLrvkBz/4QVOPBgAAALDDc0XT323cuDGLFi3K5MmTK9tatGiRYcOGZcGCBa9Yv2HDhmzYsKHyeO3atUmSurq67T/sdlS/4YWmHgEAAAB2Ks29FWydvyiK11wrNP3dX/7yl2zZsiXdunVrsL1bt25ZunTpK9ZPnTo1X/rSl16xvVevXtttRgAAAKD5qbm0qScox7p161JTU/Mv1whNr9PkyZMzceLEyuP6+vqsWrUqu+++e6qqqppwstevrq4uvXr1ytNPP53q6uqmHgfespyLsONwPsKOwbkIOwbn4ltXURRZt25devbs+Zprhaa/69KlS1q2bJmVK1c22L5y5cp07979Fevbtm2btm3bNtjWqVOn7Tnim6a6utp/NGAH4FyEHYfzEXYMzkXYMTgX35pe60qmrdwM/O/atGmTQYMGZe7cuZVt9fX1mTt3boYMGdKEkwEAAAA0D65oepmJEydm1KhROfTQQ/Oud70rl156adavX5/Ro0c39WgAAAAAOzyh6WVOPvnkPPfcc5kyZUpqa2szYMCAzJ49+xU3CN9ZtW3bNhdccMEr3hIIvLmci7DjcD7CjsG5CDsG5yLboqrYls+mAwAAAIDX4B5NAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdBExeWXX57evXunXbt2GTx4cO69996mHgl2GhdeeGGqqqoafPXr16+y/6WXXsq4ceOy++67p2PHjjnppJOycuXKBs+xYsWKjBgxIrvssku6du2ac845J5s3b36zDwWanfnz5+dDH/pQevbsmaqqqtx8880N9hdFkSlTpqRHjx5p3759hg0blscff7zBmlWrVmXkyJGprq5Op06dMmbMmDz//PMN1jz88MM58sgj065du/Tq1SvTpk3b3ocGzcprnYuf/OQnX/F35dFHH91gjXMR3ripU6fmsMMOy6677pquXbvmhBNOyLJlyxqsKet30zvvvDMDBw5M27Zts88++2TGjBnb+/DYAQhNJEluuOGGTJw4MRdccEEeeOCBHHzwwRk+fHieffbZph4Ndhr7779//vznP1e+fvvb31b2TZgwIbfccktuvPHGzJs3L88880xOPPHEyv4tW7ZkxIgR2bhxY+6+++5cffXVmTFjRqZMmdIUhwLNyvr163PwwQfn8ssvf9X906ZNy2WXXZYrrrgiCxcuTIcOHTJ8+PC89NJLlTUjR47M4sWLM2fOnMycOTPz58/P2LFjK/vr6upy1FFHZa+99sqiRYvyjW98IxdeeGGuvPLK7X580Fy81rmYJEcffXSDvyt//OMfN9jvXIQ3bt68eRk3blzuueeezJkzJ5s2bcpRRx2V9evXV9aU8bvp8uXLM2LEiHzgAx/IQw89lLPOOiuf/vSnc/vtt7+px0sTKKAoine9613FuHHjKo+3bNlS9OzZs5g6dWoTTgU7jwsuuKA4+OCDX3XfmjVritatWxc33nhjZduSJUuKJMWCBQuKoiiKW2+9tWjRokVRW1tbWTN9+vSiurq62LBhw3adHXYmSYqbbrqp8ri+vr7o3r178Y1vfKOybc2aNUXbtm2LH//4x0VRFMVjjz1WJCnuu+++yprbbrutqKqqKv70pz8VRVEU3/3ud4vddtutwfl43nnnFfvuu+92PiJonv7xXCyKohg1alRx/PHH/9PvcS7C9vHss88WSYp58+YVRVHe76bnnntusf/++zd4rZNPPrkYPnz49j4kmpgrmsjGjRuzaNGiDBs2rLKtRYsWGTZsWBYsWNCEk8HO5fHHH0/Pnj3zjne8IyNHjsyKFSuSJIsWLcqmTZsanIP9+vXL29/+9so5uGDBghx44IHp1q1bZc3w4cNTV1eXxYsXv7kHAjuR5cuXp7a2tsH5V1NTk8GDBzc4/zp16pRDDz20smbYsGFp0aJFFi5cWFnz3ve+N23atKmsGT58eJYtW5bVq1e/SUcDzd+dd96Zrl27Zt99983pp5+ev/71r5V9zkXYPtauXZsk6dy5c5LyfjddsGBBg+fYusb/Y+78hCbyl7/8JVu2bGnwH4kk6datW2pra5toKti5DB48ODNmzMjs2bMzffr0LF++PEceeWTWrVuX2tratGnTJp06dWrwPS8/B2tra1/1HN26D3h9tp4//+rvwNra2nTt2rXB/latWqVz587OUSjR0UcfnWuuuSZz587N17/+9cybNy/HHHNMtmzZksS5CNtDfX19zjrrrLznPe/JAQcckCSl/W76z9bU1dXlxRdf3B6Hww6iVVMPAPBWcMwxx1T+fNBBB2Xw4MHZa6+98pOf/CTt27dvwskAYMdwyimnVP584IEH5qCDDsree++dO++8M0OHDm3CyWDnNW7cuDz66KMN7h0Kb5QrmkiXLl3SsmXLV3yKwMqVK9O9e/cmmgp2bp06dco73/nOPPHEE+nevXs2btyYNWvWNFjz8nOwe/fur3qObt0HvD5bz59/9Xdg9+7dX/HhGJs3b86qVauco7AdveMd70iXLl3yxBNPJHEuQtnGjx+fmTNn5te//nX23HPPyvayfjf9Z2uqq6v9Q+tOTmgibdq0yaBBgzJ37tzKtvr6+sydOzdDhgxpwslg5/X888/nD3/4Q3r06JFBgwaldevWDc7BZcuWZcWKFZVzcMiQIXnkkUca/II9Z86cVFdXp3///m/6/LCz6NOnT7p3797g/Kurq8vChQsbnH9r1qzJokWLKmvuuOOO1NfXZ/DgwZU18+fPz6ZNmypr5syZk3333Te77bbbm3Q0sHP5n//5n/z1r39Njx49kjgXoSxFUWT8+PG56aabcscdd6RPnz4N9pf1u+mQIUMaPMfWNf4f8y2gqe9Gzo7h+uuvL9q2bVvMmDGjeOyxx4qxY8cWnTp1avApAsDrd/bZZxd33nlnsXz58uKuu+4qhg0bVnTp0qV49tlni6Iois985jPF29/+9uKOO+4o7r///mLIkCHFkCFDKt+/efPm4oADDiiOOuqo4qGHHipmz55d7LHHHsXkyZOb6pCg2Vi3bl3x4IMPFg8++GCRpPjmN79ZPPjgg8Uf//jHoiiK4uKLLy46depU/PznPy8efvjh4vjjjy/69OlTvPjii5XnOProo4tDDjmkWLhwYfHb3/626Nu3b/Gxj32ssn/NmjVFt27dik984hPFo48+Wlx//fXFLrvsUnzve997048XdlT/6lxct25d8fnPf75YsGBBsXz58uJXv/pVMXDgwKJv377FSy+9VHkO5yK8caeffnpRU1NT3HnnncWf//znytcLL7xQWVPG76ZPPvlkscsuuxTnnHNOsWTJkuLyyy8vWrZsWcyePftNPV7efEITFd/+9reLt7/97UWbNm2Kd73rXcU999zT1CPBTuPkk08uevToUbRp06Z429veVpx88snFE088Udn/4osvFp/97GeL3Xbbrdhll12KD3/4w8Wf//znBs/x1FNPFcccc0zRvn37okuXLsXZZ59dbNq06c0+FGh2fv3rXxdJXvE1atSooiiKor6+vjj//POLbt26FW3bti2GDh1aLFu2rMFz/PWvfy0+9rGPFR07diyqq6uL0aNHF+vWrWuw5ne/+11xxBFHFG3bti3e9ra3FRdffPGbdYjQLPyrc/GFF14ojjrqqGKPPfYoWrduXey1117Faaed9op/9HQuwhv3audhkuKHP/xhZU1Zv5v++te/LgYMGFC0adOmeMc73tHgNdh5VRVFUbzZV1EBAAAAsPNxjyYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEANAE3v/+9+ess87aprUzZsxIp06dKo8vvPDCDBgwYLvMBQDwRghNAAAAAJRCaAIAeAvatGlTU48AAOyEhCYAgO1s/fr1OfXUU9OxY8f06NEjl1xySYP9q1evzqmnnprddtstu+yyS4455pg8/vjj2/z89913Xz74wQ+mS5cuqampyfve97488MADDdZUVVVl+vTp+d//+3+nQ4cO+epXv5rVq1dn5MiR2WOPPdK+ffv07ds3P/zhD0s5ZgDgrUloAgDYzs4555zMmzcvP//5z/PLX/4yd955Z4MQ9MlPfjL3339/fvGLX2TBggUpiiLHHnvsNl91tG7duowaNSq//e1vc88996Rv37459thjs27dugbrLrzwwnz4wx/OI488kk996lM5//zz89hjj+W2227LkiVLMn369HTp0qXUYwcA3lpaNfUAAAA7s+effz5XXXVVfvSjH2Xo0KFJkquvvjp77rlnkuTxxx/PL37xi9x1111597vfnSS59tpr06tXr9x888356Ec/+pqv8b/+1/9q8PjKK69Mp06dMm/evBx33HGV7R//+MczevToyuMVK1bkkEMOyaGHHpok6d279xs6VgAAVzQBAGxHf/jDH7Jx48YMHjy4sq1z587Zd999kyRLlixJq1atGuzffffds++++2bJkiXb9BorV67Maaedlr59+6ampibV1dV5/vnns2LFigbrtgalrU4//fRcf/31GTBgQM4999zcfffdr/cwAQCSCE0AAM3eqFGj8tBDD+Vb3/pW7r777jz00EPZfffds3HjxgbrOnTo0ODxMccckz/+8Y+ZMGFCnnnmmQwdOjSf//zn38zRAYCdjNAEALAd7b333mndunUWLlxY2bZ69er8/ve/T5Lst99+2bx5c4P9f/3rX7Ns2bL0799/m17jrrvuyhlnnJFjjz02+++/f9q2bZu//OUv2/S9e+yxR0aNGpUf/ehHufTSS3PllVc24ugAABpyjyYAgO2oY8eOGTNmTM4555zsvvvu6dq1a77whS+kRYu//Xtf3759c/zxx+e0007L9773vey6666ZNGlS3va2t+X444/fptfo27dv/u///b859NBDU1dXl3POOSft27d/ze+bMmVKBg0alP333z8bNmzIzJkzs99++72h4wUA3tpc0QQAsJ194xvfyJFHHpkPfehDGTZsWI444ogMGjSosv+HP/xhBg0alOOOOy5DhgxJURS59dZb07p16216/quuuiqrV6/OwIED84lPfCJnnHFGunbt+prf16ZNm0yePDkHHXRQ3vve96Zly5a5/vrrX/dxAgBUFUVRNPUQAAAAADR/rmgCAAAAoBRCEwAAAAClEJoAAAAAKIXQBAAAAEAphCYAAAAASiE0AQAAAFAKoQkAAACAUghNAAAAAJRCaAIAAACgFEITAAAAAKUQmgAAAAAohdAEAAAAQCn+P/V2TkOo4bVhAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "ax = sales['Unit_Cost'].plot(kind='hist', figsize=(14,6))\n", + "ax.set_ylabel('Number of Sales')\n", + "ax.set_xlabel('dollars')" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = sales['Unit_Cost'].plot(kind='hist', figsize=(14,6))\n", - "ax.set_ylabel('Number of Sales')\n", - "ax.set_xlabel('dollars')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "## Categorical analysis and visualization\n", - "\n", - "We'll analyze the `Age_Group` column:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DateDayMonthYearCustomer_AgeAge_GroupCustomer_GenderCountryStateProduct_CategorySub_CategoryProductOrder_QuantityUnit_CostUnit_PriceProfitCostRevenue
02013-11-2626November201319Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950
12015-11-2626November201519Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950
22014-03-2323March201449Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike2345120136610352401
32016-03-2323March201649Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike204512011889002088
42014-05-1515May201447Adults (35-64)FAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike445120238180418
\n", - "
" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eHEsJvcUqTy8" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "## Categorical analysis and visualization\n", + "\n", + "We'll analyze the `Age_Group` column:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7chBBwehqTy9", + "outputId": "d9ed7d5c-6089-46fe-ac51-7022c6b5b8d4", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 400 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Day Month Year Customer_Age Age_Group \\\n", + "0 2013-11-26 26 November 2013 19 Youth (<25) \n", + "1 2015-11-26 26 November 2015 19 Youth (<25) \n", + "2 2014-03-23 23 March 2014 49 Adults (35-64) \n", + "3 2016-03-23 23 March 2016 49 Adults (35-64) \n", + "4 2014-05-15 15 May 2014 47 Adults (35-64) \n", + "\n", + " Customer_Gender Country State Product_Category Sub_Category \\\n", + "0 M Canada British Columbia Accessories Bike Racks \n", + "1 M Canada British Columbia Accessories Bike Racks \n", + "2 M Australia New South Wales Accessories Bike Racks \n", + "3 M Australia New South Wales Accessories Bike Racks \n", + "4 F Australia New South Wales Accessories Bike Racks \n", + "\n", + " Product Order_Quantity Unit_Cost Unit_Price Profit Cost \\\n", + "0 Hitch Rack - 4-Bike 8 45 120 590 360 \n", + "1 Hitch Rack - 4-Bike 8 45 120 590 360 \n", + "2 Hitch Rack - 4-Bike 23 45 120 1366 1035 \n", + "3 Hitch Rack - 4-Bike 20 45 120 1188 900 \n", + "4 Hitch Rack - 4-Bike 4 45 120 238 180 \n", + "\n", + " Revenue \n", + "0 950 \n", + "1 950 \n", + "2 2401 \n", + "3 2088 \n", + "4 418 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateDayMonthYearCustomer_AgeAge_GroupCustomer_GenderCountryStateProduct_CategorySub_CategoryProductOrder_QuantityUnit_CostUnit_PriceProfitCostRevenue
02013-11-2626November201319Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950
12015-11-2626November201519Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950
22014-03-2323March201449Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike2345120136610352401
32016-03-2323March201649Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike204512011889002088
42014-05-1515May201447Adults (35-64)FAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike445120238180418
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "sales" + } + }, + "metadata": {}, + "execution_count": 32 + } ], - "text/plain": [ - " Date Day Month Year Customer_Age Age_Group \\\n", - "0 2013-11-26 26 November 2013 19 Youth (<25) \n", - "1 2015-11-26 26 November 2015 19 Youth (<25) \n", - "2 2014-03-23 23 March 2014 49 Adults (35-64) \n", - "3 2016-03-23 23 March 2016 49 Adults (35-64) \n", - "4 2014-05-15 15 May 2014 47 Adults (35-64) \n", - "\n", - " Customer_Gender Country State Product_Category Sub_Category \\\n", - "0 M Canada British Columbia Accessories Bike Racks \n", - "1 M Canada British Columbia Accessories Bike Racks \n", - "2 M Australia New South Wales Accessories Bike Racks \n", - "3 M Australia New South Wales Accessories Bike Racks \n", - "4 F Australia New South Wales Accessories Bike Racks \n", - "\n", - " Product Order_Quantity Unit_Cost Unit_Price Profit Cost \\\n", - "0 Hitch Rack - 4-Bike 8 45 120 590 360 \n", - "1 Hitch Rack - 4-Bike 8 45 120 590 360 \n", - "2 Hitch Rack - 4-Bike 23 45 120 1366 1035 \n", - "3 Hitch Rack - 4-Bike 20 45 120 1188 900 \n", - "4 Hitch Rack - 4-Bike 4 45 120 238 180 \n", - "\n", - " Revenue \n", - "0 950 \n", - "1 950 \n", - "2 2401 \n", - "3 2088 \n", - "4 418 " + "source": [ + "sales.head()" ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Adults (35-64) 55824\n", - "Young Adults (25-34) 38654\n", - "Youth (<25) 17828\n", - "Seniors (64+) 730\n", - "Name: Age_Group, dtype: int64" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-St8m_h4qTy9", + "outputId": "351d7294-bc10-465d-ad0f-553feec62199", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Age_Group\n", + "Adults (35-64) 55824\n", + "Young Adults (25-34) 38654\n", + "Youth (<25) 17828\n", + "Seniors (64+) 730\n", + "Name: count, dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
count
Age_Group
Adults (35-64)55824
Young Adults (25-34)38654
Youth (<25)17828
Seniors (64+)730
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ], + "source": [ + "sales['Age_Group'].value_counts()" ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales['Age_Group'].value_counts()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JIcx6FfXqTy9", + "outputId": "abbd650a-acdd-416c-f7aa-5dbda09acbce", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 516 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 36 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHiCAYAAAAK+t0cAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVvFJREFUeJzt3Xd4FNXCBvB3tqQ3CAkkEBISIEBooYpcepOmWFARpIg0AelNULBg43IF4ZOiVEHhCgoKyEVBujSRQAgECKEnENLr9u+PhdWYBFI2Obuz7+958khmZ2feRIlvzpw5I5lMJhOIiIiIZEYhOgARERFReWDJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhonIxb948NG3atETvCQkJwaJFi6yeZe/evahfvz4MBoPVj10eli9fjr59+4qOQWT3WHKIqFh+//13KJVK9O7du8LOKUkStm3bVubjTJ8+HXPmzIFSqQQAHD58GG3btoWvry9cXV1Rr149fPbZZ/neM2/ePEiSlO+jXr16xTrfzp070bp1a7i6uqJSpUro169fofslJyejRo0akCQJaWlplu2vvfYaTp8+jUOHDpXq6yUiM5XoAERkH1atWoXx48dj1apVuHPnDgIDA0VHKpbDhw8jLi4Ozz//vGWbu7s7xo0bh8aNG8Pd3R2HDx/GqFGj4O7ujpEjR1r2i4iIwK+//mr5XKV6/I/MrVu3YsSIEfjwww/RuXNn6PV6REdHF7rv8OHD0bhxY9y+fTvfdicnJ7zyyiv4/PPP0a5du5J+yUT0AEdyiOixsrKysHnzZowZMwa9e/fG2rVrC+zz8ccfo2rVqvD09MTw4cORl5eX7/WOHTti4sSJ+bb169cPQ4cOLfScISEhAIBnn30WkiRZPo+KikKnTp3g6ekJLy8vNG/eHKdOnSoy+6ZNm9CtWze4uLhYtkVGRmLAgAGIiIhASEgIBg0ahB49ehQYOVGpVKhWrZrlo0qVKkWeBwD0ej0mTJiABQsWYPTo0ahbty4aNGiAF198scC+y5YtQ1paGqZOnVrosfr27Ysff/wRubm5jzwnERWNJYeIHuu///0v6tWrh/DwcAwaNAirV6+GyWTK9/q8efPw4Ycf4tSpUwgICMAXX3xRpnOePHkSALBmzRokJCRYPh84cCBq1KiBkydP4o8//sDMmTOhVquLPM6hQ4fQokWLR57rzz//xNGjR9GhQ4d82y9fvozAwECEhoZi4MCBuHHjxiOPc/r0ady+fRsKhQKRkZEICAhAz549C4zkxMTE4L333sP69euhUBT+Y7hFixbQ6/U4fvz4I89JREVjySGix1q1ahUGDRoEAHjqqaeQnp6OAwcOWF5ftGgRhg8fjuHDhyM8PBwffPABGjRoUKZz+vn5AQB8fHxQrVo1y+c3btxA165dUa9ePdSpUwf9+/dHkyZNijzO9evXi7y0VqNGDTg7O6NFixYYO3YsXn/9dctrrVu3xtq1a7F7924sW7YM8fHxaNeuHTIzM4s819WrVwGY5/PMmTMHO3bsQKVKldCxY0ekpKQAADQaDQYMGIAFCxagZs2aRR7Lzc0N3t7euH79epH7ENGjseQQ0SPFxsbixIkTGDBgAADzJZyXXnoJq1atsuxz4cIFtG7dOt/72rRpUy55Jk+ejNdffx1du3bFxx9/jLi4uEfun5ubm+9S1d8dOnQIp06dwvLly7Fo0SJ8++23ltd69uyJ/v37o3HjxujRowd27dqFtLQ0/Pe//wUAjB49Gh4eHpYPADAajQCA2bNn4/nnn0fz5s2xZs0aSJKE7777DgAwa9Ys1K9f31IaH8XV1RU5OTmP/6YQUaFYcojokVatWgW9Xo/AwECoVCqoVCosW7YMW7duRXp6erGPo1Ao8l3iAgCdTlfiPPPmzcP58+fRu3dv7Nu3Dw0aNMAPP/xQ5P5VqlRBampqoa/VqlULjRo1wogRIzBp0iTMmzevyOP4+Pigbt26uHLlCgDgvffew5kzZywfABAQEAAA+UaxnJ2dERoaarnUtW/fPnz33XeW72WXLl0sOefOnZvvnCkpKZYRLCIqOZYcIiqSXq/H+vXrsXDhwnz/Q4+KikJgYKBl5KN+/foF5o4cO3Ys3+d+fn5ISEiwfG4wGIq86+ghtVpd6No2devWxaRJk7Bnzx4899xzWLNmTZHHiIyMRExMzGO/VqPRCI1GU+TrWVlZiIuLsxQZf39/1K5d2/IBAM2bN4ezszNiY2Mt79PpdLh27RqCg4MBmO++ioqKsnwvv/rqKwDmUaWxY8da3hcXF4e8vDxERkY+NjsRFY63kBNRkXbs2IHU1FQMHz4c3t7e+V57/vnnsWrVKowePRoTJkzA0KFD0aJFC7Rt2xYbN27E+fPnERoaatm/c+fOmDx5Mnbu3ImwsDD85z//ybc2TGFCQkKwd+9etG3bFs7OznBxccG0adPwwgsvoFatWrh16xZOnjyZ7/bwf+rRowfWrVuXb9v//d//oWbNmpZ1bw4ePIh///vfePPNNy37TJ06FX379kVwcDDu3LmDuXPnQqlUWi7bFcbLywujR4/G3LlzERQUhODgYCxYsAAA0L9/fwBAWFhYvvfcv38fgLko+vj4WLYfOnQIoaGhBfYnohIwEREVoU+fPqZevXoV+trx48dNAExRUVEmk8lkmj9/vqlKlSomDw8P05AhQ0zTp083NWnSxLK/Vqs1jRkzxlS5cmWTv7+/6aOPPjI988wzpiFDhlj2CQ4ONn322WeWz3/88UdT7dq1TSqVyhQcHGzSaDSml19+2RQUFGRycnIyBQYGmsaNG2fKzc0t8mtITk42ubi4mC5evGjZ9vnnn5siIiJMbm5uJi8vL1NkZKTpiy++MBkMBss+L730kikgIMDk5ORkql69uumll14yXbly5bHfM61Wa5oyZYrJ39/f5OnpaerataspOjq6yP1/++03EwBTampqvu3du3c3ffTRR489HxEVTTKZ/nGRnIhIZqZNm4aMjAysWLFCdJRiOX/+PDp37oxLly4VGEEjouLjnBwikr3Zs2cjODjYcveTrUtISMD69etZcIjKiCM5REREJEscySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWWLJISIiIlliySEiIiJZYskhIiIiWVKJDkBE1mEymZCWo0NKjhap2VqkZGuRmqNFSrYOabla5GkN0OiN0OiN0OqN0Oj/+lyjN0KnN0KSAIUkQaGQoJQAlVIBZ5UCTkoFnFTmP3u6qOHtqoaPmxpermr4uD783Mmy3UWtFP3tICJiySGyF+m5OtxMycGt1BzcTMk1/zPV/M/7WVqk5+pgMNrG83Z93NQI9HZFoI8rqvu4INDnwZ8ruaK6jyv8PZ0hSZLomEQkc3wKOZENMZlMuJGSg4uJmbiYkIlLdzNxLTkbN1NykJGnFx3PapxUCoRWcUdtfw/UreqJulU9UKeqJ0J83aFUsPwQkXWw5BAJkpGnw/nbGYhNzDCXmsRMXL6biWytQXQ0YZyUCoT6uaNOVU/Uq+aJJjV80CTIG54uatHRiMgOseQQVZD4+9n443rqg48UXLmXBRu5umTTFBIQ5ueByJo+iKxZCU2DfBBe1RMKjvgQ0WOw5BCVA53BiKibaTj1oNScvp6K5Gyt6Fiy4eGsQqPq3mgZUgn/quOHyJo+UCt5sygR5ceSQ2QlN5JzcOByEg7EJuHY1WRkaeQzh8bWuTsp0TrUF/+qXQXt6lRBnaqeoiMRkQ1gySEqpRytHseuJuNAbBIOXErCteQc0ZHogWpeLniyti/a1/FDx3A/+Lg5iY5ERAKw5BCVQEq2FrujE/FzdAKOx6dAqzeKjkSPoVJIeCLUFz0aVkOPiKrw93QRHYmIKghLDtFjJGdpsPt8InadS8Cxqyk2sxYNlZxCAprVrISnGlZDj4hqCKrsJjoSEZUjlhyiQtzP0mB3tLnYHI9nsZGrhtW90LtRIJ5rVh1VvTjCQyQ3LDlED+gMRuy9cBebT97Ewcv3WWwciFIhoW3tKniheQ10b1CVj6UgkgmWHHJ4l+9mYvPJm9h25jbuZ/E2b0fn5aJCnyaBeKF5DTSrWUl0HCIqA5YcckhZGj12RN3B5lM38eeNNNFxyEaF+bmjf4sgvNgiCJXdeYcWkb1hySGHcuVeJlYdvobtZ24jx4Efn0Al46xS4JmmgRjWthbqB3iJjkNExcSSQw7h4KUkrDocj4OXk8D/4qksWteqjGFtQ9CtQTU+TJTIxrHkkGzl6QzYfuY2Vh++hti7maLjkMxU93HF4DbBeLllTXi78QGiRLaIJYdkJzlLg3W/X8fGY9f5vCgqd65qJV5pXROjOoRyoUEiG8OSQ7JxP0uDFQfisOHYDeTqON+GKpazSoGXWwZhdMcwBHi7io5DRGDJIRlIztJgxcGr+Pr36yw3JJyTUoEXWtTAGx3DUKMSV1QmEoklh+xWcpYGKw9exdfHrvNOKbI5aqWEZyOrY2yn2gj2dRcdh8ghseSQ3UnJ1mLFwTh8/TvLDdk+pULCSy2DMKlrXfh5OouOQ+RQWHLIbmj0Bqw5cg3/99sVZObpRcchKhF3JyVGtg/DyPahcHXiYyOIKgJLDtmFnWcT8Mnui7iRkiM6ClGZ+Hs6Y3K3uujfIojr7BCVM5YcsmlRN9Pw/o4YnLqeKjoKkVWFV/XEzJ710Kmev+goRLLFkkM26U5aLj7dfRHbo+5whWKStX/VroJ5T0egtr+H6ChEssOSQzZFZzBi+f44/N/+K8jTGUXHIaoQTkoFRrYPxbjOteGi5nwdImthySGbcepaCmZ9fw6X72WJjkIkRM3Kbnj3mQh0CuclLCJrYMkh4dJzdfj454vYdPIGL00RAejVqBre6ROBat58TARRWbDkkFA/Rd3BeztikJSpER2FyKZ4OKswqVtdDH0yhHdhEZUSSw4JcTMlB29vj8b+2CTRUYhsWpMa3vjPS00R5seJyUQlxZJDFW7TiRt4f0cMsrlaMVGxuKgVmN6jHoa1DYEkcVSHqLhYcqjCJGdpMPP7c/gl5q7oKER2qU2oLxb0b8wHfxIVE0sOVYh9F+9i+pZzuJ/FuTdEZeHprMLbfRvgxRZBoqMQ2TyWHCpXuVoD3t8Zg2+O3xAdhUhWutb3x0fPNeZDP4kegSWHys2Zm2mYtPkM4u9ni45CJEu+7k5Y9HJTtKvjJzoKkU1iyaFyseJAHBb8LxZ6I//zIipPCgkY17kOJnapAwVvNSfKhyWHrCozT4ep30Xhf+c5uZioIrWt7YvFL0eiigcvXxE9xJJDVnMxMQNjNpzm5SkiQfw9nfH5gEg8EeorOgqRTWDJIav4/vQtzP4hGrk6rn1DJJJSIWFyt7p4o2MY19Qhh8eSQ2Wi1Rvx7k/nsZF3TxHZlE7hflg8IBJeLmrRUYiEYcmhUktIz8Xor/9A1K100VGIqBC1/T2wakgLBPu6i45CJARLDpVK9O10DF93EnczuLgfkS2r5KbG8kHN0ZrzdMgBseRQif0ScxcTNv2JHD57isguqJUS5vdrhBdbcpVkciwsOVQiXx26ig93XQCXvyGyPyPa1cKsnvW5ng45DJYcKhaD0YS5P0ZjwzFOMCayZ13q+WPxgEh4OKtERyEqdyw59FhZGj3GbjyNA5eSREchIiuoV80T64e3gr+ni+goROWKJYceKTE9D0PXnMDFxEzRUYjIimpWdsOG4a1R09dNdBSicsOSQ0WKv5+NQV8dx+20XNFRiKgc+Hs6Y/3wVqhXzUt0FKJywZJDhTp/Jx1DVp/A/Syt6ChEVI68XFRYM6wlmgdXFh2FyOpYcqiAU9dSMGztSWTm6UVHIaIK4KpW4otBzdAp3F90FCKrYsmhfI5cuY/X153iM6iIHIxaKeHf/ZvgmabVRUchshqWHLLYd/Euxmw4DY3eKDoKEQmgkID3+zXEwNbBoqMQWQUXSiAAwM/nEvDmpj+hM7DzEjkqowmYsy0aEiS80rqm6DhEZaYQHYDE23M+EeO/ZcEhIsBkAmZvO4dvT3DhT7J/LDkO7sClJIz79k/o+ZwGInrAZALe+uEcNrHokJ1jyXFgx64mY9TXp6DlHBwi+oeHRef707dERyEqNZYcB3X6RiqGrz2JPB0LDhEVzmgCpm05i51nE0RHISoVlhwHFH07HUNXn0C2lreJE9GjGYwmTNz8J36JuSs6ClGJseQ4mEt3MzF49QlkcKE/IiomncGEcd+cxqlrKaKjEJUIS44DuZWag0FfHUdKNh/VQEQlo9Eb8fr6U7hyjw/rJfvBkuMg0nN1GLbmJO5lakRHISI7lZajw5DVJ3EvI090FKJiYclxAFq9EaO+PoXL97JERyEiO3c7LRdD1pxEZp5OdBSix2LJcQAztp7Fsau8lk5E1nEhIQOjN/wBnYF3Z5JtY8mRuYV7YvHDn7dFxyAimTlyJRnTvosCH39ItowlR8Y2n7yBJfuuiI5BRDK17cwdfLI7VnQMoiKx5MjUwUtJmP1DtOgYRCRzyw/EYfsZjhaTbWLJkaH4+9kY+81pPo+KiCrEjK1nEX07XXQMogJYcmQmR6vHqK9PIZOL/RFRBcnTGTHq6z+QnMUlKsi2sOTIzLQtZ3HpLm8VJ6KKdTst1zyCzDuuyIaw5MjIyoNxfJAeEQlz7GoKPth5QXQMIguWHJk4GnefdzkQkXBrj17Df0/dFB2DCABLjizcScvF+G/+hIETjYnIBszZFo2om2miYxCx5Ng7jd6AMRv+QDIfuklENkKrN2L8t3/y0Q8kHEuOnftw5wVE3eKtm0RkW26k5HCtLhKOJceO7bt4F+t+vy46BhFRoX6MuoPvOD+HBGLJsVNJmRpM33JWdAwiokea++N5XE3ishYkBkuOnZq2JQr3szgPh4hsW47WgPHf/gmtnuvnUMVjybFDa4/EY39skugYRETFcv5OBj7++aLoGOSAWHLsTGxiJj7iDwsisjNrjsbjt4v3RMcgB8OSY0fydAZM2PQnNBz2JSI7YzKZH+SZnsPbyqnisOTYkX//LxYXEzNFxyAiKpV7mRq8tyNGdAxyICw5duLMzTSsPhIvOgYRUZlsPX0L+2N52YoqBkuOHdAZjJi59Sz41AYikoO3vj/H1ZCpQrDk2IHl++N4mYqIZONOeh4+3MUbKKj8seTYuLikLCz57YroGEREVrXp5A0cvXJfdAySOZYcG2YymTBr6zkuokVEsmMyATO/P4ccrV50FJIxlhwbtuH4DZy4liI6BhFRubiRkoP/7LkkOgbJGEuOjUpMz8OnXPSPiGRu7dFruHyXcw6pfLDk2Kj5uy4gU8NhXCKSN73RhHd/4to5VD5YcmzQyWsp+CnqjugYREQV4vCV+9gdnSA6BskQS46NMZlMeI+/1RCRg3l/xwXk6QyiY5DMsOTYmO9O3cK52+miYxARVajbablYtj9OdAySGZYcG5Kl0ePT/8WKjkFEJMSKg3G4lZojOgbJCEuODVmy7zLuZ2lExyAiEiJPZ8QHOy6IjkEywpJjI64nZ2PN4WuiYxARCbX7fCJOxHN9MLIOlhwb8eGuC9AauLIxEdGC/3GNMLIOlhwbEHUzDf87f1d0DCIim3DyWip+i70nOgbJAEuODVj4C5c1JyL6uwW7Y2EymUTHIDvHkiPYyWspOHgpSXQMIiKbEpOQgR1nuUAglQ1LjmD/5i3jRESF+uyXS9BzriKVAUuOQEeu3Mdx3kVARFSoq/ezseWPW6JjkB1jyRFo4R6O4hARPcrney9Do+fjHqh0WHIE+e3iPZy+kSY6BhGRTbuTnofvTnE0h0qHJUeQz37lHVVERMXx5aGrMBh5pxWVHEuOAEev3MfZW3wIJxFRcVxPzsGuc7zTikqOJUeAFQevio5ARGRXlh/gE8qp5FhyKlhsYiYOcF0cIqISOX8ng2uKUYmx5FSwlRzFISIqFY7mUEmx5FSguxl5+CnqjugYRER26WhcMqJupomOQXaEJacCrTlyjU8aJyIqA47mUEmw5FSQLI0eG49fFx2DiMiu/e98Im6n5YqOQXaCJaeCbD55E5l5etExiIjsmtEEfHv8hugYZCdYcioIR3GIiKxj08mb0PHSPxUDS04FOHY1GVeTskXHICKShftZGvzvfKLoGGQHWHIqwKYTHFolIrKmjcf4c5UejyWnnKXlaPFzNH/jICKypt+vJiMuKUt0DLJxLDnlbOvp29Doee2YiMjaOJpDj8OSU854qYqIqHxsPX0LeTqD6Bhkw1hyytGpaym4fI/DqURE5SE9V4efo/l0cioaS045+vbETdERiIhkbduffFQOFY0lp5zkag38DYOIqJwduXIf97M0omOQjWLJKSd7L95FjpbXiomIypPeaMLOs/yFkgrHklNO+LRxIqKKse3MbdERyEax5JSDLI0e+2OTRMcgInIIf95Iw43kHNExyAax5JSDPecTuTYOEVEF2s7RHCoES0454KUqIqKKtZ0/d6kQLDlWlpajxeEr90XHICJyKFfuZeH8nXTRMcjGsORY2e7oROgMJtExiIgczi8xd0VHIBvDkmNlu/gwTiIiIfZeuCc6AtkYlhwrytHqcexqsugYREQOKfpOOu5m5ImOQTaEJceKjlxJhpZ3VRERCWEyAfsucjSH/sKSY0W/xfIvFxGRSHsvcF4O/YUlx4r28zcIIiKhDl+5jzwdH6lDZiw5VnIxMQN30nktmIhIpDydEUe4jAc9wJJjJb9d5GMciIhswa+8y4oeYMmxEs7HISKyDQcv8ZdOMmPJsYKMPB1OX08VHYOIiADcTsvFzRQ+sJNYcqzixNUU6I1c5ZiIyFb8zjXLCCw5VnHyWoroCERE9DfHr/LnMrHkWMUJlhwiIpvC1ecJYMkps1ytAdG3+eRbIiJbcjstF7dSOS/H0bHklNGfN1P51HEiIht0jJesHB5LThmdjOddVUREtoiXrIglp4w46ZiIyDYdj2fJcXQsOWWgNxjx5w2O5BAR2aKbKblIztKIjkECseSUwYWETGRr+SA4IiJbdY43hjg0lpwy4F8eIiLbdv5OhugIJBBLThnEJLDkEBHZsnO3+HPakbHklEEMf0MgIrJp0XdYchwZS04pGY0mxCZmio5BRESPcCs1F2k5WtExSBCWnFK6lpzNScdERHYg+jZH3R0VS04pxSTwLw0RkT3gJSvHxZJTSpyPQ0RkH/h8QcfFklNKHMkhIrIPcUnZoiOQICw5pcRJx0RE9uF6cjZMJj5I2RGx5JRCns6AxIw80TGIiKgYcrT8me2oWHJK4WZKDvhLARGR/YjnJSuHxJJTCteSc0RHICKiEohPZslxRCw5pXCdf1mIiOwKR3IcE0tOKdxI4UgOEZE9ib/PkuOIWHJK4TovVxER2RWWHMfEklMKHMkhIrIvN1NzYDTyjhFHw5JTQgajCbdSWXKIiOyJzmBCcjYf1OloWHJK6G5GHnQG/jZARGRv7mVyrRxHw5JTQkmZGtERiIioFO5l8Oe3o2HJKaH7WfxLQkRkjziS43hYckooOYvXdImI7BFHchxPqUpO586dkZaWVmB7RkYGOnfuXNZMNu1+Nv+SEBHZo3ucbuBwSlVy9u/fD6224IhGXl4eDh06VOZQtux+JkdyiIjsES9XOR5VSXY+e/as5c8xMTFITEy0fG4wGLB7925Ur17deulsUDJHcoiI7BJHchxPiUpO06ZNIUkSJEkq9LKUq6srlixZYrVwtogTj4mI7BN/fjueEpWc+Ph4mEwmhIaG4sSJE/Dz87O85uTkBH9/fyiVSquHtCWceExEZJ+y8vSiI1AFK1HJCQ4OBgAYjcZyCWMPUrhiJhGRXcrWGERHoApWopLzd5cvX8Zvv/2Ge/fuFSg977zzTpmD2apsDX8TICKyR1qDEVq9EU4qrp7iKEpVcr788kuMGTMGVapUQbVq1SBJkuU1SZJkW3JMJhNydfxNgIjIXuVo9XBSOYmOQRWkVCXngw8+wPz58zFjxgxr57FpuToD+BBbIiL7laXRw8eNJcdRlGrMLjU1Ff3797d2Fpun0ejQyDMbQS558FDxshURkb3hvBzHUqqRnP79+2PPnj0YPXq0tfPYtEqGJPykG2H+RAWY1ApA5QqTyhVGlQsMKlcYlC7QK1ygVzhDp3CBVuEMjeQCDZyQB2fkwRm5cEKOSY0cozOyjWpkGZ2QaVAjw6BGpkGFdL0a6XoV0nRKpOnUyDbI+441IqKKkq3lL6iOpFQlp3bt2nj77bdx7NgxNGrUCGq1Ot/rb775plXC2Rx9/jUWJJMR0GVD0mVDgTLM4n4UNWByUgJqlwdlyhUG5cMy5Qy9wgXaB2VKK5lLlOZBkco1OSPHpEa2yclcpgxOyDSqzYVKr0aGQYV0nQppehXSdCrksEwRkczx5hHHIplMphLPMqlVq1bRB5QkXL16tUyhbFZiNLC8regU5cakUAEqFxgfjE5ZypTSPCqlk5yhVbhAYylTTsiFM3JNTsgxOSHHqEaWyQlZRjUy9WrL6NTDkal0nQopOhU0Rt7ZQERirHi1OXpEVBMdgypIqQYf4uPjrZ3DPhjkvVqmZNQD2iwotVkAymFkSgLg9KBMqc2jUkal+VKfXuEC/YNLfeZRKXOZeniZz1ym1OYyZXJClsFcpsyX+AqOTKXo1NAZpcdGIiLHYuDdIw6lXK6wyJaeCwFag2TUA5pMKDWZeHiBzNmqJ8CDMqX+q0w9mC9lUDhDr3Qxj0w9GJUyl6m/5ks9HJnKNqqRbXRCptEJWQ9GpTL0KmToVUjXq5D6YGTKYOLIFJG9MJb84gXZsVKVnNdee+2Rr69evbpUYWyezEdy5EYy6gCNDkpNBpQA1I99RwkpADgDJqUToPpHmVKa50vpHs6ZelCmHk4+z8Nfo1LZRidkPShSmQ9Hp/RqpOvMZSpNr0KqTskyRWQF9jqQ07FjRzRt2hSLFi2q8HOvWrUKmzdvxp49eyr83A/t3r0bM2fOxOnTp6FQFP9nYalKTmpqar7PdTodoqOjkZaWVuiDO2WDvwFQISSDFjBoodSkl3OZcoZJ/XC+lHnulP7hyJRU2GU+F+RCjdwHRSr7wXwpy5wpoxoZOhXSDWqk6cyTz1P1KphMvMxH8lWKaaiPlJSUhHfeeQc7d+7E3bt3UalSJTRp0gTvvPMO2ra13hzO77//vsBNPhUhLy8Pb7/9Nr777rt829PS0jB79mx8//33SElJQXBwMBYtWoRevXoVOMbHH3+MWbNmYcKECaUuaU899RTefvttbNy4Ea+++mqx31eqkvPDDz8U2GY0GjFmzBiEhYWV5pD2QWXViypEJSIZNJAMGgBpKJf74JTA1YC6GOquhLteCU+TEzyNzvAwqOFhUMPdqIK7XglXgxKuOgkuevOHsxZw0pngpDNCpTVCpTVApdFDqdVDkaeDpNECGi2QqwHy8mDS8rIviRPYdgHQtLrVjvf8889Dq9Vi3bp1CA0Nxd27d7F3714kJydb7RwAULly5TK932AwQJKkEo2CAMCWLVvg5eWVr7BptVp069YN/v7+2LJlC6pXr47r16/Dx8enwPtPnjyJFStWoHHjxo89lyRJiI+PR0hISKGvDx06FJ9//nn5l5zCKBQKTJ48GR07dsT06dOtdVjbwpJDMhd67xKejuyDdWlny+0cKpMTvIzO8DI5w8v4V5FyN6rgblDBTaeEm0EBF50EF70CLvoHJUprglpnglprgEprgFKjh0Kjg0Kjg5SnhaTRwJSrgSkvDzBwwTcqgsJ6I5VpaWk4dOgQ9u/fjw4dOgAwP8i6VatWBfabOnUqtm/fDo1GgxYtWuCzzz5DkyZNAADz5s3Dtm3bMGXKFLz99ttITU1Fz5498eWXX8LT0xNAwctVqampmDBhAn766SdoNBp06NABn3/+OerUqQMAWLt2LSZOnIj169dj5syZuHTpEq5cuYJr165h+vTpOH/+PNRqNSIiIvDNN99YHsD9T5s2bULfvn3zbVu9ejVSUlJw9OhRy+hSYcUkKysLAwcOxJdffokPPvigdN/kv+nbty/GjRuHuLi4Yg+oWHXicVxcHPR6Ga9BoGTJIfkbE3MAu0LDkJSXUi7H10tGpChzkYLccjk+IMHF5AJvozO8TC7wMjjBw6iGh8EJ7galuUjpFeYRKb0CzlrAWQ84PyxROiNUGgNU2r9GoxQaHZCnMY9I5eXBlKfh5Ws7JZVwJONRPDw84OHhgW3btuGJJ56As3Ph/4/o378/XF1d8fPPP8Pb2xsrVqxAly5dcOnSJcsITVxcHLZt24YdO3YgNTUVL774Ij7++GPMnz+/0GMOHToUly9fxo8//ggvLy/MmDEDvXr1QkxMjKV45OTk4JNPPsFXX30FX19fVK5cGU2bNsWIESPw7bffQqvV4sSJE/meP/lPhw8fLjBy8uOPP6JNmzYYO3Ystm/fDj8/P7zyyiuYMWMGlMq/xpnHjh2L3r17o2vXrlYpOTVr1kTVqlVx6NCh8i05kydPzve5yWRCQkICdu7ciSFDhpTmkPaBIznkANw1mZhiqoSZKJ+SUxHyJD3ylHrcRXa53EMqmZTwggu8DM7wNDqZL+0Z1HA3quGuV8Jdr3pQoh6MRukAZ515REqtNUKtNT4oUQ9HpLSQ8nSARgM8HI3S6awfnACV9f6DUKlUWLt2LUaMGIHly5ejWbNm6NChA15++WXL5ZnDhw/jxIkTuHfvnqUE/fvf/8a2bduwZcsWjBw5EoB5ysfatWstIzevvvoq9u7dW2jJeVhujhw5gieffBIAsHHjRgQFBWHbtm2Wxy7pdDp88cUXlhGjlJQUpKeno0+fPpaSUL9+/SK/vrS0NKSnpyMwMDDf9qtXr2Lfvn0YOHAgdu3ahStXruCNN96ATqfD3LlzAZhHgE6fPo2TJ0+W7ptbhMDAQFy/fr3Y+5fq3/aff/6Z73OFQgE/Pz8sXLjwsXde2TWWHHIQvS/+hi1Nu+BU+mXRUWySSQLSkYd0VV65ncPJ5AxPkzO8jc7wNDwsUk5wM6gso1FuBuWDy3oSXHQP50aZHpQoA1RaI5QaHZQaPSSNFlLew/lReeYiZTSWW35bJVmx5ADmOTm9e/fGoUOHcOzYMfz888/49NNP8dVXX2Ho0KGIiopCVlYWfH19870vNzcXcXFxls9DQkIsBQcAAgICcO/evULPeeHCBahUKrRu3dqyzdfXF+Hh4bhw4YJlm5OTU765MJUrV8bQoUPRo0cPdOvWDV27dsWLL76IgICAQs+Tm2sebXVxccm33Wg0wt/fHytXroRSqUTz5s1x+/ZtLFiwAHPnzsXNmzcxYcIE/PLLLwXe+3c9e/bEoUOH8m2LiIiwjCwFBwfj/Pnz+V53dXVFTk5Okcf8p1L92/7tt99K8zb7x8tV5EDeSriFF91V0JtkfAnahmklA5KlHCQrcsppRTMF3IzO8DY5w8voAi+jE9yNDyaZ6x8UKYMCrnrFX6NRejyYG2WEWmuC+uFoVJ4OCq15RAq5WvOIVN6DESkbI6mt/wRyFxcXdOvWDd26dcPbb7+N119/HXPnzsXQoUORlZWFgIAA7N+/v8D7/j5R9593TkmSBGMZS6irq2uBS1Fr1qzBm2++id27d2Pz5s2YM2cOfvnlFzzxxBMF3u/r6wtJkgrcUR0QEAC1Wp3v0lT9+vWRmJgIrVaLP/74A/fu3UOzZs0srxsMBhw8eBBLly6FRqOBUqnEV199ZSlSAFCnTh3s2rUL1aubJ4YXdjdZSkoK/Pz8iv09KNNfnaSkJMTGxgIAwsPDS3Riu8SRHHIgde7GYkBkH3xdjpOQSawchQ450CFBmVUux5dMKniZXOBjdDFf1jM6me/WM6rhZlD+7W49Rf7RKD3gpH1wt96DO/UeTjSXHt6pp9HAlJsHlHAeqMKl/H+ON2jQANu2bQMANGvWDImJiVCpVEXeNVRS9evXh16vx/Hjxy2Xq5KTkxEbG4sGDRo89v2RkZGIjIzErFmz0KZNG3zzzTeFlhwnJyc0aNAAMTEx6N69u2V727Zt8c0338BoNFru1rp06RICAgLg5OSELl264Ny5c/mONWzYMNSrVy/fvJ2HZebvgoODi/w+5eXlIS4uDpGRkY/9Gh8qVcnJzs7G+PHjsX79ekvTVCqVGDx4MJYsWQI3N7fSHNb2seSQg3njwkH8HBKK+xr7nZ9D4pgkIF3KQ7qi/EZ0nB9OMDc5/61IqeChV8PN+OCynl75YMkDoLKfB6z1f6jk5GT0798fr732Gho3bgxPT0+cOnUKn376KZ555hkAQNeuXdGmTRv069cPn376KerWrYs7d+5g586dePbZZ9GiRYsSn7dOnTp45plnMGLECKxYsQKenp6YOXMmqlevbjlvYeLj47Fy5Uo8/fTTCAwMRGxsLC5fvozBgwcX+Z4ePXrg8OHDmDhxomXbmDFjsHTpUkyYMAHjx4/H5cuX8eGHH1oezu3p6YmGDRvmO467uzt8fX0LbC+JY8eOwdnZGW3atCn2e0o98fjAgQP46aefLPfOHz58GG+++SamTJmCZcuWleawto+Xq8jBeORlYLJUGW/Z8SRkkjeNwoAkZCMJ2cXa/yefoueIlJSHhwdat26Nzz77DHFxcdDpdAgKCsKIESPw1ltvATBfdtq1axdmz56NYcOGISkpCdWqVUP79u1RtWrVUp97zZo1mDBhAvr06QOtVov27dtj165dj1ww0M3NDRcvXsS6deuQnJyMgIAAjB07FqNGjSryPcOHD0eLFi2Qnp4Ob29vAEBQUBD+97//YdKkSWjcuDGqV6+OCRMmYMaMGaX+eorj22+/xcCBA0s0kFKqp5BXqVIFW7ZsQceOHfNt/+233/Diiy8iKSmppIe0H+9VAYy864Ecy5CmnXE6/YroGERltq//Pvi5yXxqhZX1798fzZo1w6xZs4RluH//PsLDw3Hq1CnUqlWr2O8r1YIBOTk5hTZQf3//Es16tku8ZEUOaHbCHagkPs+X7J+72l10BLuzYMECeHh4CM1w7do1fPHFFyUqOEApR3K6dOkCX19frF+/3nJ7WG5uLoYMGYKUlBT8+uuvJT2k/VhQG8iW8UgVURE+adYHG1I5CZnslwQJUYOjHrn4HclLqX41W7RoEZ566inUqFHDsshQVFQUnJ2dhT6ltEK4+7HkkEN6I+YQfg4JQbIm9fE7E9kgN7UbC46DKVXJadSoES5fvoyNGzfi4sWLAIABAwZg4MCBcHV1tWpAm+PhD9yLEZ2CqMJ55qVjslQFs8GSQ/bJy8lLdASqYKUqOR999BGqVq2KESNG5Nu+evVqJCUllfsMa6E8qolOQCRM3wv7sKVpJ/zJSchkhzjh2PGUauLxihUrUK9evQLbIyIisHz58jKHsmke/qITEAkjwYTZiYlQSsrH70xkY/xd+fPb0ZSq5CQmJhb6rAs/Pz8kJCSUOZRN8+RIDjm28MQYvOj9+FVViWyNvxtLjqMpVckJCgrCkSNHCmw/cuRIgaeVyo5H6RdvIpKL8RcOo7JzJdExiEqEl6scT6nm5IwYMQITJ06ETqdD586dAQB79+7F9OnTMWXKFKsGtDksOUTwzEvHJIUf3uYkZLIjVd3489vRlKrkTJs2DcnJyXjjjTeg1WoBmJ/COmPGDKErIlYIXq4iAgA8E7MXW5p0RFRGnOgoRMXCkRzHU6rFAB/KysrChQsX4Orqijp16sDZ2QFWA87LAD4OEp2CyCZcCGiAl11zYDQZRUcheqztz2xHqE+o6BhUgUo1J+chDw8PtGzZEg0bNnSMggMALl6AWqZPWScqofoJMejvEyE6BlGxcOKx4ylTyXFYvI2cyOLNC4dR2dlHdAyiR3JTucHDSezzl6jiseSUBhcEJLLwyk3HRAWLP9k2zsdxTCw5pVG5ZE9BJZK7fjF70dgrTHQMoiLxzirHxJJTGn7hohMQ2RQJJryVlASFxB8pZJtCvEJERyAB+BOpNPwKPtKCyNFF3InGC5yETDYqzIcjjY6IJac0OJJDVKg3LxxBJSdv0TGICmDJcUwsOaXhEwKoXEWnILI53rlpmKDi3AeyPSw5joklpzQUCqBKHdEpiGzSc+f3opEXF1wj2+Hj7IMqrlVExyABWHJKi/NyiAolwYTZ95M5CZlsRqg3S7ej4k+h0uK8HKIiRdw+h+c4CZlsBC9VOS6WnNLiSA7RI024+Dt8OAmZbABLjuNiySktlhyiR/LJScGbKq4OTuLV9qktOgIJwpJTWpVrAUoHeSgpUSk9H7MXEV5cIZzE4kiO42LJKS2FkndYET2GwmTE7ORUSJBERyEH5e3szTurHBhLTlkENBGdgMjmNbp1Fs9Vaig6BjmoCF9OgHdkLDllEdRadAIiuzAh9hi8nbxExyAH1NS/qegIJBBLTlnUbCM6AZFdqJSdjDfVgaJjkAOK9I8UHYEEYskpC7+6gJuv6BREduGF87+igWeI6BjkQJSSEo2rNBYdgwRiySmroCdEJyCyCwqTEW+lpnMSMlWYupXqwk3tJjoGCcSSU1Y1WXKIiqvJzSj04yRkqiC8VEUsOWXFeTlEJTIx9ji8nDxFxyAHwJJDLDllFdgUULmKTkFkNypn38d4dXXRMcgB8M4qYskpK6UaqN5cdAoiu/Li+V9R3zNYdAySsQD3AFRz52NFHB1LjjVwXg5RiZgnIWdyEjKVG47iEMCSYx0sOUQl1vTmGTzNSchUTjgfhwCWHOsIagVI/FYSldSkSyfgqfYQHYNkqHU1rkhPLDnW4eINBPK3BqKS8s1KwljnINExSGaCPIMQ6hMqOgbZAJYca6nbU3QCIrv0cvSvCOckZLKi9jXai45ANoIlx1rq9RKdgMguKU0GzE7N4iRkshqWHHqIJcdaqkYAPvxtlKg0Im/+ib6chExW4K52R8uqLUXHIBvBkmNN4bxkRVRaky6d5CRkKrM2AW2gVqpFxyAbwZJjTeG8ZEVUWlWy7uENTkKmMuKlKvo7lhxrCm5rvtOKiEplQPSvqOtRU3QMslMSJLSr0U50DLIhLDnWpFQBtbuJTkFkt5QmA95KzxUdg+xUhG8EqrhWER2DbAhLjrXxLiuiMml+4w/04SRkKoX2QbxURfmx5Fhb7W6AgpPeiMpiyuU/4KF2Fx2D7EyHGh1ERyAbw5JjbS5eQEhb0SmI7FqVzLsY48wlGaj4gjyD0MC3gegYZGNYcspDeG/RCYjs3ivnf0VtD95tRcXTN7Sv6Ahkg1hyykODZwCFSnQKIrumMuoxOyNPdAyyE33C+oiOQDaIJac8eFblXVZEVtDi+h/oxUnI9BiR/pEI8uSoHxXEklNeIgeKTkAkC1OvnIa7yk10DLJhfUI5ikOFY8kpL3WfAty4XgNRWfllJGKMa4joGGSjnBRO6BHSQ3QMslEsOeVFqQYavyQ6BZEsDIzmJGQqXIegDvB25krzVDiWnPIUOUh0AiJZUBn1eCtTKzoG2SBeqqJHYckpT1UbAIGRolMQyULLayfRk5OQ6W8qOVfis6rokVhyyhtHc4isZkrcGbhxEjI90COkB9RcYZ4egSWnvDV8AVC5iE5BJAtV0+9gtGst0THIRjxT+xnREcjGseSUN1cfoB6vGRNZy6DoXxHqUUN0DBKsoW9DNKzCy5f0aCw5FYFr5hBZjdqow1tZOtExSLCBDfhzlR6PJaci1OoI+NQUnYJINlrHn0SPShGiY5Ag/q7+XBuHioUlpyIoFMATb4hOQSQrU6+ehavKVXQMEuClei9xwjEVC0tORWk2GHCtJDoFkWxUS7uNUa6homNQBXNWOqN/3f6iY5CdYMmpKE7uQMvXRacgkpXB0b8ixL266BhUgXqH9kYlF/7CSMXDklORWo3i7eREVqQ26jAr2yg6BlWgQfW59hgVH0tORfLwA5oMEJ2CSFaejD+ObpyE7BBaB7RGnUp1RMcgO8KSU9GeHA9I/LYTWdP0q+c4CdkBvFr/VdERyM7w/7YVzTeMiwMSWVm1tFsY6RYmOgaVo2CvYLSv0V50DLIzLDkitJ0oOgGR7AyJ/hUh7oGiY1A5GRIxBJIkiY5BdoYlR4QazYHgtqJTEMmK2qDFzBzRKag8VPeojn61+4mOQXaIJUeUthNEJyCSnbZXj6ErJyHLzugmo7n4H5UKS44odboD/g1EpyCSnenx0XBVcqkGuQjxCkHf0L6iY5CdYskRRZKADjNEpyCSnYDUm3jdvbboGGQlY5qMgVKhFB2D7BRLjkgR/YDASNEpiGRnaPRe1HQLEB2Dyqi2T208Vesp0THIjrHkiNZlrugERLLjZNBgVh5/vNm7sU3HQsF1xagM+F+PaGGdgFodRKcgkp1/xf2OzpU4781e1a9cH11qdhEdg+wcS44t6MrRHKLyMCM+Bi5KZ9ExqBTGNh3LdXGozFhybEH15kCDZ0SnIJKdwNQbGO7OZx3Zm8Z+jdEhiCPcVHYsObai6zxA6SQ6BZHsvBa9F0Fu1UTHoBJ4M/JN0RFIJlhybEXlUKDlCNEpiGTHyaDBzDyV6BhUTJ2DOqN1QGvRMUgmWHJsSYdpgGsl0SmIZKd93FF09KkvOgY9hpPCCVNbThUdg2SEJceWuFbiAoFE5WTG9Qtw5iRkmzY4YjCCPINExyAZYcmxNS1fByqHiU5BJDs1Um5guEdd0TGoCP6u/hjRiJfsybpYcmyNUg30Xig6BZEsvRa9FzU4CdkmTWw+EW5qN9ExSGZYcmxRWCegyQDRKYhkx1mfhxka3sVoa1pUbYG+YXwIJ1kfS46t6vEh4FZFdAoi2el45TA6cBKyzVApVJjzxBzRMUimWHJslVtlc9EhIqubceMiJyHbiFfrv4owH/udhzhv3jw0bdq0VO999dVX8eGHYn/Ov/zyy1i4UL5TJFhybFmTl4CwzqJTEMlOUPJ1DOMkZOGquVfD6CajrXIsk8mErl27okePHgVe++KLL+Dj44Nbt26V6RySJGHbtm1lOsZDUVFR2LVrF958s3QLH0ZFRWHAgAEICgqCq6sr6tevj8WLF+fbZ//+/ZAkqcBHYmKiZZ85c+Zg/vz5SE9PL9PXY6tYcmxdn88ATsYjsrrh5/ehultV0TEc2uzWs6022ViSJKxZswbHjx/HihUrLNvj4+Mxffp0LFmyBDVq1LDKuaxhyZIl6N+/Pzw8PIr9noSEBOj1egDAH3/8AX9/f2zYsAHnz5/H7NmzMWvWLCxdurTA+2JjY5GQkGD58Pf3t7zWsGFDhIWFYcOGDWX/omwQS46tqxQCdJwlOgWR7LjocjFd6yI6hsN6OuxpdAzqaNVjBgUFYfHixZg6dSri4+NhMpkwfPhwdO/eHTVr1kSrVq3g7OyMgIAAzJw501IYACAkJASLFi3Kd7ymTZti3rx5ltcB4Nlnn4UkSZbPH/r6668REhICb29vvPzyy8jMzCwyp8FgwJYtW9C37+MnW+fl5WHz5s3o2bMngoKCkJ2dDQB47bXXsHjxYnTo0AGhoaEYNGgQhg0bhu+//77AMfz9/VGtWjXLh0KR/3/9ffv2xaZNmx6bxR6x5NiDNmOBgCaiUxDJTufLh9COk5ArXDX3apjZama5HHvIkCHo0qULXnvtNSxduhTR0dH47LPP0KtXL7Rs2RJRUVFYtmwZVq1ahQ8++KDYxz158iQAYM2aNUhISLB8DgBxcXHYtm0bduzYgR07duDAgQP4+OOPizzW2bNnkZ6ejhYtWhS5z++//47Ro0cjICAAkydPRsOGDXHmzBl4e3sX+Z709HRUrly5wPamTZsiICAA3bp1w5EjRwq83qpVK5w4cQIajabIY9srPtDFHiiUQN/PgS87AyaD6DREsjLrRiyO+zhBa9SKjuIQJEh4v+378HTyLLdzrFy5EhERETh48CC2bt2KlStXIigoCEuXLoUkSahXrx7u3LmDGTNm4J133ikwslEYPz8/AICPjw+qVcu/1pLRaMTatWvh6Wn+ml599VXs3bsX8+fPL/RY169fh1KpzHfZCABu3bqFdevWYd26dbh9+zaeffZZbN68GV27dn1sxqNHj2Lz5s3YuXOnZVtAQACWL1+OFi1aQKPR4KuvvkLHjh1x/PhxNGvWzLJfYGAgtFotEhMTERwc/NjvhT1hybEXgU2BJ8YAvxe83kpEpReUfA1Dg3pjZfo50VEcwkvhL+GJgCfK9Rz+/v4YNWoUtm3bhn79+mH9+vVo06YNJEmy7NO2bVtkZWXh1q1bqFmzZpnOFxISYik4gLlc3Lt3r8j9c3Nz4ezsnC8PYJ4EvG7dOjz33HM4duxYoaMyhYmOjsYzzzyDuXPnonv37pbt4eHhCA8Pt3z+5JNPIi4uDp999hm+/vpry3ZXV1cAQE5OTrHOZ094ucqedJoN+NYRnYJIdkac34dAV//H70hlUtOzJia3mFwh51KpVFCpiv97vEKhgMlkyrdNp9MV671qtTrf55IkwWg0Frl/lSpVkJOTA602/+jhnDlzMHPmTBw/fhx169bFuHHjcPz48UeeOyYmBl26dMHIkSMxZ87j1xtq1aoVrly5km9bSkoKgL9Gq+SEJceeOLkBL6wGuL4HkVW56HIxXecqOoasKSQF5v9rPlxVFf99rl+/Pn7//fd8JebIkSPw9PS03HHl5+eHhIQEy+sZGRmIj4/Pdxy1Wg2DoexTBh6uqxMTE5Nve+3atfHRRx/hxo0b+Oabb5CamopOnTqhbt26eP/99wvkOX/+PDp16oQhQ4YUeWnsn86cOYOAgIB826Kjo1GjRg1UqSK/BWhZcuxNQGOg+/uiUxDJTpfLh9DWp57oGLI1JGIImvo3FXLuN954Azdv3sT48eNx8eJFbN++HXPnzsXkyZMtc106d+6Mr7/+GocOHcK5c+cwZMgQKJXKfMcJCQnB3r17kZiYiNTU1FLn8fPzQ7NmzXD48OFCX1coFOjevTs2btyIxMRETJ8+HXv27EHt2rWRkZEBwFxMOnXqhO7du2Py5MlITExEYmIikpKSLMdZtGgRtm/fjitXriA6OhoTJ07Evn37MHbs2HznO3ToUL7LXHLCkmOPWo8CwnuLTkEkO7NuXoFaoX78jlQitX1qY1zTccLOX716dezatQsnTpxAkyZNMHr0aAwfPjzf5Z1Zs2ahQ4cO6NOnD3r37o1+/fohLCz/SswLFy7EL7/8gqCgIERGRpYp0+uvv46NGzc+dj8vLy+8/vrrOHToEC5dumSZP7NlyxYkJSVhw4YNCAgIsHy0bNnS8l6tVospU6agUaNG6NChA6KiovDrr7+iS5culn3y8vKwbds2jBghzyfAS6Z/XoQk+5CTAixvB2SUbQVPIsrv86a98SUnIVuNSqHCN72+QX1f3qr/d7m5uQgPD8fmzZvRpk0bYTmWLVuGH374AXv27BGWoTxxJMdeuVUGnv8KkJSP35eIim1EzG8IcJXfBExRprWYxoJTCFdXV6xfvx73798XmkOtVmPJkiVCM5QnjuTYu/2fAPv5IE8ia/qlbntM1l0THcPu9arVC5+0/0R0DHJgHMmxd+2nASHtRKcgkpVulw6ijU/443ekItX2qY15T84THYMcHEuOvVMogOe+BNx8RSchkpVZt65yEnIpeag9sKjTIiG3ixP9HUuOHHgFAP2WA5AeuysRFU+tpDgM9uIt5aXxQdsPEOwlr8cDkH1iyZGLut2Bf00UnYJIVkae349qnIRcIsMihqFLcJfH70hUAVhy5KTLXKBeH9EpiGTDTZuNqQYP0THsRstqLTGh2QTRMYgsWHLkRJLM83MCmohOQiQbPWIPoLVPXdExbJ6/qz8+bf8plAoua0G2gyVHbpzcgAGbAM+Ax+9LRMXy1u1rUCmK/7BHR6NSqLCw40JUcZXfs4/IvrHkyJFXIDDgW0DtJjoJkSyE3ruCV724oF1R3nvyPWHPpSJ6FJYcuQqMBJ7lHVdE1jI65gD8XThS8U/jI8ejb1hf0TGICsWSI2cNngE6z3n8fkT0WG6aLEwzeomOYVNeqPsCRjYeKToGUZFYcuSu/VSgyQDRKYhk4anY/WjtzUnIANC+RnvMac1fosi2seQ4gr6fAzXFPeWWSE5m3bnh8JOQI3wjsKD9At5JRTaPJccRqJyAlzYClUJEJyGye2H3LmGgA09Cru5RHUu7LIUbb2wgO8CS4yjcfYHB2wGv6qKTENm9N2IOwN/F8Z4X5+3sjWVdl/FWcbIbLDmOpFIIMOQnwKOq6CREds1Nk4UpJh/RMSqUs9IZSzovQS3vWqKjEBUbS46j8Q0zj+jwqeVEZdLr4m9o6V1HdIwKoZJU+KTdJ4j0jxQdhahEWHIckX994NVtgIuP6CREdu2thFtQSfKehKySVPi0w6d86CbZJZYcRxXQGBj0PeDkKToJkd2qfTcWA7zlOwlZJanwSftP0C24m+goRKUimUwmk+gQJND1o8CG5wFdjugkRHYp29kTfUPDkJSXIjqKVT0sON1DuouOQlRqHMlxdMFPmp9zpXIRnYTILrlrMjHZVFl0DKtSSSp83P5jFhyyeyw5BIR2BF78GlA6iU5CZJf6XNyH5jKZhKySVPio/UfoEdJDdBSiMmPJIbO63YEXVgMKtegkRHbprYTbdj8JWSkp8VH7j/BUyFOioxBZBUsO/aV+X2DgfwEnD9FJiOxO3bsX8bJPA9ExSk0pKfFx+49ZcEhWOPGYCrp9GtjYH8i5LzoJkV3JdPHG0yG1cF9jX5OQ1Qo1Pmz3IQsOyQ5Hcqig6s2A4XsAn5qikxDZFc+8dEyW7GsSsqfaE8u7LmfBIVniSA4VLTPRfHv53WjRSYjsypCmnXE6/YroGI9V1a0qvuj6BepWqis6ClG54EgOFc2zGjBsFxDcVnQSIrvyVmIClJJSdIxHqu1TGxt6bWDBIVljyaFHc/E2r4xcr4/oJER2IzzxAl7yiRAdo0gtq7XE+p7rUc29mugoROWKl6uoeIwGYOcU4I81opMQ2YVMF2/0CQlBiiZVdJR8ngp5CvP/NR9OXBeLHABHcqh4FEqg7yKgwwzRSYjsgnkSchXRMfIZ0mAIPm3/KQsOOQyO5FDJRW0GfpoA6HNFJyGyaSZIGNykI85kxAnNoZAUmNZiGgY1GCQ0B1FFY8mh0kk4C2weBKRdF52EyKZdDGiAl11zYTAZhJzf08kTH7f7GO1rtBdyfiKReLmKSiegMTByPxDWRXQSIptWLyEG/QVNQq5XuR4299nMgkMOiyM5VDZGI7DvfeDwf0QnIbJZGa7e6BscjBRNWoWd8+mwp/H2E2/DReVSYecksjUsOWQdMT8C294AtJmikxDZpB8adMU7uZfK/TxqhRozWs7AS/VeKvdzEdk6lhyynqRYYNNAIPmy6CRENscECYOadMTZcpyEXNWtKv7T8T9o7Ne43M5BZE84J4esxy8cGLEPCO8tOgmRzZFgwuyke1BI5fNjt3W11vhv3/+y4BD9DUsOWZeLF/DyRqDz24BCJToNkU1pcOd8uUxCHtZwGFZ0W4HKLvb1cFCi8sbLVVR+bv0B/DASSLb9BxUSVZR0Vx/0rRmEVG16mY9VxbUK3n3yXd49RVQEjuRQ+anRHBh9GGg1EoAkOg2RTfDOTcMEZdUyH6d7cHf88PQPLDhEj8CRHKoYcb8B28cCGbdFJyESzjwJuQPOZlwt8Xu9nLwwu/Vs9ArtVQ7JiOSFJYcqTm4a8PN04Oxm0UmIhDsf2BCvuGTBaDIW+z1tA9vivbbvwd/NvxyTEckHSw5VvJjtwI5JQE6y6CREQr3XrDe+Sz332P1cVa6Y2mIqXgx/sQJSEckHSw6JkXUP+PFN4NLPopMQCZPuVgl9gmog7RGTkJv6NcWH//oQQV5BFZiMSB448ZjE8PAHXtkEPL0EcPYWnYZICO+cVLypqlboay5KF0xqPgnreq5jwSEqJY7kkHiZd4E9s4Fz34lOQlThjJICAxu3Q3RGvGVb+xrtMavVLNTwrCEwGZH9Y8kh2xF/ENg5Bbhf/s/3IbIl0dUbYaBzJvzd/DGz5Ux0Ce4iOhKRLLDkkG0x6ICjS4CDCwBdjug0RBVDocYvfT5A20aD4aZ2E52GSDZYcsg2pd8CfpkLRG8RnYSofNXpDvT4CKhSW3QSItlhySHbduMY8PMMIOGM6CRE1uVb21xu6nYXnYRItlhyyPaZTMCZjcDe94Csu6LTEJWNizfQbgrQegygchKdhkjWWHLIfmiygOPLgd+XArmpotMQlYyTJ/DEGKDNWMDVR3QaIofAkkP2Jy/jr7KTV/YnOROVK7U70GoE0HYC4FZZdBoih8KSQ/YrLx34/Qvg2DJAw7JDNkblCrQcDrSdCHj4iU5D5JBYcsj+5aaay87x5YAmQ3QacnRKZ6D5EPO8G8/CVzMmoorBkkPykZNivoR1fAWgzRKdhhyNQg1EDgLaTwW8uVIxkS1gySH5yUkBjn4OnFrNOTtU/pw8gaYDgDbjgErBotMQ0d/wAZ3F1LFjR0ycOLHY+1+7dg2SJOHMmTNWz/L2229j5MiRVj9ueXniiSewdevWijuhW2Wg6zxg8gWgz2eAf4OKOzc5jsphwFOfAJNjgF4LWHCIbFCpSo7JZELXrl3Ro0ePAq998cUX8PHxwa1bt8ocrjx99NFHUCqVWLBgQYWcb//+/ZAkCWlpaWU6TmJiIhYvXozZs2dbtn300Udo2bIlPD094e/vj379+iE2Njbf+zp27AhJkvJ9jB49+pHnio2NRadOnVC1alW4uLggNDQUc+bMgU6nK3T/TZs2QZIk9OvXL9/2OXPmYObMmTAajaX7okvLyR1o8Rrwxu/AkB1A/acBhapiM5DMSEDtrsDALcD4P4AnRgMuXqJDEVERSlVyJEnCmjVrcPz4caxYscKyPT4+HtOnT8eSJUtQo4ZtX5NevXo1pk+fjtWrV4uOUiJfffUVnnzySQQH//Vb44EDBzB27FgcO3YMv/zyC3Q6Hbp3747s7Ox87x0xYgQSEhIsH59++ukjz6VWqzF48GDs2bMHsbGxWLRoEb788kvMnTu3wL7Xrl3D1KlT0a5duwKv9ezZE5mZmfj5559L+VVbQa12wEtfAxPOmieEulURl4Xsj5Mn0GoUMO4UMGgrUKcbIEmiUxHRY5T6clVQUBAWL16MqVOnIj4+HiaTCcOHD0f37t1Rs2ZNtGrVCs7OzggICMDMmTOh1+st7w0JCcGiRYvyHa9p06aYN2+e5XNJkvDVV1/h2WefhZubG+rUqYMff/wx33t+/PFH1KlTBy4uLujUqRPWrVtXrNGSAwcOIDc3F++99x4yMjJw9OjRfK9nZ2dj8ODB8PDwQEBAABYuXFjgGJIkYdu2bfm2+fj4YO3atQX2vXbtGjp16gQAqFSpEiRJwtChQwEAW7ZsQaNGjeDq6gpfX1907dq1QDn5u02bNqFv3775tu3evRtDhw5FREQEmjRpgrVr1+LGjRv4448/8u3n5uaGatWqWT68vB79G2hoaCiGDRuGJk2aIDg4GE8//TQGDhyIQ4cO5dvPYDBg4MCBePfddxEaGlrgOEqlEr169cKmTZseeb4K4V0d6PKO+RLDsyuAwGaiE5Et860N9PwUmHIB6PUpny9FZGfKNCdnyJAh6NKlC1577TUsXboU0dHR+Oyzz9CrVy+0bNkSUVFRWLZsGVatWoUPPvigxMd/99138eKLL+Ls2bPo1asXBg4ciJSUFADmUaMXXngB/fr1Q1RUFEaNGpXvEs6jrFq1CgMGDIBarcaAAQOwatWqfK9PmzYNBw4cwPbt27Fnzx7s378fp0+fLnH+h4KCgixzUmJjY5GQkIDFixcjISEBAwYMwGuvvYYLFy5g//79eO6551DUXPCUlBTExMSgRYsWjzxferp5sm3lyvkXHtu4cSOqVKmChg0bYtasWcjJKdlTvq9cuYLdu3ejQ4cO+ba/99578Pf3x/Dhw4t8b6tWrQqUI6FUzkCTl4GRvwGv7zPfFePiLToV2QInT6DJAODVH8wjN61HAc6eolMRUSmUeYLCypUrERERgYMHD2Lr1q1YuXIlgoKCsHTpUkiShHr16uHOnTuYMWMG3nnnHSgUxe9VQ4cOxYABAwAAH374IT7//HOcOHECTz31FFasWIHw8HDLnJrw8HBER0dj/vz5jzxmRkYGtmzZgt9//x0AMGjQILRr1w6LFy+Gh4cHsrKysGrVKmzYsAFdunQBAKxbt65Ml9+USqWlcPj7+8PHxwcAEBcXB71ej+eee85y+alRo0ZFHufGjRswmUwIDAwsch+j0YiJEyeibdu2aNiwoWX7K6+8guDgYAQGBuLs2bOYMWMGYmNj8f333z82/5NPPonTp09Do9Fg5MiReO+99yyvHT58GKtWrXrsBOvAwEDcvHkTRqOxRP8NVIgazc0fvT8DrvwCRG8FYn8GdCUrgWTHlM7mS1CNXgDq9gTULqITEZEVlLnk+Pv7Y9SoUdi2bRv69euH9evXo02bNpD+dr26bdu2yMrKwq1bt1CzZs1iH7tx48aWP7u7u8PLywv37t0DYB4RadmyZb79W7Vq9dhjfvvttwgLC0OTJk0AmC+TBQcHY/PmzRg+fDji4uKg1WrRunVry3sqV66M8PDwYucuriZNmqBLly5o1KgRevToge7du+OFF15ApUqVCt0/NzcXAODiUvQP4LFjxyI6OhqHDx/Ot/3vd2M1atQIAQEB6NKlC+Li4hAWFoaIiAhcv34dANCuXbt882c2b96MzMxMREVFYdq0afj3v/+N6dOnIzMzE6+++iq+/PJLVKny6Dkurq6uMBqN0Gg0cHV1ffQ3RhSVE1Cvt/lDm20uOue2AHF7AYNWdDqyNkkBhLQDGvUH6vfl86SIZMgqt5qoVCqoVMU/lEKhKHBJprA7dtRqdb7PJUkq8x06q1atwvnz5/PlNRqNWL169SMvt/yTJEnF+hoeRalU4pdffsHRo0exZ88eLFmyBLNnz8bx48dRq1atAvs/LBKpqanw8yu4TPy4ceOwY8cOHDx48LEjTw9L3JUrVxAWFoZdu3ZZ8v+zhAQFBQEAGjRoAIPBgJEjR2LKlCmIi4vDtWvX8s0RevjvR6VSITY2FmFhYQDMl9rc3d1tt+D8k5O7+bf6Ri+YV1S+8JO58Fw7BJgq+C4xsq7AZuZi0/A5rkhMJHNWv5+2fv362Lp1K0wmk2U058iRI/D09LT8j9fPzw8JCQmW92RkZCA+Pr5E5wkPD8euXbvybTt58uQj33Pu3DmcOnUK+/fvzzdfJSUlBR07dsTFixcRFhYGtVqN48ePW0adUlNTcenSpXxzUf75NVy+fPmRc1ycnJwAmCfp/p0kSWjbti3atm2Ld955B8HBwfjhhx8wefLkAscICwuDl5cXYmJiULduXct2k8mE8ePH44cffsD+/fsLLUj/9PDyUkBAAADku1vrUYxGI3Q6HYxGI+rVq4dz587le33OnDnIzMzE4sWLLeUIAKKjoxEZGVmsc9gc10pAs8Hmj8y7QMw24OJO4MYxwKARnY4eR+kE1HwCCOtiHrHxDROdiIgqiNVLzhtvvIFFixZh/PjxGDduHGJjYzF37lxMnjzZMhejc+fOWLt2Lfr27QsfHx+88847UCqVJTrPqFGj8J///AczZszA8OHDcebMGcudTVIRt3auWrUKrVq1Qvv27Qu81rJlS6xatQoLFizA8OHDMW3aNPj6+sLf3x+zZ88uMI+kc+fOWLp0Kdq0aQODwYAZM2YUGHn6u+DgYEiShB07dqBXr15wdXXF+fPnsXfvXnTv3h3+/v44fvw4kpKSUL9+/UKPoVAo0LVrVxw+fDjfWjRjx47FN998g+3bt8PT0xOJiYkAAG9vb7i6uiIuLg7ffPMNevXqBV9fX5w9exaTJk1C+/bt810S/KeNGzdCrVajUaNGcHZ2xqlTpzBr1iy89NJLUKvVUKvV+eb9ALDMN/rn9kOHDqF79+5FnstueFY1T0RtPQrQ5QLXjwBxvwFx+4B7MaLT0UO+tc2lpnYXIORf5pE5InI4Vi851atXx65duzBt2jQ0adIElStXxvDhwzFnzhzLPrNmzUJ8fDz69OkDb29vvP/++yUeyalVqxa2bNmCKVOmYPHixWjTpg1mz56NMWPGwNnZucD+Wq0WGzZswIwZMwo93vPPP4+FCxfiww8/xIIFC5CVlYW+ffvC09MTU6ZMsdyx9NDChQsxbNgwtGvXDoGBgVi8eHGBW7b/+X159913MXPmTAwbNgyDBw/GjBkzcPDgQSxatAgZGRkIDg7GwoUL0bNnzyKP8/rrr2PEiBH49NNPLcVr2bJlAMwL/v3dmjVrMHToUDg5OeHXX3/FokWLkJ2djaCgIDz//PP5/p0URqVS4ZNPPsGlS5dgMpkQHByMcePGYdKkSY983z/dvn0bR48exYYNG0r0PpundjUvDFe7q/nzjATg6oPCc3U/kJ0kNJ5DcfYCarU3l5qwLlx9mIgAyOzZVfPnz8fy5ctx8+ZN0VHKjclkQuvWrTFp0iTLnWe2bsaMGUhNTcXKlStFR6k4JhOQePavUZ5bpwBd0esfUQmp3YGAJkBIW3OpqdESUHI1ayLKz65/KnzxxRdo2bIlfH19ceTIESxYsADjxo0THatcSZKElStXFpgLY8v8/f0LnWMka5Jk/p9wQBPgXxMBoxG4HwvcOQPc+dP8kXgO0OeKTmr7lE5A1YZA9WbmScPVmwFVwgFbW4qAiGyOXY/kTJo0CZs3b0ZKSgpq1qyJV199FbNmzSrRnV5EwhgNQNLFv0rPnT+Bu+cBfZ7oZOJISsCvHhAYCVSPNJeaqg3Nt/cTEZWQXZccItkx6M0TmJMuAqnXzB8p8eZ/ZiYAkMlfV49qQOVaQOVQoFIt858r1QL863GSMBFZDUsOkb3Qa4DU63+Vn79/pN8CNBmwiRIkKcyPyHDzBXxqFiwylUIAJzfRKYnIAbDkEMmF0QDkpQN5aUBu2j/+/ODzv//ZoDO/x2R88PHgz5AAhRJQqMyXjxQPPlSu5lWBXSv99U+Xh5//7cPFm0/oJiKbwJJDREREssTbE4iIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiWWHKIiIhIllhyiIiISJZYcoiIiEiW/h/yXbSG4wATbwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "sales['Age_Group'].value_counts().plot(kind='pie', figsize=(16,6))" ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAFUCAYAAADs76EqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxcdb3/8dcnSbO0QADLUmQZdkGWsiOtKKB4MbKoeBG3sOhPLhe8uABzXXDQq0blckVQlEUR5SoqCOh4cWFRUHYoDCDIFhGlG9Bp02ZpMp/fH+eETtO0yaRn5jvL+/l4zINkMnPmPaWdd77fc873mLsjIiKShKbQAUREpH6oVEREJDEqFRERSYxKRUREEqNSERGRxKhUREQkMSoVERFJjEpFREQSo1IREZHEqFRERCQxKhUREUmMSkVERBKjUhERkcSoVEREJDEqFRERSYxKRUREEqNSERGRxKhUREQkMSoVERFJjEpFREQSo1IREZHEqFSkYZnZcWbmZva6dTzmKjM7foLtnGRmlxRtc/cSc+xjZlfGXx9rZo+Y2Twzu9/M5hY9biS+f56Z3bSO7W1rZr81s7+Y2eNmlhrz82+aWV/R92eY2SmlZBZZG5WKNLITgTvj/yblOKCkUgE+DXwz/voWYG93nw2cAlxR9Lh+d58d345Zx/auBr7u7rsBBwILR39gZvsDm4x5/PeAM0vMLDIulYo0JDPbAJgLnAq8t+h+M7NLzOxJM/s9sHnRz3rNbGb89f5mdvuYbR4CHAN8PR5N7GhmH4tHC4+Y2U/GybEhsJe7Pwzg7n3u7vGPZwA+9jkTvK/dgRZ3/13R9lbEP2sGvg6cU/yc+Oe9ZnZgKa8lMh6VijSqY4Gb3f2vwEtmtl98/zuBXYlGGx8CDpnsBt39z8BNwNnxaOIZIA3s4+57AaeN87T9gUeL7zCzd5rZE0CWaLQyqj2eErvbzI5bS4xdgCVmdr2ZPWRmX4/LBOAM4CZ3f3Gc590PvHGy71VkbVQq0qhOBEZHDj9h1RTYocCP3X3E3f8J3Lqer/MIcI2ZfQAYHufns4BFxXe4+y/c/XVEU2lfLPrRdu6+P/A+4BtmtuM422shKodPAQcAOwAnmdlWwHuAi9eScyGw1aTflchatIQOIFJpZrYpcDiwp5k50Ay4mZ09wVOHWfWLWPskX66LqKiOBj5jZnu6e3G59K9tW+7+RzPbwcxmuvtid/9HfP+z8dTbPvF03Hfjp5wHvADMc/dn4/d6A3AwMB/YCXjazACmm9nT7r5T0fvpn+R7ElkrjVSkER0P/NDdt3P3lLtvAzxH9Bv+H4ETzKzZzGYBhxU9rxcYnSZ791q2vQzYEMDMmoBt3P024FygE9hgzOP/QvRhT/ycnSz+1DezfYE2oum5TcysLb5/JjAHeNzd7ynaeX8TcB+wsZltFm/y8PhxWXffMn6/KWBFUaFANG222jScyFSoVKQRnQj8Ysx91xXd/xTwONFRVHcVPeZ84CIzux8YWcu2fwKcbWYPATsDPzKzHPAQ8E13X1L8YHd/AuiMd9hDVFaPmtk84FvACfGO+92A+83sYeA2oMfdHx/74u4+QjT1dUv8ugZcPtEfCFFJ/W4SjxNZJ1t1oImIhGBmHweWufsVEz64PK+/D/AJd/9giNeX+qKRikh4lwKDAV9/JvC5gK8vdUQjFRERSYxGKiIikhiVioiIJEalIiIiiVGpiIhIYlQqIiKSGJWKiIgkRmt/Sc1JpbMbE51bMRPYrOjr4tuM+OHOquXjHSgAA0TrXBXfVhAt7Pj86K23p+vlCrwdkbqi81Sk6qTS2Q2APYC9gD2JlijZkqgsNgWmVShKH0UlM87thd6erpUVyiJSE1QqEkwqnW0mWh9rT1YVyF5AimjNqmq3EngYuBu4B7i7t6fr6bCRRMJSqUjFpNLZbYG3EV34ai+iC2FNdgn5WrEYuJeoaO4G7u3t6cqHjSRSOSoVKZtUOtsOvAn4F6Iy2S1soiAceIJVJXNzb0/X82EjiZSPSkUSlUpnd2NViRwKdIRNVJXuB64Hruvt6fpr6DAiSVKpyHqJd6ofyaoi2TZsoprzONG1XK7v7emaFzqMyPpSqciUpNLZOcCpRNc9H3s1Q5maZ4lGMNcT7fTXP06pOSoVmbRUOrsF8CHgFOB1gePUu38SXYXy8t6erodDhxGZLJWKrFN82O9RRKOSd6ATZkP4I/BN4Ibenq61XcZYpCqoVGRcqXR2J6IRSTewVeA4Enme6Lr1l/f2dL0SOozIeFQqsppUOtsFnE10KLBUpxXAj4Bv9vZ0PRY6jEgxlYoAkEpn3w5kgAMCR5HS3EI0Nfar3p6uQugwIiqVBpdKZ48iKpMDA0eR9fMscCFwmdYjk5BUKg0qLpPPAweFziKJegr4z96erutCB5HGpFJpMKl09l+IyuTg0FmkrP4MnN3b0/Xn0EGksahUGkQqnX0bUZm8IXQWqajrgLRWT5ZKUanUuVQ6uwPwbaIlVKQxrQS+A3yht6drcegwUt9UKnUqlc62AJ8kGp1oUUcByAM9wDd6e7oGQoeR+qRSqUOpdPYg4DKia5aIjPV34Jzenq6fhA4i9UelUkdS6exGwJeBfwOaAseR6ncdcJqmxCRJKpU6kUpn3wVcjJZUkdIsAD7S29P1y9BBpD6oVGpcKp3dBrgEOCZ0Fqlp3wfO6u3pWho6iNQ2lUqNSqWzBpwJfAldz0SS8Tfg5N6erttCB5HapVKpQal0dmPgh0RL0YskyYmmUdO9PV39ocNI7VGp1JhUOjubaAfrDqGzSF17EvhQb0/XvaGDSG1RqdSQVDp7MtGJjO2hs0hDGCE6mvB8XRxMJkulUgNS6Wwb0c74D4fOIg3p/4D3aie+TIZKpcql0tkU8HNgv8BRpLE9Bhzd29P1XOggUt10glwViy+c9SAqFAnv9cC9qXT2jaGDSHXTSKUKpdLZJuB84DOABY4jUmwI+GhvT9dVoYNIdVKpVJl4qZWfolWFpbp9neiwY13CWFajUqkiqXR2C+BmYHboLCKTcCPwgd6err7QQaR6qFSqRCqd3RH4DbBj6CwiJXgYOKa3p+v50EGkOmhHfRWIT2i8ExWK1J69iXbgHxQ6iFQHlUpgqXT2UOB2YMvAUUSmagvgllQ6+6bQQSQ8lUpAqXT2SKJ9KJ2hs4ispxnAr1Pp7OGhg0hYKpVAUulsF3ATutSv1I/pwK9S6exbQweRcFQqAaTS2eOA64G20FlEEtYB3JRKZ3VIfINSqVRYKp39V+BnQGvoLCJl0g7cGE/vSoPRIcUVlEpn30lUKM2hs4hUwArgX3p7uu4IHUQqR6VSIal09mDgVrQPRRrLUuCI3p6u+0MHkcpQqVRAfGLjXcBmobOIBPAS8Kbenq7HQgeR8tM+lTJLpbOvAX6NCkUa12uA36fS2Z1CB5HyU6mUUXxxrRuAXUJnEQlsS+DmVDq7SeggUl4qlTJJpbMGXA3MDZ1FpErsCPw4vrSD1Cn9zy2fHuBfQ4cQqTJvA74SOoSUj3bUl0EqnT0NuDR0DpEqdmJvT9dPQoeQ5KlUEhYvv3IjOhdFZF1WAHN6e7rmhQ4iyVKpJCiVzu4L/JFocT0RWbe/Afv39nQtDh1EkqN9KgmJLwP8c1QoIpO1HXBtKp1tCR1EkqNSSc63gO1DhxCpMYcDF4QOIcnR9FcCUuns+4BrQucQqWEn9fZ0/SB0CFl/KpX1lEpnU8A8dKEtkfUxABza29N1X+ggsn40/bUeUulsM/BDVCgi66sduCaVzmrB1RqnUlk/n0ZnzIskZWfgi6FDyPrR9NcUxUvZ3wHoyBWR5BSAQ3p7uu4JHUSmRqUyBal0dkOi/Sg7hM4iUoceB/bp7ekaCh1ESqfpr6m5BBWKSLnsDpwXOoRMjUYqJUqlsycAWrNIpLyGgQN7e7oeCh1ESqNSKUF8wa2nAF0TQqT85gEH9PZ0DYcOIpOn6a/SfAEVikilzAbODR1CSqORyiSl0tk9iH5z0urDIpUzCOzb29P1eOggMjkaqUzeN1ChiFRaG/A9XS2yduh/1CSk0tnjgCNC5xBpUAcBZ4QOIZOj6a8JpNLZVqLj5ncMnUWkgS0Gdujt6VoWOoism0YqE/s4KhSR0GYCnwgdQiamkco6pNLZLYG/AhuGziIiLCUarbwUOoisnUYq6/ZlVCgi1WIj4D9Dh5B100hlLVLp7H7AfYCFziIirxoAdurt6fpH6CAyPo1U1u4iVCgi1aYdrQtW1TRSGUcqnX07kA2dQ0TGNQzs3tvT9VToILImjVTGd3boACKyVi1ESyZJFdJIZYxUOrs/0b4UEaleTnTNlYdDB5HVaaSypk+FDiAiEzLgS6FDyJo0UimSSmdTwNNojS+RWnFIb0/XXaFDyCoaqazu46hQRGrJmaEDyOo0Uoml0tlNgOeBDUJnEZFJGwK27u3pWhQ6iEQ0UlnlNFQoIrWmFTgldAhZRSMVXl2J+G/AlqGziEjJniM6y74QOohopDLqA6hQRGrV9sDbQoeQSMOXSiqdNeCToXOIyHo5LXQAiTR8qQBHAruHDiEi66Urlc5uEzqEqFQgmvoSkdrWDHwkdAhp8B31qXS2HViIrpkiUg9eBLbt7ekaDh2kkTX6SKULFYpIvZgFHBc6RKNr9FI5IXQAEUmUdtgH1rDTX6l0dgNgATA9dBYRSYwDqd6erudDB2lUjTxSOQYViki9MeAdoUM0skYuFU19idSno0MHaGQNOf2VSmc3Jpr6ag2dRUQSNwjM7O3p6gsdpBE16kjlnahQROpVG/DW0CEaVaOWyntDBxCRstJ+lUAabvorlc7OJDpJqiV0FhEpmwXArN6ersb6gKsCjThSORYViki92wI4MHSIRtSIpfLm0AFEpCJ0FFgAjVgqbwwdQEQqQqUSQEPtU4mXxtaZtiKNYzudXV9ZjTZS0ShFpLHoKLAKU6mISD3TZYYrrNFKZW7oACJSUfuFDtBoGmafSiqd3RRYTLTgnIg0ji17e7oWhA7RKBpppDIHFYpII9o3dIBG0kilov0pIo1JU2AVpFIRkXqnUqmghiiVVDo7Hf3FEmlUmv6qoJJKxcy2NLNjzOxoM9uyXKHK4ABgWugQIhLEtvFCslIBky4VM/swcC/wLuB44G4zO6VcwRK2e+gAIhKURisVUspqvWcD+7j7SwBm9hrgz8D3yhEsYTuFDiAiQe0H/DZ0iEZQyvTXS8Cyou+XxffVgh1DBxCRoLRPtUJKGak8DdxjZjcCTnRdkkfM7BMA7n5hGfIlRaUi0tg0/VUhpYxUngFuICoUgBuB54AN41s12yF0ABEJavtUOrtx6BCNYNIjFXc/v5xByiWVzs4CpofOISLBbQssCR2i3k26VMzsNlaNUl7l7ocnmih5mvoSEYBZwCOhQ9S7UvapfKro63bg3cBwsnHKQqUiIgBbhQ7QCEqZ/npgzF1/MrN7E85TDioVEYFopCJlVsr016ZF3zYRHaLXmXii5OkcFREBlUpFlDL99QDRPhUjmvZ6Dji1HKESppGKiIBKpSJKmf7avpxBykilIiKgUqmIUqa/pgH/Bhwa33U78F13X1mGXImIVyd+TegcIlIVVCoVUMr016VEK/1+O/7+g/F9H046VIJqYZ+PiFSGSqUCSjmj/gB373b3W+PbyURLylezjUIHEJGq0a6z6suvlFIZMbNX90+Y2Q7ASPKREqWRiogU02ilzEpd+v42M3uW6Aiw7YCTy5IqORqpiEixWcBfQoeoZ5MqFTNrAvqBnYFd47ufdPfBcgVLiEpFRIptFjpAvZtUqbh7wcy+5e77UENr5xzd9OcWwx/oo2Nan3dM66OjdTnt7cu9va2ftvYVtE13mkq6pLKI1DRdVrzMSpn+usXM3g1c7+5rLCxZjS5uvWRTJrg4jztDDv1OU/8INjhC8+BKmoeGmLZyiJaVg9460k9roZ+2keXe7stpp8876KPD+uiwPu9oXkZH8zKf3hKXV2tcXm1RebV29NPWofISqQoqlTIrpVQ+CnwCGDazAaL9Ku7u1TzF1DrRA8xoNWiFQmczACN0ANFsH9G7TIA7g3F5DYzQNDBM09AwLYNDtAwPMW14wKcN99M20k9bYUx50Ud7c59Pb1pGR8syn96yLB55LaejbTntrSu8rb2fto4VtHWAJZRYpC6V8pknU1DKGfXVfiGu8bSFDjDKjDaDNijQTCFuu6GiByTzOu4MOPQXaBoo0DQwTPPQMM3RqItpKwe8dWSA1pEVtBeWe5svp4M+b/fldDQto6NpWVxefavKq3U57a0ropFXez9tHf20tqu8pEapVMpswj9gM2sGOty9L/7+YFaNAB5y92VrfXJ4VVMqlWJGu0F7EwWgQOvYqxMkUAXuONDvWH8BGxihaXCE5qHRacPBeOQ1QFthxaqRly/3DlsWTRs2LfPpo9OG00b3ea2grXU5He3L45HXAG3t659WZDUqlTKbzB/wV4GFwNfi738MPEp0TZUHgXPLEy0R+m26DMwwoMPwjiacFgqscWmd8pTX0DDNg8O0jI68hge8dbh/VXkVVtBufd7BMjpsmXc09TG9eSnTm29u7bSWlWYdg1boGHJrHzKmDxWsfchpKbj+njSIgZbWQegq+Xlm9hngfUTn5hWAj7r7PVPYzv7Ah9z9YyWHWPd2DbgFOM7dl5rZxsAVwB5ECwGf4u53FT3+k8AFwGbuvngS228Ffg8c7u7rvI7WZErlCFY/c36Jux8dv4k7JvH8kKr9kGdZh7i8phs+fbS82hhmtf+tk6yDpVts9oe7Ojre1Af0jflZ84ivbB+iv30lKzqGGGwfZLBjyAdnDDLcMcjKGQMMTx/0wvRBRqYPQscg3jGEtQ95U9tKrG0lLa3DtEwbZlpLgWnNI7Q1O+1WoM2iS1l3mH7BqRYblPp7sJm9AXgHsK+7D5rZTCaxv3Y87n4/cH8Jr90y0Yd47O3Aw+6+NP7+IuBmdz8+LoRXL6luZtsARwLPr+U1rwKucvfbi3IPmdktwAnANesKMplSaRrzps6NX8TNbINJPD8klYoAcOGCxfvO2W7rBQWzLcb+bKTZpi3vYNryjuLzmpLtgNaV3h8X10D7EAPTBxnqGPTB6YMMj95mDHihY5DC9EHoGIpucXE1tQ4zrXWYlpZhWloKtDUXaG0q0NHktBOVVsNN9U7RVFYBmQUsHj0vr/g3ezPbD7gQ2ABYDJzk7i+a2e3APcBhwMbAqe5+h5m9GfiUu78jvkbV94AdgBXA/3P3R8wsQ7S6+g7A82b2X8D3iYqsCXi3uz81JuP7gcviTJ1EC/+eFOcdYrUduPwPcA5wY4l/DjcAXyGBUmk1sw1H9524+2+Lglf7nPdA6ABSHTZw3/CsV5Y8cuGmm6xRKpUwNM06hqbRsXS1e5MrrqaCj7StZEX7UFRaHUMMdAz60PRBhoqKayQecfnoaCuaCqSpdZjm1pU0tw7T2jLCtOYCrc0F2pqcdnM6gOkGzYkFDmcqq6r/FjjPzP5KNAV0rbv/IV65/WLgWHdfZGYnAF8CTomf1+LuB5rZ24HPA28Zs93zifZLH2dmhwNXA7Pjn+0OzHX3fjO7GLjI3a+JRx3j/X+YQ3SELsD2wCLg+2a2N9G1sP7D3Zeb2bHAP9z9YSv9WJtHmcR6j5MplcuBa83sNHd/HsDMtiNaofiKUlNVmEYq8qqT88vmXNm50bx8c/PsiR9dWwpN1tzfxob9bRQdpZnsaKtl2IfaV9LfNhRNE3YMMTg9Kq6V8TThyPRBH5k+iE+PSss7BrH2lW5tQzS3DdM8LZomLC6udnPa42nC9gpMEw5N/JDVuXtfPCJ5I9HI41ozSxNNY+0B/C7+gG4GXix66vXxfx8AUuNsei7w7vg1bjWz15jZ6Gj5JnePz2vgLuAzZrY10XmCY0cpAJsWHTTVAuwLnOnu95jZRUDazL4CfJpo6ms1ZvY2ov3nANsCc82sDxh094PijCNmNlQ8yBjPhKXi7hea2QrgTjObEd/dB/S4+6UTPT8wlYqs5rvzF81471ZbDGOmo4BKNNxirX0ttPZ1FC/UmmAHuHvrMCs6huhvH6K/Y5DBjiGG4hHXyumDDM+IR1uvThMO4h3xFGH7SppaV9IybZiWaSO0NhdobR6htclpb1o12prS7IW7jxBdQ+p2M8sB3URl8Zi7v2EtTxv9/Bmh9KPOlhe99v+a2T1ERxj82sw+6u63jnn8sJk1uXsBeAF4oehAgp8DaaIpte2B0VHK1sCDZnagu/8G+A2Mv0+lSBsT/BlOdpmW7wDfMbMN4+/XaCkz63b3H0xmexWk6S9ZzeuHhnY+aGDwD/d0tL8pdBYZw8yGpjF9aBrT8zNW+0GSr7I8V+ITzGxXoFA0QpgN/A14EtjMzN7g7nfF02G7uPtjk9z0HUT7Qr4Y72tZHB+5Nfb1dwCedfdvmtm2wF7A2FJ5kmgfzNPuPt/M/m5mu7r7k0QHWz3u7jlg86Lt9gL7T+bor/jxr4kzrnMKsaSlQ9x92TqGPf9RyrYqRCMVWcP/LFi0T5P7wtA5JIipnFe3AfADM3vczB4h2t+RiXeAHw981cweBuYBh5Sw3QywX7zNHqLRz3j+FXjUzOYRTbddPc5jssCbi74/E7gm3vZs4Msl5Fqbw+LXWSdLahkvM3soXnCyemQ6Dyc6dltkNVd2bvSnb2y68ZzQOaTiDs5150o+v6Tamdks4Gp3f2sZX+N6IO3uf13X45Jc5LAaF5l8OXQAqU6n5pfO2Whk5OHQOaTilk78kNrj7i8Clxft6E9UfNTZDRMVCiRbKtV4ctf80AGken1n/qIOoh2w0jjq9hdNd/9p0cmPSW97yN3Hm3ZbQ5Kl8qcEt5WUhVT/JY8lkD2HhnbZf2CwGv/eSnmsJPpMkDKadKmY2RZmdqWZ/V/8/e5mduroz939jHIEXC+ZfAH9JZJ1uGjhor3NfVHoHFIR83PduWqcpq8rpYxUriI6jnmr+Pu/AmclHagMNAUma7VRwTvPeCX/ZOgcUhH/CB2gEZRSKjPd/adEK3QSrwdWC1NLL078EGlkH8kvnbPhSKFmLpMtU/bP0AEaQSmlsjw++cXh1euq5MuSKlkqFVknA/vOgoVt2mlf91QqFVBKqXwCuAnY0cz+RHQCzpllSZUsTX/JhPYaHNp130HttK9zmv6qgFIuJ/ygmb0J2JXo8OEnJzpdv0roL5JMysULFu09d9utF7nZZqGzSFlopFIBky4VM3vXmLt2MbM8kPPqXvJiwpN1RCDaaX/6kvyd39pkY5VKfXoudIBGUMr016lES92/P75dTnTBrj+Z2QfLkC0pj4cOILXjo0uWztlgpFDqmoNSGya70KOsh1JKpQXYzd3f7e7vJlpUzYGDqObr1GfyLwKvhI4htcHALl2wcBrREuJSPxbkunN1ezZ9NSmlVLZx9wVF3y+M73uZqV1NrZI0WpFJmz049LrZg0N3hs4hidIopUJKKZXbzexXZtZtZt1E1ze+Pb5w15LyxEuMSkVKcsmChXvbJK8zITVBnwEVUkqp/DvwfaK1+WcTXUrT3X25ux9WjnAJ0l8oKUlnwTs/umTpX0LnkMRopFIhky4Vjy688iwwDLyT6IIttfKPTqUiJTt9SX7uBoXCo6FzSCL0GVAhE5aKme1iZp83syeAi4HniS7udZi7X1L2hMnQXygpmYFdMn9Rs3ba1wWNVCpkMiOVJ4DDgXe4+1x3v5jaWPNrlUz+BUDz41Ky/QYHd9trcEhn2te253PduZdCh2gUkymVdxGtn3WbmV1uZkdQnRfkmog+GGRKvr1g0Z7mrg+l2qV/+xU0Yam4+w3u/l7gdcBtRMvdb25ml5rZkeUOmCD9xZIp6SwUNv7IkqWaQq1d+rdfQaXsqF/u7v/r7kcDWwMPUc0nPa5J5x3IlJ2xJD93RqGgefnapFKpoCldTtjdX3H3y9z9iKQDldEDQH/oEFKbDOySBYtMO+1rzjJAy+5UUJLXqK9umfwQcF/oGFK79h8Y3H2PIe20rzF357pztXVgUY1rnFKJaApM1su35y96vUVLE0lt0C8BFaZSESnBJoXCpqfml2rfSu1QqVRYo5XKn6m1c2yk6pz5Sn7O9EJBR4NVv35UKhXXWKWSyeeJikVkypqg6eIFi5xo6SKpXrfmunM6OKfCGqtUIjeGDiC178CBwdfvPqTl8avcr0IHaEQqFZEpunT+ot3NXReAq17Z0AEaUeOVSib/NNF6ZiLrZdNC4TUn5ZfpHIjq9EiuO/f30CEaUeOVSkSjFUnEWa8smTu9UKiVS0A0Ek19BdKopXJT6ABSH5qg6aIFi0a0077qqFQCadRSuRtYGDqE1IeDBwb32G1opXbaV4+FwD2hQzSqxiyVTL6AfpORBF06f+Fu5r4kdA4B4Npcd05rtAXSmKUSuTZ0AKkfrykUZn5o6bJHQucQAH4YOkAja+RS+T2go0MkMZ94ecncjkJBRxaG9USuO6eFYwNq3FKJpsB+EDqG1I8maPrGgsUrtdM+KI1SAmvcUolcBegDQBJzyMDAnrsOrdR6U2E48KPQIRpdY5dKJv8M8MfQMaS+fGfBwl1xz4fO0YD+kOvOPR86RKNr7FKJfD90AKkvM0cKm31g6bKHQ+doQJr6qgIqFfg50SVHRRLzqZeXzGkvFJ4MnaOBLAN+FjqEqFQgk18O/DR0DKkvzdD8PwsXD2qnfcV8L9ed0y+HVUClEvlu6ABSf+b2D+y180rttK+AAvDN0CEkolIByOTvA/4QOobUn+/O1077Cvhlrjv3bOgQElGprPK10AGk/mw2UtjsxKV92mlfXt8IHUBWMU35Fsl05oA9QseQ+jICIwdvt/UzA01Nu4TOUofm5bpz+4QOIatopLK6C0IHkPrTDM3/vXCxrpVeHheFDiCrU6ms7n+BF0KHkPpzaP/A3jsODWmnfbIWAD8OHUJWp1IplsmvRPOzUiaXzV+0M+5LQ+eoIz257txg6BCyOpXKmi4DdLSOJG7zkZHNT1jW91DoHHXiH8CloUPImlQqY2Xyy9Ax71Im6ZdemdNWKDwVOkcd+JJGKdVJpTK+CyBynIYAABGHSURBVICXQoeQ+tMCLf+9cPGK0DlqXC9wZegQMj6Vyngy+aXAV0LHkPr0pv6BvXfQ8vjr44u57txQ6BAyPpXK2n0LHQkmZXLZ/IU74a61qkr3FHB16BCydiqVtcnkB4DPhY4h9WmLkZEtjl/W92DoHDXo/Fx3bjh0CFk7lcq6XQ3MCx1C6tNnop32T4fOUUPuJzqXTKqYSmVdouvYfzJ0DKlPLdDytUUv9YXOUUM+luvOaV2pKqdSmUgmfyvwq9AxpD4dvqJ/dmpo5Z9D56gB1+S6c3eFDiETU6lMzlmA1m6Ssrhs/sLtcdeIZe36gHNDh5DJUalMRib/DHB+6BhSn2aNjMx6V9/y+0PnqGKZXHfuH6FDyOSoVCbvv9FOeymTzy5+eU5rwZ8JnaMKPYpWIq4pKpXJyuSHgY8AI6GjSP2ZBtO+umixFptcnQOnl3oIsUXuNLOjiu57j5ndXGoAMzvFzLYs+v4FM9t4Es/b38wmdZlyM9vPzO42s0fN7BEzO77oZz8ys+fMbF582zO+/zgzO6/U91MJKpVSZPL3AxeHjiH16S0r+vfZbuVK7Yxe5Vu57twdpT7JoysPngZcaGbtZrYB8GXg36eQ4RRgywkftabPMMEagma2afxlH/B+d98DeDtwiZltWPTQj7v77PiWi++7EXiXmbVPIVtZqVRK91ngb6FDSH26bP7CFO7LQ+eoAk+xHjvn3f1R4JfxNs4Drnb3Z8zsnHhE8KiZnQlgZjuZ2atT22aWNrPPmtkJwGzg2niU0Bo/5CwzeygeVaxxNU8z6wR2dffHxvlZSzzK+BXw8zjrk+7R1Ke7v0C07uDMCd6fA3cQlVBVUamUKpNfDvxb6BhSn7YaHpl1XN/y+0LnCGwE6M5159Z34c3zgfcBRwFfM7ODgPcDBwBvAE4fnU4aj7tfS7Qf9YR4lDC63tgCd98HuAL4xDhPPRDIFd9hZjubWQ/wF+BY4KvufvjYJ5rZIfGXvUV398QFdkFRsUF0Mugb15Y/FJXKVGTy/4fWH5IyOW/xy3Na3Z8NnSOgC5I4J8WjEd+1wA/dfRCYC1zn7v0erbt2A1P7UL4+/u8DQGqcn88CFo1+E494/gIMAPu4+8nuvsa0npm9FrgKOCkeiQCcA+xGVIRbAp8qespCYKsp5C8rlcrU/TvREF0kUdNg2lcWLl4SOkcgOaLpqqQU4tu6DLP6Z+FE+ylGr+MyArSM8/P+Mdu4mehct6OB68zsvWP3hcRTZlngXHd/daTq7v/0yCBR4Rw4JmfVnT+nUpmqTL4PeC+gJbglcUeu6N93m8bbab8S+FAZl7W/A3inmXXEO++Pje+bD2xlZpvEH/ZdRc9ZBmy45qbW6S/ATqPfuHve3S9x9/2ATwOHAn8xs68AmFkb0Y73K9z9F8UbMrNZ8X8tzvto0Y93GfN9VVCprI9M/kF0pq+UyeXzF27XYDvtP5/rzpXtXDB3vxf4MXAfcDdwqbvn3H2A6Oiw+4HfAo8XPe37wBVjdtRP5DFgMzObMU6GB9z9dGB34I/x3ScChwAfHnvoMPATM3uEaAS3Eatf5+kwotFNVbFVU3cyZZnOm4iGtiKJ+vTMTW//5YYbvDl0jgrIAkfXy4KRZnY2sMjdryrT9rcCrnL3I8ux/fWhkUoyTga0jIQkLrP45UOmuT8XOkeZPQd8sF4KJXYJ0XReuWzD6jvtq4ZGKknJdB4K3Ao0h44i9eX/Zkx/4JzNZ+4XOkeZDACH5LpzD4UOIsnQSCUpmfwfgc+HjiH156jlK/bbeuXw3aFzlMnpKpT6olJJUib/JXRlOimDy+cv2Ab39T0ZsNpckevOfT90CEmWSiV5pwC66JIkauvhkdd2LV9xb+gcCXoAOCN0CEme9qmUQ6Zzc+Aexj/bVmRKhmDwoNQ284fNtgudZT39HTg41537Z+ggkjyNVMohk18IvAPQUuaSmFZo+69FLy2a+JFVbQlwlAqlfqlUyiWTf4zojHtdf0US07V8xf5brRy+J3SOKRoC3pnrzq2xeq/UD5VKOUULT34ydAypL1fMX/ha3KtuzacJOHBSrjt3e+ggUl4qlXLL5C8CvhY6htSPbYaHtz5q+YpaG638Z6479+PQIaT8tKO+UjKd3wTODB1D6kON7bT/dq47N5WrLkoN0kilcv4DuDx0CKkPrdB2/uKXFobOMQlXo1+mGopKpVIy+dHrZv8odBSpD8f0rThg1vBwNZ+7cjVwcq47N9H1TKSOqFQqKZMvACcRX5taZH1d/uLCWURLt1ebH6JCaUgqlUrL5EeIrpv9y9BRpPZtNzy8zduWr6i2dcF+RHSklwqlAWlHfSiZzjbgZ+g6LLKeBo2Bg7fbZuGw2bahswDXEF29UYXSoDRSCSWTHwTeRXRlOZEpa3Paz1v88oLQOYhGKN0qlMamkUo1yHR+BUiHjiG17S3bbHXvgpaWAwO9/NeBc+vsQlsyBSqVapHpPAu4ELDQUaQ29ba0PH/01rM2x6y9gi9bAM7KdecuruBrShXT9Fe1yOS/AXyA8l6CVOpYanh427es6K/kTvsB4D0qFCmmkUq1yXS+Fbge2CB0FKk9A2b9B2+39UsjZluX+aVeBo7Jdef+VObXkRqjkUq1yeR/B7wJeD50FKk97e4dn1388j/K/DJ/A+aoUGQ8KpVqlMk/COwH3Bo6itSe4/uWH7T58PB9Zdr8bcCBue7cE2XavtQ4lUq1yuQXA0cCF4SOIrXnivkLN8d9MOHNfh14a647Vwtrjkkg2qdSCzKdJwBXAjNCR5Ha8R+bz7z91hnT35zAppYRnSF/fQLbkjqnUqkVmc49gF8AO4WOIrUhoZ32jwPvynXnnkwql9Q3TX/Vikz+UeAAtGaYTFK7e8enX3rlhfXYxE+Bg1QoUgqNVGpRpvMjRCdK6rBjmdDh22x1/6KWlv1LeMoy4OO57tyV5cok9UsjlVqUyV8O7A3cGTqKVL/L5y+cifvQJB/+B2AvFYpMlUqlVmXyzxKdz3IOkPRRPlJHdlw5nHrziv4/T/CwAeCTwGG57lxv+VNJvdL0Vz2IduL/EJgdOopUp36zFW/YbutXRsxeO86PHyBarv7xSueS+qORSj2IduIfBHwZrR0m4+hwn55+6ZW/j7l7CMgAB6tQJCkaqdSbTOfrgW8Dh4aOItXnsG1e+8Dilub9gFuA03Pdub+GziT1RaVSrzKdHyQ6A3qL0FGkejzROu2e97x21kW57tyPQ2eR+qRSqWeZzk7gc8DHgGmB00hYg8D/AF8ik+8LHUbql0qlEWQ6dyE6r6UrdBQJ4pfAJ8jknw4dROqfSqWRZDqPAL4AHBI6ilTErcB5ZPJaol4qRqXSiDKdRwLnAweHjiJlcSfwOTL520MHkcajUmlkmc6jiMrlgNBRJBF3E41Mfhc6iDQulYpAprOLqFz2Cx1FpuQBojL5deggIioVWSXT+VbgTKId+joxtrqNEF0K4WIy+T+GDiMyap0fHBa508yOKrrvPWZ2c/mjjZtnCzMbNrMPr+MxHzazb0ywnZ3MbF789b5m9i8l5phhZrebWZOZ7Wdmd5vZo2b2iJkdX/S4H5nZc2Y2L77tuZbt/cDMHjaznJn91MxmjPn5CWbmZjY7/n62mSW/4F8m/zsy+WOIrtlyAfBy4q8h6+sloAfYnkz+PSoUqTbrLBWPhjGnAReaWbuZbUC0FMi/VyLcOP4VuAs4McFt7guUVCrAh4GfuXsB6APe7+57AG8HLjGzDYse+3F3nx3fcmvZ3pnuvre77wnMB/5t9AdmthFwOnD/6H3uPg/YwcZfx2n9ZfLPkcmfDWxN9F7nleV1pBTzgFOBrcnk/5NMfuySKyJVYcIpDnd/lOg493OB84Cr3f0ZMzsn/u38UTM7E1YfAcTfp83ss/HXd5pZj5nda2ZPmtkh8f0zzOw6M3vczH5uZveP/kY+jhOBs4g+UGcVvc6HzeyvZnYvRUc0xSOF44q+X+2kLzPriN/T++ORxPFmdng8aphnZg+OHTXE3g/cGP/5POnuz8Rfv0D0m+TMif5ci7n70jhPE9AOFM9Jfjm+jV2J+FfACaW8Tsky+X4y+SvJ5PcB3ghcTXStDamMV4ArgDeSye9DJv89MvmB0KFE1mWy8+bnA+8DjgK+ZmYHEX2wHgC8ATh9bVM7Y5i7HwicTfRhDtEc/nx33x34IrDPuE80SwGbuvsDwM+IRi1YdKnUz8U55gJ7TPI94e79ROdtXBOPJH4eZ/t/7j6baP2s1f4Rm1k7sHVcIGMzjp7/0Vt0d088LXaBmbWuLYuZXU00StmBaO0uzOwAYHN3/804T7mf6IO+MjL5O8nku4HNgeOB6xjzZyOJWAFcCxwHbEkm/xEyeV03R2pGy2Qe5O7LzexaoM/dB81sLnBd/KGMmd1A9AH32wk2dX383weAVPz1XOCr8es8bGaPreW57yX6xwbwE6IP3ouIRia3uPtLcZafAttO5n2txZ+Ai8zsGqL3OHZJi80ZZ19DPBV1FdFU2OhI4xzgRaAVuBL4FNGoYw3u/iEza47f1/Hx6/83UXmPZyGwVQnvKxnRb8rXAdeR6dyQ6MPvROCtTPLvk6xhGPgd8L/ADVpGRWpZKR8Chfi2LsOsPvppj+8bNTqFM1Lia0P0wTXTzLrj77cysx0mmyf+wJ7wNd39v8zsJqIjoO42syPc/amih/QTva9XmVknkAXOdff7irb1z/jLQTO7CjgjfvzviabI7nb304oePxKX98fi7e0O3GFmAFsCvzazLnd/KM7QP9H7KatMfhnRdVx+SKZzJvBO4G3AEcDGIaPVgMVERfIb4Ndk8osC5xFJxFR/s7wD+K6ZfR1oBo4lmt+fT/RhvwnRB14X8b6HdfgT0VTWHfEU2u5jH2BmuwMt7v7aovu+RDR6uRq4wMw2Jdppfjxwb/ywXqJzL64n+sBrHuf1lwGv7lg3sx3d/RHgkXiab1fg1VJx90Vm1mFmre4+ZGZt8Xu8wt1/MSb3LHd/0aJWOBZ4NN7GW4oe0wSk3P3Z+HHHAE+4+8sU7ZsxszuBM+Kd9AC7jG6vKmTyi4HLgcvJdDYTTY0eSTSCORiNYoaJDjL5TXx7kEx+ol/SRGrOlP6hu/u9ZvZjYPS38ktHj2wysy8Tzff/A5jMhX8uBq42s8fjxz8O5Mc85kSiY/KLXQf8wN2/bGb/RXQ28StA8RFW3wVuNLN3EO3YHu+yu7cCZ5vZQ8CXgCPM7I1Eo7JHGH9K7/dE62fdHmc7BNi46FDnD8Z/Hj+JC7aJaMovPc62moEfFR0x9hCTO7ruMCYu7DAy+RGi/x93A18g07kRUd63AnOI9nvVe8kMEv39uZfo78utZPJLw0YSKb/gJz+aWQvRKGTAzHYm+hDf2d2HJ3hqMPEO9NPd/eRAr98B3AbMcfeREBnWS6azHdgb2J9oJLk/0Qh1vJFkLRgh+mXovqJbjkx+KGgqkQCqoVQ2JroKXQtgwKfcfaId/sGZ2anA9+NzVSr92rsCW7h7/Zz4lumcDsyObzsRHQW3I7A9MN5h3SH0Ac+MuT0GPEQmvzxkMJFqEbxURCaU6dyCqGRGb68FNiE6GGCTotvGlD7aKQBLiI7oG729Ev93EfAsowWSyS9Y37ciUu9UKlJfosOcNyE6Oq4pvo0WzUh8G45veSBPJq9/BCIJUamIiEhitBKtiIgkRqUiIiKJUamIiEhiVCoiIpIYlYqIiCRGpSIiIolRqYiISGJUKiIikhiVioiIJEalIiIiiVGpiIhIYlQqIiKSGJWKiIgkRqUiIiKJUamIiEhiVCoiIpIYlYqIiCRGpSIiIolRqYiISGJUKiIikhiVioiIJEalIiIiiVGpiIhIYlQqIiKSGJWKiIgkRqUiIiKJUamIiEhiVCoiIpIYlYqIiCRGpSIiIolRqYiISGJUKiIikhiVioiIJEalIiIiiVGpiIhIYlQqIiKSGJWKiIgkRqUiIiKJ+f93HyLJelN6WwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iRNpsZ-MqTy9", + "outputId": "1d756870-ea91-4cf0-f55e-553fe532ba7e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 384 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0, 0.5, 'Number of Sales')" + ] + }, + "metadata": {}, + "execution_count": 43 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAKPCAYAAAAloqCUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYyRJREFUeJzt3XmYVnXBN/DvsAvIuCFKoCAYiwvuQGalkqRouaZmioq5hAvgY8CjgUu+bmkuuFRiaGVuqaUoZpi4oaiEK7iiYIgbyyAq28z7Ry/zOuHC2MF7Bj+f67qvZ875/e5zf++5rs4zfjnnd8qqqqqqAgAAAAD/pQalDgAAAADA6kHRBAAAAEAhFE0AAAAAFELRBAAAAEAhFE0AAAAAFELRBAAAAEAhFE0AAAAAFKJRqQOsLiorKzNr1qysueaaKSsrK3UcAAAAgEJUVVVlwYIFadu2bRo0+OxrlhRNBZk1a1bat29f6hgAAAAAq8TMmTPTrl27z5yjaCrImmuumeTfv/RWrVqVOA0AAABAMSoqKtK+ffvq7uOzKJoKsvx2uVatWimaAAAAgNXOyiwVZDFwAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAArRqNQBWH11GDa21BGow147t1+pIwAAAFAwVzQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUIiSFk2nn356ysrKary6du1aPf7RRx9l4MCBWXfdddOyZcvst99+eeutt2ocY8aMGenXr1+aN2+e9ddfP6ecckqWLl1aY87999+fbbbZJk2bNk3nzp0zZsyYFbJcfvnl6dChQ5o1a5aePXtm0qRJq+Q7AwAAAKyuSn5F02abbZY333yz+vXQQw9Vjw0ePDh33HFHbr755kyYMCGzZs3KvvvuWz2+bNmy9OvXL4sXL84jjzySa6+9NmPGjMmIESOq50yfPj39+vXLzjvvnClTpmTQoEE56qijcs8991TPufHGGzNkyJCMHDkykydPTo8ePdK3b9+8/fbbX84vAQAAAGA1UFZVVVVVqg8//fTTc/vtt2fKlCkrjM2fPz+tW7fO9ddfn/333z9JMm3atHTr1i0TJ05Mr169cvfdd2fPPffMrFmz0qZNmyTJVVddlaFDh+add95JkyZNMnTo0IwdOzbPPvts9bEPOuigzJs3L+PGjUuS9OzZM9tvv31GjRqVJKmsrEz79u1zwgknZNiwYSv1XSoqKlJeXp758+enVatW/82vZbXRYdjYUkegDnvt3H6ljgAAAMBKqE3nUfIrml566aW0bds2m2yySQ455JDMmDEjSfLkk09myZIl6dOnT/Xcrl27ZqONNsrEiROTJBMnTswWW2xRXTIlSd++fVNRUZHnnnuues7Hj7F8zvJjLF68OE8++WSNOQ0aNEifPn2q53ySRYsWpaKiosYLAAAA4KuspEVTz549M2bMmIwbNy5XXnllpk+fnp122ikLFizI7Nmz06RJk6y11lo13tOmTZvMnj07STJ79uwaJdPy8eVjnzWnoqIiH374Yd59990sW7bsE+csP8YnOeecc1JeXl79at++/Rf6HQAAAACsLhqV8sN333336p+33HLL9OzZMxtvvHFuuummrLHGGiVM9vmGDx+eIUOGVG9XVFQomwAAAICvtJLfOvdxa621Vr7+9a/n5ZdfzgYbbJDFixdn3rx5Nea89dZb2WCDDZIkG2ywwQpPoVu+/XlzWrVqlTXWWCPrrbdeGjZs+Ilzlh/jkzRt2jStWrWq8QIAAAD4KqtTRdP777+fV155JRtuuGG23XbbNG7cOOPHj68ef+GFFzJjxoz07t07SdK7d+8888wzNZ4Od++996ZVq1bp3r179ZyPH2P5nOXHaNKkSbbddtsacyorKzN+/PjqOQAAAAB8vpIWTf/zP/+TCRMm5LXXXssjjzySffbZJw0bNszBBx+c8vLyDBgwIEOGDMk//vGPPPnkkzniiCPSu3fv9OrVK0my2267pXv37jn00EPz1FNP5Z577slpp52WgQMHpmnTpkmSY489Nq+++mp+9rOfZdq0abniiity0003ZfDgwdU5hgwZkt/+9re59tprM3Xq1Bx33HFZuHBhjjjiiJL8XgAAAADqo5Ku0fTGG2/k4IMPznvvvZfWrVvnm9/8Zh599NG0bt06SfKrX/0qDRo0yH777ZdFixalb9++ueKKK6rf37Bhw9x555057rjj0rt377Ro0SL9+/fPmWeeWT2nY8eOGTt2bAYPHpxLLrkk7dq1y9VXX52+fftWzznwwAPzzjvvZMSIEZk9e3a22mqrjBs3boUFwgEAAAD4dGVVVVVVpQ6xOqioqEh5eXnmz59vvab/p8OwsaWOQB322rn9Sh0BAACAlVCbzqNOrdEEAAAAQP2laAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEIomAAAAAAqhaAIAAACgEHWmaDr33HNTVlaWQYMGVe/76KOPMnDgwKy77rpp2bJl9ttvv7z11ls13jdjxoz069cvzZs3z/rrr59TTjklS5curTHn/vvvzzbbbJOmTZumc+fOGTNmzAqff/nll6dDhw5p1qxZevbsmUmTJq2KrwkAAACw2qoTRdPjjz+eX//619lyyy1r7B88eHDuuOOO3HzzzZkwYUJmzZqVfffdt3p82bJl6devXxYvXpxHHnkk1157bcaMGZMRI0ZUz5k+fXr69euXnXfeOVOmTMmgQYNy1FFH5Z577qmec+ONN2bIkCEZOXJkJk+enB49eqRv3755++23V/2XBwAAAFhNlFVVVVWVMsD777+fbbbZJldccUV+8YtfZKuttsrFF1+c+fPnp3Xr1rn++uuz//77J0mmTZuWbt26ZeLEienVq1fuvvvu7Lnnnpk1a1batGmTJLnqqqsydOjQvPPOO2nSpEmGDh2asWPH5tlnn63+zIMOOijz5s3LuHHjkiQ9e/bM9ttvn1GjRiVJKisr0759+5xwwgkZNmzYSn2PioqKlJeXZ/78+WnVqlWRv6J6q8OwsaWOQB322rn9Sh0BAACAlVCbzqPkVzQNHDgw/fr1S58+fWrsf/LJJ7NkyZIa+7t27ZqNNtooEydOTJJMnDgxW2yxRXXJlCR9+/ZNRUVFnnvuueo5/3nsvn37Vh9j8eLFefLJJ2vMadCgQfr06VM955MsWrQoFRUVNV4AAAAAX2WNSvnhN9xwQyZPnpzHH398hbHZs2enSZMmWWuttWrsb9OmTWbPnl095+Ml0/Lx5WOfNaeioiIffvhh5s6dm2XLln3inGnTpn1q9nPOOSdnnHHGyn1RAAAAgK+Akl3RNHPmzJx00kn54x//mGbNmpUqxhc2fPjwzJ8/v/o1c+bMUkcCAAAAKKmSFU1PPvlk3n777WyzzTZp1KhRGjVqlAkTJuTSSy9No0aN0qZNmyxevDjz5s2r8b633norG2ywQZJkgw02WOEpdMu3P29Oq1atssYaa2S99dZLw4YNP3HO8mN8kqZNm6ZVq1Y1XgAAAABfZSUrmnbdddc888wzmTJlSvVru+22yyGHHFL9c+PGjTN+/Pjq97zwwguZMWNGevfunSTp3bt3nnnmmRpPh7v33nvTqlWrdO/evXrOx4+xfM7yYzRp0iTbbrttjTmVlZUZP3589RwAAAAAPl/J1mhac801s/nmm9fY16JFi6y77rrV+wcMGJAhQ4ZknXXWSatWrXLCCSekd+/e6dWrV5Jkt912S/fu3XPooYfm/PPPz+zZs3Paaadl4MCBadq0aZLk2GOPzahRo/Kzn/0sRx55ZO67777cdNNNGTv2/z8RbciQIenfv3+222677LDDDrn44ouzcOHCHHHEEV/SbwMAAACg/ivpYuCf51e/+lUaNGiQ/fbbL4sWLUrfvn1zxRVXVI83bNgwd955Z4477rj07t07LVq0SP/+/XPmmWdWz+nYsWPGjh2bwYMH55JLLkm7du1y9dVXp2/fvtVzDjzwwLzzzjsZMWJEZs+ena222irjxo1bYYFwAAAAAD5dWVVVVVWpQ6wOKioqUl5envnz51uv6f/pMGzs50/iK+u1c/uVOgIAAAAroTadR8nWaAIAAABg9aJoAgAAAKAQiiYAAAAACqFoAgAAAKAQdfqpcwB89XiQAJ/FgwQAAOo2VzQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACFUDQBAAAAUAhFEwAAAACF+K+LpmXLlmXKlCmZO3duEXkAAAAAqKdqXTQNGjQoo0ePTvLvkunb3/52ttlmm7Rv3z73339/0fkAAAAAqCdqXTTdcsst6dGjR5LkjjvuyPTp0zNt2rQMHjw4p556auEBAQAAAKgfal00vfvuu9lggw2SJHfddVcOOOCAfP3rX8+RRx6ZZ555pvCAAAAAANQPtS6a2rRpk+effz7Lli3LuHHj8t3vfjdJ8sEHH6Rhw4aFBwQAAACgfmhU2zccccQR+eEPf5gNN9wwZWVl6dOnT5LkscceS9euXQsPCAAAAED9UOui6fTTT8/mm2+emTNn5oADDkjTpk2TJA0bNsywYcMKDwgAAABA/VDroilJ9t9//yTJRx99VL2vf//+xSQCAAAAoF6q9RpNy5Yty1lnnZWvfe1radmyZV599dUkyc9//vOMHj268IAAAAAA1A+1LprOPvvsjBkzJueff36aNGlSvX/zzTfP1VdfXWg4AAAAAOqPWhdN1113XX7zm9/kkEMOqfGUuR49emTatGmFhgMAAACg/qh10fSvf/0rnTt3XmF/ZWVllixZUkgoAAAAAOqfWhdN3bt3z4MPPrjC/ltuuSVbb711IaEAAAAAqH9q/dS5ESNGpH///vnXv/6VysrK3HrrrXnhhRdy3XXX5c4771wVGQEAAACoB2p9RdMPfvCD3HHHHfn73/+eFi1aZMSIEZk6dWruuOOOfPe7310VGQEAAACoB2p9RVOS7LTTTrn33nuLzgIAAABAPVbrK5oAAAAA4JOs1BVNa6+9dsrKylbqgHPmzPmvAgEAAABQP61U0XTxxRev4hgAAAAA1HcrVTT1799/VecAAAAAoJ77QouBL/fRRx9l8eLFNfa1atXqvwoEAAAAQP1U68XAFy5cmOOPPz7rr79+WrRokbXXXrvGCwAAAICvploXTT/72c9y33335corr0zTpk1z9dVX54wzzkjbtm1z3XXXrYqMAAAAANQDtb517o477sh1112X73znOzniiCOy0047pXPnztl4443zxz/+MYcccsiqyAkAAABAHVfrK5rmzJmTTTbZJMm/12OaM2dOkuSb3/xmHnjggWLTAQAAAFBv1Lpo2mSTTTJ9+vQkSdeuXXPTTTcl+feVTmuttVah4QAAAACoP2pdNB1xxBF56qmnkiTDhg3L5ZdfnmbNmmXw4ME55ZRTCg8IAAAAQP1Q6zWaBg8eXP1znz59MnXq1EyePDmdO3fOlltuWWg4AAAAAOqPWhdN/6lDhw7p0KFDAVEAAAAAqM9W+ta5iRMn5s4776yx77rrrkvHjh2z/vrr5+ijj86iRYsKDwgAAABA/bDSRdOZZ56Z5557rnr7mWeeyYABA9KnT58MGzYsd9xxR84555xVEhIAAACAum+li6YpU6Zk1113rd6+4YYb0rNnz/z2t7/NkCFDcumll1Y/gQ4AAACAr56VLprmzp2bNm3aVG9PmDAhu+++e/X29ttvn5kzZxabDgAAAIB6Y6WLpjZt2mT69OlJksWLF2fy5Mnp1atX9fiCBQvSuHHj4hMCAAAAUC+sdNG0xx57ZNiwYXnwwQczfPjwNG/ePDvttFP1+NNPP51OnTqtkpAAAAAA1H2NVnbiWWedlX333Tff/va307Jly1x77bVp0qRJ9fg111yT3XbbbZWEBAAAAKDuW+miab311ssDDzyQ+fPnp2XLlmnYsGGN8ZtvvjktW7YsPCAAAAAA9cNKF03LlZeXf+L+ddZZ578OAwAAAED9tdJrNAEAAADAZ1E0AQAAAFAIRRMAAAAAhVipommbbbbJ3LlzkyRnnnlmPvjgg1UaCgAAAID6Z6WKpqlTp2bhwoVJkjPOOCPvv//+Kg0FAAAAQP2zUk+d22qrrXLEEUfkm9/8ZqqqqvLLX/4yLVu2/MS5I0aMKDQgAAAAAPXDShVNY8aMyciRI3PnnXemrKwsd999dxo1WvGtZWVliiYAAACAr6iVKpq6dOmSG264IUnSoEGDjB8/Puuvv/4qDQYAAABA/bJSRdPHVVZWroocAAAAANRzK7UY+H965ZVXcsIJJ6RPnz7p06dPTjzxxLzyyiu1Ps6VV16ZLbfcMq1atUqrVq3Su3fv3H333dXjH330UQYOHJh11103LVu2zH777Ze33nqrxjFmzJiRfv36pXnz5ll//fVzyimnZOnSpTXm3H///dlmm23StGnTdO7cOWPGjFkhy+WXX54OHTqkWbNm6dmzZyZNmlTr7wMAAADwVVbroumee+5J9+7dM2nSpGy55ZbZcsst89hjj2WzzTbLvffeW6tjtWvXLueee26efPLJPPHEE9lll13ygx/8IM8991ySZPDgwbnjjjty8803Z8KECZk1a1b23Xff6vcvW7Ys/fr1y+LFi/PII4/k2muvzZgxY2qsEzV9+vT069cvO++8c6ZMmZJBgwblqKOOyj333FM958Ybb8yQIUMycuTITJ48OT169Ejfvn3z9ttv1/bXAwAAAPCVVVZVVVVVmzdsvfXW6du3b84999wa+4cNG5a//e1vmTx58n8VaJ111skFF1yQ/fffP61bt87111+f/fffP0kybdq0dOvWLRMnTkyvXr1y9913Z88998ysWbPSpk2bJMlVV12VoUOH5p133kmTJk0ydOjQjB07Ns8++2z1Zxx00EGZN29exo0blyTp2bNntt9++4waNSrJv28PbN++fU444YQMGzZspXJXVFSkvLw88+fPT6tWrf6r38HqosOwsaWOQB322rn9Sh2BOsq5g8/i3AEA8OWrTedR6yuapk6dmgEDBqyw/8gjj8zzzz9f28NVW7ZsWW644YYsXLgwvXv3zpNPPpklS5akT58+1XO6du2ajTbaKBMnTkySTJw4MVtssUV1yZQkffv2TUVFRfVVURMnTqxxjOVzlh9j8eLFefLJJ2vMadCgQfr06VM955MsWrQoFRUVNV4AAAAAX2W1Lppat26dKVOmrLB/ypQpX+hJdM8880xatmyZpk2b5thjj81tt92W7t27Z/bs2WnSpEnWWmutGvPbtGmT2bNnJ0lmz55do2RaPr587LPmVFRU5MMPP8y7776bZcuWfeKc5cf4JOecc07Ky8urX+3bt6/1dwcAAABYndT6qXM/+clPcvTRR+fVV1/NN77xjSTJww8/nPPOOy9DhgypdYAuXbpkypQpmT9/fm655Zb0798/EyZMqPVxvmzDhw+v8X0rKiqUTQAAAMBXWq2Lpp///OdZc801c+GFF2b48OFJkrZt2+b000/PiSeeWOsATZo0SefOnZMk2267bR5//PFccsklOfDAA7N48eLMmzevxlVNb731VjbYYIMkyQYbbLDC0+GWP5Xu43P+80l1b731Vlq1apU11lgjDRs2TMOGDT9xzvJjfJKmTZumadOmtf6+AAAAAKurWt86V1ZWlsGDB+eNN97I/PnzM3/+/Lzxxhs56aSTUlZW9l8HqqyszKJFi7LtttumcePGGT9+fPXYCy+8kBkzZqR3795Jkt69e+eZZ56p8XS4e++9N61atUr37t2r53z8GMvnLD9GkyZNsu2229aYU1lZmfHjx1fPAQAAAODz1fqKpo9bc801/6sPHz58eHbfffdstNFGWbBgQa6//vrcf//9ueeee1JeXp4BAwZkyJAhWWedddKqVauccMIJ6d27d3r16pUk2W233dK9e/cceuihOf/88zN79uycdtppGThwYPXVRscee2xGjRqVn/3sZznyyCNz33335aabbsrYsf//qUZDhgxJ//79s91222WHHXbIxRdfnIULF+aII474r74fAAAAwFfJf1U0/bfefvvtHHbYYXnzzTdTXl6eLbfcMvfcc0+++93vJkl+9atfpUGDBtlvv/2yaNGi9O3bN1dccUX1+xs2bJg777wzxx13XHr37p0WLVqkf//+OfPMM6vndOzYMWPHjs3gwYNzySWXpF27drn66qvTt2/f6jkHHnhg3nnnnYwYMSKzZ8/OVlttlXHjxq2wQDgAAAAAn66sqqqqqtQhVgcVFRUpLy/P/Pnz06pVq1LHqRM6DBv7+ZP4ynrt3H6ljkAd5dzBZ3HuAAD48tWm86j1Gk0AAAAA8ElqVTQtWbIku+66a1566aVVlQcAAACAeqpWRVPjxo3z9NNPr6osAAAAANRjtb517sc//nFGjx69KrIAAAAAUI/V+qlzS5cuzTXXXJO///3v2XbbbdOiRYsa4xdddFFh4QAAAACoP2pdND377LPZZpttkiQvvvhijbGysrJiUgEAAABQ79S6aPrHP/6xKnIAAAAAUM/Veo2m5V5++eXcc889+fDDD5MkVVVVhYUCAAAAoP6pddH03nvvZdddd83Xv/717LHHHnnzzTeTJAMGDMjJJ59ceEAAAAAA6odaF02DBw9O48aNM2PGjDRv3rx6/4EHHphx48YVGg4AAACA+qPWazT97W9/yz333JN27drV2L/pppvm9ddfLywYAAAAAPVLra9oWrhwYY0rmZabM2dOmjZtWkgoAAAAAOqfWhdNO+20U6677rrq7bKyslRWVub888/PzjvvXGg4AAAAAOqPWt86d/7552fXXXfNE088kcWLF+dnP/tZnnvuucyZMycPP/zwqsgIAAAAQD1Q6yuaNt9887z44ov55je/mR/84AdZuHBh9t133/zzn/9Mp06dVkVGAAAAAOqBWl/RlCTl5eU59dRTi84CAAAAQD32hYqmuXPnZvTo0Zk6dWqSpHv37jniiCOyzjrrFBoOAAAAgPqj1rfOPfDAA+nQoUMuvfTSzJ07N3Pnzs2ll16ajh075oEHHlgVGQEAAACoB2p9RdPAgQNz4IEH5sorr0zDhg2TJMuWLctPf/rTDBw4MM8880zhIQEAAACo+2p9RdPLL7+ck08+ubpkSpKGDRtmyJAhefnllwsNBwAAAED9UeuiaZtttqlem+njpk6dmh49ehQSCgAAAID6Z6VunXv66aerfz7xxBNz0kkn5eWXX06vXr2SJI8++mguv/zynHvuuasmJQAAAAB13koVTVtttVXKyspSVVVVve9nP/vZCvN+9KMf5cADDywuHQAAAAD1xkoVTdOnT1/VOQAAAACo51aqaNp4441XdQ4AAAAA6rmVKpr+06xZs/LQQw/l7bffTmVlZY2xE088sZBgAAAAANQvtS6axowZk2OOOSZNmjTJuuuum7KysuqxsrIyRRMAAADAV1Sti6af//znGTFiRIYPH54GDRqsikwAAAAA1EO1boo++OCDHHTQQUomAAAAAGqodVs0YMCA3HzzzasiCwAAAAD1WK1vnTvnnHOy5557Zty4cdliiy3SuHHjGuMXXXRRYeEAAAAAqD++UNF0zz33pEuXLkmywmLgAAAAAHw11bpouvDCC3PNNdfk8MMPXwVxAAAAAKivar1GU9OmTbPjjjuuiiwAAAAA1GO1LppOOumkXHbZZasiCwAAAAD1WK1vnZs0aVLuu+++3Hnnndlss81WWAz81ltvLSwcAAAAAPVHrYumtdZaK/vuu++qyAIAAABAPVbroul3v/vdqsgBAAAAQD1X6zWaAAAAAOCT1PqKpo4dO6asrOxTx1999dX/KhAAAAAA9VOti6ZBgwbV2F6yZEn++c9/Zty4cTnllFOKygUAAABAPVProumkk076xP2XX355nnjiif86EAAAAAD1U2FrNO2+++7585//XNThAAAAAKhnCiuabrnllqyzzjpFHQ4AAACAeqbWt85tvfXWNRYDr6qqyuzZs/POO+/kiiuuKDQcAAAAAPVHrYumvffeu8Z2gwYN0rp163znO99J165di8oFAAAAQD1T66Jp5MiRqyIHAAAAAPVcYWs0AQAAAPDVttJXNDVo0KDG2kyfpKysLEuXLv2vQwEAAABQ/6x00XTbbbd96tjEiRNz6aWXprKyspBQAAAAANQ/K100/eAHP1hh3wsvvJBhw4bljjvuyCGHHJIzzzyz0HAAAAAA1B9faI2mWbNm5Sc/+Um22GKLLF26NFOmTMm1116bjTfeuOh8AAAAANQTtSqa5s+fn6FDh6Zz58557rnnMn78+Nxxxx3ZfPPNV1U+AAAAAOqJlb517vzzz895552XDTbYIH/6058+8VY6AAAAAL66VrpoGjZsWNZYY4107tw51157ba699tpPnHfrrbcWFg4AAACA+mOli6bDDjssZWVlqzILAAAAAPXYShdNY8aMWYUxAAAAAKjvvtBT5wAAAADgPymaAAAAACiEogkAAACAQiiaAAAAACiEogkAAACAQiiaAAAAACiEogkAAACAQiiaAAAAACiEogkAAACAQiiaAAAAACiEogkAAACAQpS0aDrnnHOy/fbbZ80118z666+fvffeOy+88EKNOR999FEGDhyYddddNy1btsx+++2Xt956q8acGTNmpF+/fmnevHnWX3/9nHLKKVm6dGmNOffff3+22WabNG3aNJ07d86YMWNWyHP55ZenQ4cOadasWXr27JlJkyYV/p0BAAAAVlclLZomTJiQgQMH5tFHH829996bJUuWZLfddsvChQur5wwePDh33HFHbr755kyYMCGzZs3KvvvuWz2+bNmy9OvXL4sXL84jjzySa6+9NmPGjMmIESOq50yfPj39+vXLzjvvnClTpmTQoEE56qijcs8991TPufHGGzNkyJCMHDkykydPTo8ePdK3b9+8/fbbX84vAwAAAKCeK6uqqqoqdYjl3nnnnay//vqZMGFCvvWtb2X+/Plp3bp1rr/++uy///5JkmnTpqVbt26ZOHFievXqlbvvvjt77rlnZs2alTZt2iRJrrrqqgwdOjTvvPNOmjRpkqFDh2bs2LF59tlnqz/roIMOyrx58zJu3LgkSc+ePbP99ttn1KhRSZLKysq0b98+J5xwQoYNG/a52SsqKlJeXp758+enVatWRf9q6qUOw8aWOgJ12Gvn9it1BOoo5w4+i3MHAMCXrzadR51ao2n+/PlJknXWWSdJ8uSTT2bJkiXp06dP9ZyuXbtmo402ysSJE5MkEydOzBZbbFFdMiVJ3759U1FRkeeee656zsePsXzO8mMsXrw4Tz75ZI05DRo0SJ8+farn/KdFixaloqKixgsAAADgq6zOFE2VlZUZNGhQdtxxx2y++eZJktmzZ6dJkyZZa621asxt06ZNZs+eXT3n4yXT8vHlY581p6KiIh9++GHefffdLFu27BPnLD/GfzrnnHNSXl5e/Wrfvv0X++IAAAAAq4k6UzQNHDgwzz77bG644YZSR1kpw4cPz/z586tfM2fOLHUkAAAAgJJqVOoASXL88cfnzjvvzAMPPJB27dpV799ggw2yePHizJs3r8ZVTW+99VY22GCD6jn/+XS45U+l+/ic/3xS3VtvvZVWrVpljTXWSMOGDdOwYcNPnLP8GP+padOmadq06Rf7wgAAAACroZJe0VRVVZXjjz8+t912W+6777507Nixxvi2226bxo0bZ/z48dX7XnjhhcyYMSO9e/dOkvTu3TvPPPNMjafD3XvvvWnVqlW6d+9ePefjx1g+Z/kxmjRpkm233bbGnMrKyowfP756DgAAAACfraRXNA0cODDXX399/vKXv2TNNdesXg+pvLw8a6yxRsrLyzNgwIAMGTIk66yzTlq1apUTTjghvXv3Tq9evZIku+22W7p3755DDz00559/fmbPnp3TTjstAwcOrL7i6Nhjj82oUaPys5/9LEceeWTuu+++3HTTTRk79v8/2WjIkCHp379/tttuu+ywww65+OKLs3DhwhxxxBFf/i8GAAAAoB4qadF05ZVXJkm+853v1Nj/u9/9LocffniS5Fe/+lUaNGiQ/fbbL4sWLUrfvn1zxRVXVM9t2LBh7rzzzhx33HHp3bt3WrRokf79++fMM8+sntOxY8eMHTs2gwcPziWXXJJ27drl6quvTt++favnHHjggXnnnXcyYsSIzJ49O1tttVXGjRu3wgLhAAAAAHyysqqqqqpSh1gdVFRUpLy8PPPnz0+rVq1KHadO6DBs7OdP4ivrtXP7lToCdZRzB5/FuQMA4MtXm86jzjx1DgAAAID6TdEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEalToAAAD8tzoMG1vqCNRhr53br9QRAL4yXNEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCEUTQAAAAAUQtEEAAAAQCFKWjQ98MAD2WuvvdK2bduUlZXl9ttvrzFeVVWVESNGZMMNN8waa6yRPn365KWXXqoxZ86cOTnkkEPSqlWrrLXWWhkwYEDef//9GnOefvrp7LTTTmnWrFnat2+f888/f4UsN998c7p27ZpmzZpliy22yF133VX49wUAAABYnZW0aFq4cGF69OiRyy+//BPHzz///Fx66aW56qqr8thjj6VFixbp27dvPvroo+o5hxxySJ577rnce++9ufPOO/PAAw/k6KOPrh6vqKjIbrvtlo033jhPPvlkLrjggpx++un5zW9+Uz3nkUceycEHH5wBAwbkn//8Z/bee+/svffeefbZZ1fdlwcAAABYzZRVVVVVlTpEkpSVleW2227L3nvvneTfVzO1bds2J598cv7nf/4nSTJ//vy0adMmY8aMyUEHHZSpU6eme/fuefzxx7PddtslScaNG5c99tgjb7zxRtq2bZsrr7wyp556ambPnp0mTZokSYYNG5bbb78906ZNS5IceOCBWbhwYe68887qPL169cpWW22Vq666aqXyV1RUpLy8PPPnz0+rVq2K+rXUax2GjS11BOqw187tV+oI1FHOHXwW5w4+jXMHn8W5A+C/U5vOo86u0TR9+vTMnj07ffr0qd5XXl6enj17ZuLEiUmSiRMnZq211qoumZKkT58+adCgQR577LHqOd/61reqS6Yk6du3b1544YXMnTu3es7HP2f5nOWf80kWLVqUioqKGi8AAACAr7I6WzTNnj07SdKmTZsa+9u0aVM9Nnv27Ky//vo1xhs1apR11lmnxpxPOsbHP+PT5iwf/yTnnHNOysvLq1/t27ev7VcEAAAAWK3U2aKprhs+fHjmz59f/Zo5c2apIwEAAACUVJ0tmjbYYIMkyVtvvVVj/1tvvVU9tsEGG+Ttt9+uMb506dLMmTOnxpxPOsbHP+PT5iwf/yRNmzZNq1atarwAAAAAvsrqbNHUsWPHbLDBBhk/fnz1voqKijz22GPp3bt3kqR3796ZN29ennzyyeo59913XyorK9OzZ8/qOQ888ECWLFlSPefee+9Nly5dsvbaa1fP+fjnLJ+z/HMAAAAA+HwlLZref//9TJkyJVOmTEny7wXAp0yZkhkzZqSsrCyDBg3KL37xi/z1r3/NM888k8MOOyxt27atfjJdt27d8r3vfS8/+clPMmnSpDz88MM5/vjjc9BBB6Vt27ZJkh/96Edp0qRJBgwYkOeeey433nhjLrnkkgwZMqQ6x0knnZRx48blwgsvzLRp03L66afniSeeyPHHH/9l/0oAAAAA6q1GpfzwJ554IjvvvHP19vLyp3///hkzZkx+9rOfZeHChTn66KMzb968fPOb38y4cePSrFmz6vf88Y9/zPHHH59dd901DRo0yH777ZdLL720ery8vDx/+9vfMnDgwGy77bZZb731MmLEiBx99NHVc77xjW/k+uuvz2mnnZb//d//zaabbprbb789m2+++ZfwWwAAAABYPZRVVVVVlTrE6qCioiLl5eWZP3++9Zr+nw7DxpY6AnXYa+f2K3UE6ijnDj6LcwefxrmDz+LcAfDfqU3nUWfXaAIAAACgflE0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFAIRRMAAAAAhVA0AQAAAFCIRqUOAAAAAKXSYdjYUkegjnrt3H6ljlAvuaIJAAAAgEIomv7D5Zdfng4dOqRZs2bp2bNnJk2aVOpIAAAAAPWCouljbrzxxgwZMiQjR47M5MmT06NHj/Tt2zdvv/12qaMBAAAA1HnWaPqYiy66KD/5yU9yxBFHJEmuuuqqjB07Ntdcc02GDRtWY+6iRYuyaNGi6u358+cnSSoqKr68wHVc5aIPSh2BOsz/Vvg0zh18FucOPo1zB5/FuYPP4vzBp3Hu+P+W/y6qqqo+d25Z1crM+gpYvHhxmjdvnltuuSV777139f7+/ftn3rx5+ctf/lJj/umnn54zzjjjS04JAAAAUBozZ85Mu3btPnOOK5r+n3fffTfLli1LmzZtauxv06ZNpk2btsL84cOHZ8iQIdXblZWVmTNnTtZdd92UlZWt8rzULxUVFWnfvn1mzpyZVq1alToOUE84dwBfhHMH8EU5f/BpqqqqsmDBgrRt2/Zz5yqavqCmTZumadOmNfattdZapQlDvdGqVSsnbKDWnDuAL8K5A/iinD/4JOXl5Ss1z2Lg/896662Xhg0b5q233qqx/6233soGG2xQolQAAAAA9Yei6f9p0qRJtt1224wfP756X2VlZcaPH5/evXuXMBkAAABA/eDWuY8ZMmRI+vfvn+222y477LBDLr744ixcuLD6KXTwRTVt2jQjR45c4XZLgM/i3AF8Ec4dwBfl/EERPHXuP4waNSoXXHBBZs+ena222iqXXnppevbsWepYAAAAAHWeogkAAACAQlijCQAAAIBCKJoAAAAAKISiCQAAAIBCKJoAAAAAKESjUgeA1dGiRYvy2GOP5fXXX88HH3yQ1q1bZ+utt07Hjh1LHQ2oJxYtWuTRwkCtLFmyJLNnz67+22OdddYpdSSgjps+fXoefPDBFf67pXfv3mnWrFmp41FPKZqgQA8//HAuueSS3HHHHVmyZEnKy8uzxhprZM6cOVm0aFE22WSTHH300Tn22GOz5pprljouUIfcfffdueGGG/Lggw9m5syZqaysTIsWLbL11ltnt912yxFHHJG2bduWOiZQxyxYsCB/+MMfcsMNN2TSpElZvHhxqqqqUlZWlnbt2mW33XbL0Ucfne23377UUYE65I9//GMuueSSPPHEE2nTpk3atm1b/d8tr7zySpo1a5ZDDjkkQ4cOzcYbb1zquNQzZVVVVVWlDgGrg+9///uZPHlyfvSjH2WvvfbKdtttlzXWWKN6/NVXX82DDz6YP/3pT3nqqady3XXX5bvf/W4JEwN1wW233ZahQ4dmwYIF2WOPPbLDDjvU+GPv2WefzYMPPpiJEyfm8MMPz1lnnZXWrVuXOjZQB1x00UU5++yz06lTp+y1116fev64/fbb07Nnz1x22WXZdNNNSx0bKLGtt946TZo0Sf/+/bPXXnulffv2NcYXLVqUiRMn5oYbbsif//znXHHFFTnggANKlJb6SNEEBfn1r3+dI488Mo0bN/7cuc8//3zefPPN7Lrrrl9CMqAu6927d0477bTsvvvuadDg05dO/Ne//pXLLrssbdq0yeDBg7/EhEBddfDBB+e0007LZptt9pnzFi1alN/97ndp0qRJjjzyyC8pHVBX3XPPPenbt+9KzX3vvffy2muvZdttt13FqVidKJoAAAAAKISnzsGX4Iwzzsi7775b6hhAPTN9+vQsXbq01DEAAGClKZqgQBUVFSu85s+fn7PPPjuvvvpq9T6AldGlS5e89NJLpY4B1GFvv/12je0pU6akf//+2XHHHbP//vvn/vvvL00woN7ZYostMnPmzFLHYDXg1jkoUMOGDT9x//Knvyz/v8uWLfuSkwF12b777vuJ+//yl79kl112qX5K5a233vplxgLqgYYNG+bNN9/M+uuvn0ceeSTf+c538o1vfCM77LBDpkyZkn/84x8ZP358vvWtb5U6KlDHrbnmmnnqqaeyySablDoK9VyjUgeA1cmGG26YrbbaKieffHL1or5VVVXp06dPrr766nTs2LHECYG66Pbbb8+3vvWtTzxHtGzZMuXl5SVIBdQHH/8349NPPz2HHnpoRo8eXb1v0KBBOeOMMzJ+/PhSxAPgK8gVTVCgOXPmZMCAAZk/f35+//vf52tf+1qSpHHjxnnqqafSvXv3EicE6qIbbrghp5xySs4888wcccQR1fudO4DP06BBg8yePTvrr79+2rZtm1tvvTW9evWqHn/uuefyne98J++8804JUwJ10YwZM2psd+/ePePGjctGG21Uve/jP8PKskYTFGidddbJbbfdlgMOOCA77LBD/vSnP5U6ElAPHHTQQXnwwQczevTo7Lfffpk7d26pIwH1yIIFC1JRUZFmzZqladOmNcaaNWuWDz74oETJgLqsQ4cO6dixYzp06JAOHTrkgw8+yLe+9a3qbXdj8EUpmmAVOO6443LvvffmvPPOy49+9KNSxwHqgQ4dOuSBBx7I5ptvnh49euSee+5JWVlZqWMB9cDXv/71rL322nnttdfyxBNP1Bh77rnn0rZt2xIlA+qyysrKLFu2LJWVlamsrEyLFi3y8ssvV29bV5YvyhpNsIp07949kyZNyrBhw7L55ptnjTXWKHUkoI5r0KBBzjjjjHz3u9/NYYcd5g884HP94x//qLG94YYb1tiePn16jj766C8zEgBfcdZoAoA66P33388rr7ySrl27rnArDABA0Tx1jqK4oglWoXnz5uXmm2/OjBkzsvHGG+eAAw7w9ChgpbRs2TJbbrllKisrSx0FAPgK2GmnndyFQSGs0QQF2nfffXPLLbck+feaCJtuumlOPfXU3HvvvTnttNPStWvXTJ06tcQpgbpm6dKlOe200/Ltb387I0eOTJJccMEFadmyZZo3b57+/ftn8eLFJU4J1FVXXHFF+vTpkx/+8IcZP358jbF3333X1QnASrnrrrtWuP0WvghFExTo/vvvz+abb54kOeWUU7LbbrvljTfeyKOPPpqZM2emX79+GTRoUGlDAnXOGWeckauvvjrbbbddbrnllhx33HG57LLL8pvf/Ca//e1vM378+Fx88cWljgnUQZdeemlOOeWU6tts99hjj5xzzjnV48uWLcvrr79ewoRAfWJlHYpgjSYoUPPmzfPMM8+kU6dOadu2bcaOHZutt966evzFF1/MDjvskHnz5pUuJFDndOrUKZdcckn23HPPvPzyy+nSpUuuv/76HHjggUmSm266KWeddVaeeeaZEicF6prNNtssp556avVTbh955JHsvffeOfbYY3PmmWfmrbfeStu2bT1cAFgpTZo0yVNPPZVu3bqVOgr1mDWaoEBbbrll7rvvvnTq1CkbbLBBXn/99RpF0+uvv+6+Z2AFs2bNSo8ePZIknTt3TpMmTaq3k2T77bd3RQLwiaZPn55vfOMb1dvf+MY3ct9996VPnz5ZsmSJK6mBTzRkyJBP3L9s2bKce+65WXfddZMkF1100ZcZi9WEogkK9POf/zyHHXZYGjdunBNPPDGDBw/Oe++9l27duuWFF17IyJEjc+ihh5Y6JlDHlJeXZ968eWnfvn2SZJtttsmaa65ZPb5o0aKUlZWVKh5Qh6233nqZOXNmOnToUL1v8803z3333Zdddtkls2bNKl04oM66+OKL06NHj6y11lo19ldVVWXq1Klp0aKFvz34wtw6BwX785//nEGDBmXWrFk17nFu2rRpjj322Pzyl79Mw4YNS5gQqGt22WWX9O/fP/379//E8ZtvvjnnnXdennjiiS85GVDX/ehHP0qbNm3yq1/9aoWx5557LjvvvHPee+89t84BNZx77rn5zW9+k6uvvjq77LJL9f7GjRvnqaeeSvfu3UuYjvpO0QSrwLJlyzJ58uS8+uqrqayszIYbbphtt922xhUKAMu9+OKLady4cTp27PiJ49dff30aNWqUH/7wh19yMqCue/rpp/Pkk0/miCOO+MTxZ599Nn/+85+rn2gJsNzjjz+eH//4x9lrr71yzjnnpHHjxoomCqFoAgAAgK+g999/PwMHDsyUKVPyxz/+Mdtss02mTJmiaOK/0qDUAWB116pVq7z66quljgHUM/369cubb75Z6hhAPVBZWZkFCxZ84tj777/vtjngU7Vs2TLXXntthg8fnj59+jhfUAhFE6xiLhoEvogHHnggH374YaljAPXA22+/nXXXXTdTp06tsf+1117L2muvnRkzZpQoGVBfHHTQQXn88cdz6623ZqONNip1HOo5RRMAANRjG2ywQfr06ZMxY8bU2P+HP/whvXv3/tT13wA+rn379unXr19atmxZ6ijUc4omWMV+/OMfp1WrVqWOAdQzG2+8cRo3blzqGEA90b9//1x//fU19v3+97/P4YcfXppAQJ02bty4PPPMM0n+ffvtWWedla997Wtp2rRp2rVrl3PPPdedGXxhFgMHAIB6btGiRdlwww1z8803Z9ddd82kSZOyyy67ZPbs2a5OAFbQtWvX/Pa3v81OO+2Uc845JxdeeGFOPfXUdOvWLS+88ELOOeecDB48OEOHDi11VOohRROsQgsXLsxNN92Ul19+ORtuuGEOPvjgrLvuuqWOBdQD06dPrz53bL755qWOA9QDxx13XBYuXJjrrrsuJ5xwQubNm5ff//73pY4F1EHNmjXLiy++mI022ihbbLFFRowYkQMOOKB6fOzYsRk0aFBeeumlEqakvnLrHBSoe/fumTNnTpJk5syZ2XzzzTN48ODce++9GTlyZLp3757p06eXOCVQ1/z0pz/N+++/nyT58MMPs//++6dTp07p27dvevTokV122aV6HODTHHbYYbntttsyb9683HDDDenfv3+pIwF11DrrrJNZs2YlSd5555107ty5xvjXv/71/Otf/ypFNFYDiiYo0LRp07J06dIkyfDhw9O2bdu8/vrrmTRpUl5//fVsueWWOfXUU0ucEqhrfv3rX+eDDz5Ikpx11ll57LHHMn78+Lz//vt54IEHMmPGjJx99tklTgnUdb17907btm3zk5/8JGussUb69OlT6khAHbXPPvvk7LPPzrJly/KDH/wgV1xxRY01mS677LJstdVWpQtIvaZoglVk4sSJOf3001NeXp4kadmyZc4444w89NBDJU4G1DUf/8PujjvuyPnnn5+dd945zZs3z4477piLLroot956awkTAvXFYYcdlj//+c859NBDSx0FqMP+z//5P5k9e3a6du2aDz/8MH/4wx/SsWPH7Lbbbtlkk01y3XXX5Ve/+lWpY1JPKZqgYGVlZUmSjz76KBtuuGGNsa997Wt55513ShELqOOWnztmz56dLbfcssZYjx49MnPmzFLEAuqZww8/PP3798+AAQNKHQWow8rLy/PII4/k5JNPznvvvZcOHTqkadOmWbx4cQ4++OA8++yz6dmzZ6ljUk81KnUAWN3suuuuadSoUSoqKvLCCy/UWMT39ddftxg48Il+/vOfp3nz5mnQoEFmzZqVzTbbrHrsvffeS4sWLUqYDqgvvva1r+V3v/tdqWMA9UDjxo1z7LHH5thjjy11FFYziiYo0MiRI2ts/+fjhO+4447stNNOX2YkoB741re+lRdeeCHJvx8q8Prrr9cYv+uuu2oUTwAAUFeVVX18YQgAoM559dVX06RJk7Rr167UUYA65Nxzz81JJ52UNdZY43PnPvbYY3n33XfTr1+/LyEZUJd973vfy+mnn55evXp95rwFCxbkiiuuSMuWLTNw4MAvKR2rA1c0AUAdt8kmm5Q6AlAHPf/889loo41ywAEHZK+99sp2222X1q1bJ0mWLl2a559/Pg899FD+8Ic/ZNasWbnuuutKnBioCw444IDst99+KS8vrz53tG3bNs2aNcvcuXOrzx133XVX+vXrlwsuuKDUkalnXNEEBbv66qvz4IMP5jvf+U6OOOKI3HjjjTn99NOzaNGiHHrooTnjjDNKHRGogz788MM8+eSTWWedddK9e/caYx999FFuuummHHbYYSVKB9RVTz31VEaNGpVbbrklFRUVadiwYZo2bZoPPvggSbL11lvnqKOOyuGHH55mzZqVOC1QVyxatCg333xzbrzxxjz00EOZP39+kn8/nKR79+7p27dvBgwYkG7dupU4KfWRogkKdPHFF+e0005L3759M3HixAwcODC/+tWvMnjw4CxbtiwXXnhhLrjgghx99NGljgrUIS+++GJ22223zJgxI2VlZfnmN7+ZG264ofrJlW+99Vbatm2bZcuWlTgpUFdVVlbm6aefzuuvv54PP/ww6623Xrbaaqust956pY4G1APz58/Phx9+mHXXXTeNGzcudRzqOUUTFKhbt275+c9/nh/96Ef55z//mR122CFXXXVV9SOGR48enSuvvDJPPPFEiZMCdck+++yTJUuWZMyYMZk3b14GDRqU559/Pvfff3822mgjRRMAAPWGogkK1Lx580ybNi0bbbRRkqRZs2Z58sknq58W9fLLL2f77bfP3LlzSxkTqGPatGmTv//979liiy2SJFVVVfnpT3+au+66K//4xz/SokULRRMAAPVCg1IHgNVJ8+bNs3Dhwurt1q1bp2XLljXmLF269MuOBdRxH374YRo1+v/P5ygrK8uVV16ZvfbaK9/+9rfz4osvljAdAACsPE+dgwJ17do1Tz/9dPWieTNnzqwxPm3atHTo0KEEyYC6rGvXrnniiSdWWHBz1KhRSZLvf//7pYgFAAC15oomKNB5552XLl26fOr4jBkzcswxx3yJiYD6YJ999smf/vSnTxwbNWpUDj744LjTHQCA+sAaTQAAAPAVNHPmzJSVlaVdu3ZJkkmTJuX6669P9+7dPSmbL0zRBAWpqqpKWVlZqWMAAF9BCxcuzLnnnpvx48fn7bffTmVlZY3xV199tUTJgLpsp512ytFHH51DDz00s2fPTpcuXbLZZpvlpZdeygknnJARI0aUOiL1kDWaoCCbbbZZRowYkX333TdNmjT51HkvvfRSLrroomy88cYZNmzYl5gQqIuOPfbYnHbaadX/kvhZbrzxxixdujSHHHLIl5AMqE+OOuqoTJgwIYceemg23HBD//gFrJRnn302O+ywQ5Lkpptuyuabb56HH344f/vb33LssccqmvhCFE1QkMsuuyxDhw7NT3/603z3u9/Ndtttl7Zt26ZZs2aZO3dunn/++Tz00EN57rnncvzxx+e4444rdWSgDmjdunU222yz7Ljjjtlrr70+9dxxww03pG3btvnNb35T6shAHXT33Xdn7Nix2XHHHUsdBahHlixZkqZNmyZJ/v73v1c/gKRr16558803SxmNesytc1Cwhx56KDfeeGMefPDBvP766/nwww+z3nrrZeutt07fvn1zyCGHZO211y51TKAOeeutt3L11VfnhhtuyPPPP19jbM0110yfPn1y1FFH5Xvf+16JEgJ1XceOHXPXXXet8PRKgM/Ss2fP7LzzzunXr1922223PProo+nRo0ceffTR7L///nnjjTdKHZF6SNEEAHXI3LlzM2PGjOqSulOnTm6BAT7XH/7wh/zlL3/Jtddem+bNm5c6DlBP3H///dlnn31SUVGR/v3755prrkmS/O///m+mTZuWW2+9tcQJqY8UTQAAUA9tvfXWNYrol19+OVVVVenQoUMaN25cY+7kyZO/7HhAHVdVVZWZM2dm7bXXztKlS2vcdfHaa6+lefPmWX/99UuYkPrKGk0AAFAP7b333qWOANRjVVVV6dy5c5577rlsuummNcY6dOhQmlCsFlzRBAAAAF9Bm222WUaPHp1evXqVOgqrkQalDgAAAPx3Ntlkk7z33nsr7J83b1422WSTEiQC6oNzzz03p5xySp599tlSR2E14oomAACo5xo0aJDZs2evsJ7KW2+9lfbt22fx4sUlSgbUZWuvvXY++OCDLF26NE2aNMkaa6xRY3zOnDklSkZ9Zo0mWAUmT56cxo0bZ4sttkiS/OUvf8nvfve7dO/ePaeffnqaNGlS4oRAXfThhx+mqqqq+olRr7/+em677bZ07949u+22W4nTAXXRX//61+qf77nnnpSXl1dvL1u2LOPHj0/Hjh1LEQ2oBy6++OJSR2A15IomWAW23377DBs2LPvtt19effXVbLbZZtlnn33y+OOPp1+/fk7owCfabbfdsu++++bYY4/NvHnz0rVr1zRu3DjvvvtuLrroohx33HGljgjUMQ0a/HsljLKysvznn/WNGzdOhw4dcuGFF2bPPfcsRTwAvoIUTbAKlJeXZ/LkyenUqVPOO++83Hfffbnnnnvy8MMP56CDDsrMmTNLHRGog9Zbb71MmDAhm222Wa6++upcdtll+ec//5k///nPGTFiRKZOnVrqiEAd1bFjxzz++ONZb731Sh0FqGeWLVuW22+/vfrvjM022yzf//7307BhwxIno75y6xysAlVVVamsrEyS/P3vf6/+V8T27dvn3XffLWU0oA774IMPsuaaayZJ/va3v2XfffdNgwYN0qtXr7z++uslTgfUZdOnTy91BKAeevnll7PHHnvkX//6V7p06ZIkOeecc9K+ffuMHTs2nTp1KnFC6iNFE6wC2223XX7xi1+kT58+mTBhQq688sok//4jsE2bNiVOB9RVnTt3zu2335599tkn99xzTwYPHpwkefvtt9OqVasSpwPqsjPPPPMzx0eMGPElJQHqkxNPPDGdOnXKo48+mnXWWSdJ8t577+XHP/5xTjzxxIwdO7bECamP3DoHq8BTTz2VH//4x5kxY0aGDBmSkSNHJklOOOGEvPfee7n++utLnBCoi2655Zb86Ec/yrJly7Lrrrvmb3/7W5J//8viAw88kLvvvrvECYG6auutt66xvWTJkkyfPj2NGjVKp06dMnny5BIlA+qyFi1a5NFHH61+iNFyTz31VHbccce8//77JUpGfaZogi/RRx99lEaNGqVRIxcTAp9s9uzZefPNN9OjR4/qRX4nTZqU8vLy6kvaAVZGRUVFDj/88Oyzzz459NBDSx0HqIPWWWed3HnnnfnGN75RY//DDz+cvfbaK3PmzClRMuqzBqUOAKujTTbZJO+9994K+z/66KN8/etfL0EioD448sgj06JFi2y99dbVJVPy70U5zzvvvBImA+qjVq1a5YwzzsjPf/7zUkcB6qg999wzRx99dB577LFUVVWlqqoqjz76aI499th8//vfL3U86ilFE6wCr732WpYtW7bC/kWLFuWNN94oQSKgPrj22mvz4YcfrrD/ww8/zHXXXVeCREB9N3/+/MyfP7/UMYA66tJLL02nTp3Su3fvNGvWLM2aNcuOO+6Yzp0755JLLil1POop9+9Agf76179W/3zPPfekvLy8envZsmUZP358OnbsWIpoQB1WUVFR/a+ICxYsSLNmzarHli1blrvuuivrr79+CRMCdd2ll15aY7uqqipvvvlmfv/732f33XcvUSqgrltrrbXyl7/8JS+99FKmTZuWJOnWrVs6d+5c4mTUZ9ZoggItv9WlrKws//k/rcaNG6dDhw658MILs+eee5YiHlBHNWjQIGVlZZ86XlZWljPOOCOnnnrql5gKqE/+8x+yGjRokNatW2eXXXbJ8OHDs+aaa5YoGQBfNYomWAU6duyYxx9/POutt16powD1wIQJE1JVVZVddtklf/7zn6sfL5wkTZo0ycYbb5y2bduWMCEAsLoYMmRIzjrrrLRo0SJDhgz5zLkXXXTRl5SK1Ylb52AVmD59eqkjAPXIt7/97ST/PndstNFGn3l1E8DnWb4eZLt27UqcBKiL/vnPf2bJkiXVP38af4/wRbmiCQryn2sjfJYTTzxxFSYB6pOnn356peduueWWqzAJUJ9VVlbmF7/4RS688MK8//77SZI111wzJ598ck499dQaT7IEgFVJ0QQFWdlFvsvKyvLqq6+u4jRAfbF8fabP+3/HZWVln/g0S4AkGT58eEaPHp0zzjgjO+64Y5LkoYceyumnn56f/OQnOfvss0ucEICvCkUTAJTQ66+/vtJzN95441WYBKjP2rZtm6uuuirf//73a+z/y1/+kp/+9Kf517/+VaJkQF22cOHCnHvuuRk/fnzefvvtVFZW1hj3D+R8EdZoAoASUh4BRZgzZ066du26wv6uXbtmzpw5JUgE1AdHHXVUJkyYkEMPPTQbbrihdZkohCuaYBU48sgjP3P8mmuu+ZKSAPXJdddd95njhx122JeUBKgvZs2albZt26Znz57p2bPnCmtGnnDCCXn88cfz6KOPlighUJettdZaGTt2bPUtt1AERROsAvvss0+N7SVLluTZZ5/NvHnzsssuu+TWW28tUTKgLlt77bVrbC9ZsiQffPBBmjRpkubNm7sqAVjB2muvncsvvzzt2rXLHnvskY022ii9e/dOkkycODEzZ87MXXfdlZ122qnESYG6qGPHjrnrrrvSrVu3UkdhNeLWOVgFbrvtthX2VVZW5rjjjkunTp1KkAioD+bOnbvCvpdeeinHHXdcTjnllBIkAuq6s88+O8ccc0y+973vZerUqfn1r3+dqVOnJkn23Xff/PSnP03btm1LnBKoq84666yMGDEi1157bZo3b17qOKwmXNEEX6IXXngh3/nOd/Lmm2+WOgpQjzzxxBP58Y9/nGnTppU6ClAHTZ8+PQMGDMjzzz+f3/zmNyssCA7wabbeeuu88sorqaqqSocOHdK4ceMa45MnTy5RMuozVzTBl+iVV17J0qVLSx0DqGcaNWqUWbNmlToGUEd17Ngx9913X0aNGpX99tsv3bp1S6NGNf/M9x+LwCfZe++9Sx2B1ZCiCVaBIUOG1NiuqqrKm2++mbFjx6Z///4lSgXUdX/9619rbC8/d4waNcoincBnev3113Prrbdm7bXXzg9+8IMViiaATzJy5MhSR2A15NY5WAV23nnnGtsNGjRI69ats8suu+TII4/0xx/wiRo0aFBju6ysrPrcceGFF2bDDTcsUTKgLvvtb3+bk08+OX369Mmvf/3rtG7dutSRgHpk3rx5ueWWW/LKK6/klFNOyTrrrJPJkyenTZs2+drXvlbqeNRDiiYAAKinvve972XSpEm5+OKLc9hhh5U6DlDPPP300+nTp0/Ky8vz2muv5YUXXsgmm2yS0047LTNmzMh1111X6ojUQw0+fwoAAFAXLVu2LE8//bSSCfhChgwZksMPPzwvvfRSmjVrVr1/jz32yAMPPFDCZNRnrmiCgmy99dYpKytbqbkW5ASW+8813T7LRRddtAqTAABfNeXl5Zk8eXI6deqUNddcM0899VQ22WSTvP766+nSpUs++uijUkekHrJQDBTk409s+Oijj3LFFVeke/fu6d27d5Lk0UcfzXPPPZef/vSnJUoI1EX//Oc/a2xPnjw5S5cuTZcuXZIkL774Yho2bJhtt922FPEAgNVY06ZNU1FRscL+F1980XpvfGGuaIJV4KijjsqGG26Ys846q8b+kSNHZubMmbnmmmtKlAyoyy666KLcf//9ufbaa7P22msnSebOnZsjjjgiO+20U04++eQSJwQAVidHHXVU3nvvvdx0001ZZ5118vTTT6dhw4bZe++9861vfSsXX3xxqSNSDymaYBUoLy/PE088kU033bTG/pdeeinbbbdd5s+fX6JkQF32ta99LX/729+y2Wab1dj/7LPPZrfddsusWbNKlAwAWB3Nnz8/+++/f5544oksWLAgbdu2zezZs9O7d+/cddddadGiRakjUg+5dQ5WgTXWWCMPP/zwCkXTww8/XGORPYCPq6ioyDvvvLPC/nfeeScLFiwoQSIAYHVWXl6ee++9Nw8//HCeeuqpvP/++9lmm23Sp0+fUkejHlM0wSowaNCgHHfccZk8eXJ22GGHJMljjz2Wa665Jj//+c9LnA6oq/bZZ58cccQRufDCC2ucO0455ZTsu+++JU4HAKyudtxxx+y4446ljsFqwq1zsIrcdNNNueSSSzJ16tQkSbdu3XLSSSflhz/8YYmTAXXVBx98kP/5n//JNddckyVLliRJGjVqlAEDBuSCCy5w+ToAUIiJEyfmvffey5577lm977rrrsvIkSOzcOHC7L333rnsssvStGnTEqakvlI0wZfs2Wefzeabb17qGEAdtnDhwrzyyitJkk6dOqVFixZZtmxZGjZsWOJkAMDqYPfdd893vvOdDB06NEnyzDPPZJtttsnhhx+ebt265YILLsgxxxyT008/vbRBqZcalDoAfBUsWLAgv/nNb7LDDjukR48epY4D1HEtWrTIlltumS233DL/+te/MnTo0LRr167UsQCA1cSUKVOy6667Vm/fcMMN6dmzZ377299myJAhufTSS3PTTTeVMCH1maIJVqEHHngghx12WDbccMP88pe/zC677JJHH3201LGAOu6DDz7I7373u+y0007p3r17JkyYkCFDhpQ6FgCwmpg7d27atGlTvT1hwoTsvvvu1dvbb799Zs6cWYporAYsBg4Fmz17dsaMGZPRo0enoqIiP/zhD7No0aLcfvvt6d69e6njAXXYo48+mquvvjo333xzNtpoo0ydOjX/+Mc/stNOO5U6GgCwGmnTpk2mT5+e9u3bZ/HixZk8eXLOOOOM6vEFCxakcePGJUxIfeaKJijQXnvtlS5duuTpp5/OxRdfnFmzZuWyyy4rdSygjrvwwguz2WabZf/998/aa6+dBx54IM8880zKysqy7rrrljoeALCa2WOPPTJs2LA8+OCDGT58eJo3b17jH7aefvrpdOrUqYQJqc9c0QQFuvvuu3PiiSfmuOOOy6abblrqOEA9MXTo0AwdOjRnnnmmBb8BgFXurLPOyr777ptvf/vbadmyZa699to0adKkevyaa67JbrvtVsKE1GeuaIICPfTQQ1mwYEG23Xbb9OzZM6NGjcq7775b6lhAHXfWWWfl5ptvTseOHTN06NA8++yzpY4EAKzG1ltvvTzwwAOZO3du5s6dm3322afG+M0335yRI0eWKB31naIJCtSrV6/89re/zZtvvpljjjkmN9xwQ9q2bZvKysrce++9WbBgQakjAnXQ8OHD8+KLL+b3v/99Zs+enZ49e6ZHjx6pqqrK3LlzSx0PAFhNlZeXf+LV1Ouss06NK5ygNsqqqqqqSh0CVmcvvPBCRo8end///veZN29evvvd7+avf/1rqWMBddiCBQty/fXX55prrsmTTz6ZHXbYIfvvv78nzwEAUOcpmuBLsmzZstxxxx255pprFE3ASnvmmWcyevToXH/99Xn77bdLHQcAAD6TogkA6oElS5Z4zDAAAHWeogkAAACAQlgMHAAAAIBCKJoAAAAAKISiCQAAAIBCNCp1AADg3yoqKj5xf1lZWZo2bZomTZp8yYkAAKB2LAYOAHVEgwYNUlZW9qnj7dq1y+GHH56RI0emQQMXJQMAUPe4ogkA6ogxY8bk1FNPzeGHH54ddtghSTJp0qRce+21Oe200/LOO+/kl7/8ZZo2bZr//d//LXFaAABYkSuaAKCO2HXXXXPMMcfkhz/8YY39N910U379619n/Pjx+f3vf5+zzz4706ZNK1FKAAD4dIomAKgj1lhjjTz99NPZdNNNa+x/6aWX0qNHj3zwwQeZPn16Nttss3zwwQclSgkAAJ/OAg8AUEe0b98+o0ePXmH/6NGj0759+yTJe++9l7XXXvvLjgYAACvFGk0AUEf88pe/zAEHHJC7774722+/fZLkiSeeyLRp03LLLbckSR5//PEceOCBpYwJAACfyq1zAFCHTJ8+Pb/+9a/z4osvJkm6dOmSY445Jh06dChtMAAAWAmKJgAAAAAK4dY5AKhD5s2bl0mTJuXtt99OZWVljbHDDjusRKkAAGDluKIJAOqIO+64I4ccckjef//9tGrVKmVlZdVjZWVlmTNnTgnTAQDA51M0AUAd8fWvfz177LFH/s//+T9p3rx5qeMAAECtKZoAoI5o0aJFnnnmmWyyySaljgIAAF9Ig1IHAAD+rW/fvnniiSdKHQMAAL4wi4EDQB3Rr1+/nHLKKXn++eezxRZbpHHjxjXGv//975coGQAArBy3zgFAHdGgwadfaFxWVpZly5Z9iWkAAKD2FE0AAAAAFMIaTQAAAAAUwhpNAFBHnHnmmZ85PmLEiC8pCQAAfDFunQOAOmLrrbeusb1kyZJMnz49jRo1SqdOnTJ58uQSJQMAgJXjiiYAqCP++c9/rrCvoqIihx9+ePbZZ58SJAIAgNpxRRMA1HHPPPNM9tprr7z22muljgIAAJ/JYuAAUMfNnz8/8+fPL3UMAAD4XG6dA4A64tJLL62xXVVVlTfffDO///3vs/vuu5coFQAArDy3zgFAHdGxY8ca2w0aNEjr1q2zyy67ZPjw4VlzzTVLlAwAAFaOogkAAACAQlijCQDqoDfeeCNvvPFGqWMAAECtKJoAoI6orKzMmWeemfLy8my88cbZeOONs9Zaa+Wss85KZWVlqeMBAMDnshg4ANQRp556akaPHp1zzz03O+64Y5LkoYceyumnn56PPvooZ599dokTAgDAZ7NGEwDUEW3bts1VV12V73//+zX2/+Uvf8lPf/rT/Otf/ypRMgAAWDlunQOAOmLOnDnp2rXrCvu7du2aOXPmlCARAADUjqIJAEps1qxZSZIePXpk1KhRK4yPGjUqPXr0+LJjAQBArbl1DgBKbO21187ll1+edu3aZY899shGG22U3r17J0kmTpyYmTNn5q677spOO+1U4qQAAPDZXNEEACV29tln55hjjslll12WqVOnZt999828efMyb9687LvvvnnhhReUTAAA1AuuaAKAOmD69OkZMGBAnn/++fzmN79ZYUFwAACoDxRNAFCHjBo1KoMHD063bt3SqFGjGmOTJ08uUSoAAFg5jT5/CgDwZXj99ddz6623Zu21184PfvCDFYomAACo6/wFCwB1wG9/+9ucfPLJ6dOnT5577rm0bt261JEAAKDWFE0AUGLf+973MmnSpIwaNSqHHXZYqeMAAMAXpmgCgBJbtmxZnn766bRr167UUQAA4L9iMXAAAAAACtGg1AEAAAAAWD0omgAAAAAohKIJAAAAgEIomgAAAAAohKIJAAAAgEIomgAAAAAohKIJAKAWJk6cmIYNG6Zfv34l+fyXX345Rx55ZDbaaKM0bdo0X/va17Lrrrvmj3/8Y5YuXVqSTAAAyymaAABqYfTo0TnhhBPywAMPZNasWV/qZ0+aNCnbbLNNpk6dmssvvzzPPvts7r///hx11FG58sor89xzz33qe5csWfIlJgUAvqoUTQAAK+n999/PjTfemOOOOy79+vXLmDFjaoz/9a9/zaabbppmzZpl5513zrXXXpuysrLMmzeves5DDz2UnXbaKWussUbat2+fE088MQsXLvzcz66qqsrhhx+er3/963n44Yez1157ZdNNN82mm26agw8+OA899FC23HLLJMlrr72WsrKy3Hjjjfn2t7+dZs2a5Y9//GMqKytz5plnpl27dmnatGm22mqrjBs3rvoz7r///hXyTpkyJWVlZXnttdeSJGPGjMlaa62V22+/vfq79u3bNzNnzvzCv1cAYPWhaAIAWEk33XRTunbtmi5duuTHP/5xrrnmmlRVVSVJpk+fnv333z977713nnrqqRxzzDE59dRTa7z/lVdeyfe+973st99+efrpp3PjjTfmoYceyvHHH/+5nz1lypRMnTo1//M//5MGDT75T7iysrIa28OGDctJJ52UqVOnpm/fvrnkkkty4YUX5pe//GWefvrp9O3bN9///vfz0ksv1er38MEHH+Tss8/Oddddl4cffjjz5s3LQQcdVKtjAACrJ0UTAMBKGj16dH784x8nSb73ve9l/vz5mTBhQpLk17/+dbp06ZILLrggXbp0yUEHHZTDDz+8xvvPOeecHHLIIRk0aFA23XTTfOMb38ill16a6667Lh999NFnfvaLL76YJOnSpUv1vrfffjstW7asfl1xxRU13jNo0KDsu+++6dixYzbccMP88pe/zNChQ3PQQQelS5cuOe+887LVVlvl4osvrtXvYcmSJRk1alR69+6dbbfdNtdee20eeeSRTJo0qVbHAQBWP4omAICV8MILL2TSpEk5+OCDkySNGjXKgQcemNGjR1ePb7/99jXes8MOO9TYfuqppzJmzJga5VDfvn1TWVmZ6dOn1zrTuuuumylTpmTKlClZa621snjx4hrj2223XfXPFRUVmTVrVnbccccac3bcccdMnTq1Vp/bqFGjGt+1a9euWWuttWp9HABg9dOo1AEAAOqD0aNHZ+nSpWnbtm31vqqqqjRt2jSjRo1aqWO8//77OeaYY3LiiSeuMLbRRht95ns33XTTJP8utLbeeuskScOGDdO5c+ck/y5//lOLFi1WKtdyy2/JW347YGIRcQCgdlzRBADwOZYuXZrrrrsuF154YfUVRFOmTMlTTz2Vtm3b5k9/+lO6dOmSJ554osb7Hn/88Rrb22yzTZ5//vl07tx5hVeTJk0+M8PWW2+drl275pe//GUqKytr/R1atWqVtm3b5uGHH66x/+GHH0737t2TJK1bt06SvPnmm9XjU6ZMWeFYS5curfFdX3jhhcybNy/dunWrdS4AYPXiiiYAgM9x5513Zu7cuRkwYEDKy8trjO23334ZPXp0brrpplx00UUZOnRoBgwYkClTplQ/lW75It1Dhw5Nr169cvzxx+eoo45KixYt8vzzz+fee+/93KuiysrK8rvf/S7f/e53s+OOO2b48OHp1q1blixZkgceeCDvvPNOGjZs+JnHOOWUUzJy5Mh06tQpW221VX73u99lypQp+eMf/5gk6dy5c9q3b5/TTz89Z599dl588cVceOGFKxyncePGOeGEE3LppZemUaNGOf7449OrV68VbhUEAL56XNEEAPA5Ro8enT59+qxQMiX/LpqeeOKJLFiwILfccktuvfXWbLnllrnyyiurnzrXtGnTJMmWW26ZCRMm5MUXX8xOO+2UrbfeOiNGjKhxO95n6dWrV5588sl06dIlAwcOTPfu3fONb3wjf/rTn/KrX/0qxx133Ge+/8QTT8yQIUNy8sknZ4sttsi4cePy17/+tfq2vMaNG+dPf/pTpk2bli233DLnnXdefvGLX6xwnObNm2fo0KH50Y9+lB133DEtW7bMjTfeuFLfAQBYvZVVffwmfAAACnP22WfnqquuysyZM0sdpTBjxozJoEGDMm/evFJHAQDqILfOAQAU5Iorrsj222+fddddNw8//HAuuOCCHH/88aWOBQDwpVE0AQAU5KWXXsovfvGLzJkzJxtttFFOPvnkDB8+fKXe++CDD2b33Xf/1PH333+/qJgAAKuMW+cAAOqADz/8MP/6178+dbxz585fYhoAgC9G0QQAAABAITx1DgAAAIBCKJoAAAAAKISiCQAAAIBCKJoAAAAAKISiCQAAAIBCKJoAAAAAKISiCQAAAIBC/F9OhPgxg4kzXgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "ax = sales['Age_Group'].value_counts().plot(kind='bar', figsize=(14,6))\n", + "ax.set_ylabel('Number of Sales')" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sales['Age_Group'].value_counts().plot(kind='pie', figsize=(6,6))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'Number of Sales')" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QMVnQ-YPqTy9" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "## Relationship between the columns?\n", + "\n", + "Can we find any significant relationship?" ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAHFCAYAAAAqisKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de7QlZX3m8e/TNDdBbtoqclcxEUxAaBFFDeCEi6ggEZQxIxIimYDGxMQENYaMRkUz6qhREyIokIwEjQoqigheoyjNRS5eYkdxgIBgQEBUoOU3f+w6um3OOV1I73p39/l+1jrrVL1Ve/dzlr1tnlNvvZWqQpIkSZI0v0WtA0iSJEnSmsDyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1YHmSJEmSpB4sT5IkSZLUw+LWAYb24Ac/uLbffvvWMSRJkiRNqYsvvvgHVbVk5fEFV5623357li1b1jqGJEmSpCmV5HuzjTttT5IkSZJ6sDxJkiRJUg+WJ0mSJEnqwfIkSZIkST1YniRJkiSpB8uTJEmSJPVgeZIkSZKkHixPkiRJktSD5UmSJEmSerA8SZIkSVIPlidJkiRJ6sHyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1sLh1AN032x//8dYRBFx94kGtI0iSJGlgXnmSJEmSpB4sT5IkSZLUg+VJkiRJknqwPEmSJElSD5YnSZIkSerB8iRJkiRJPVieJEmSJKkHy5MkSZIk9WB5kiRJkqQeLE+SJEmS1IPlSZIkSZJ6sDxJkiRJUg+WJ0mSJEnqwfIkSZIkST1YniRJkiSpB8uTJEmSJPVgeZIkSZKkHixPkiRJktSD5UmSJEmSerA8SZIkSVIPlidJkiRJ6sHyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1YHmSJEmSpB4sT5IkSZLUg+VJkiRJknqYaHlKcnWSK5JclmRZN7ZFkvOSfLv7vnk3niRvT7I8yeVJdht7nyO787+d5Mix8d2791/evTaT/HkkSZIkLVxDXHnap6p2raql3f7xwPlVtSNwfrcPcCCwY/d1DPBuGJUt4ATgCcAewAkzhas750Vjrztg8j+OJEmSpIWoxbS9g4FTu+1TgUPGxk+rkQuBzZJsCewPnFdVN1fVLcB5wAHdsU2q6sKqKuC0sfeSJEmSpNVq0uWpgE8luTjJMd3YQ6vq+m77BuCh3fZWwDVjr722G5tv/NpZxiVJkiRptVs84fd/clVdl+QhwHlJvjl+sKoqSU04A11xOwZg2223nfQfJ0mSJGktNNErT1V1Xff9RuDDjO5Z+n435Y7u+43d6dcB24y9fOtubL7xrWcZny3HSVW1tKqWLlmy5P7+WJIkSZIWoImVpyQbJXngzDawH3AlcDYws2LekcBZ3fbZwAu6Vff2BG7tpvedC+yXZPNuoYj9gHO7Y7cl2bNbZe8FY+8lSZIkSavVJKftPRT4cLd6+GLg/1bVJ5NcBJyZ5Gjge8Dh3fnnAE8HlgM/Bo4CqKqbk7wWuKg77zVVdXO3fSzwPmBD4BPdlyRJkiStdhMrT1X1HWCXWcb/C3jaLOMFHDfHe50CnDLL+DLgsfc7rCRJkiStQoulyiVJkiRpjWN5kiRJkqQeLE+SJEmS1IPlSZIkSZJ6sDxJkiRJUg+WJ0mSJEnqwfIkSZIkST1YniRJkiSpB8uTJEmSJPVgeZIkSZKkHixPkiRJktSD5UmSJEmSerA8SZIkSVIPlidJkiRJ6sHyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1YHmSJEmSpB4sT5IkSZLUg+VJkiRJknqwPEmSJElSD5YnSZIkSerB8iRJkiRJPVieJEmSJKkHy5MkSZIk9WB5kiRJkqQeLE+SJEmS1IPlSZIkSZJ6sDxJkiRJUg+WJ0mSJEnqwfIkSZIkST1YniRJkiSpB8uTJEmSJPVgeZIkSZKkHixPkiRJktSD5UmSJEmSerA8SZIkSVIPlidJkiRJ6sHyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1YHmSJEmSpB4sT5IkSZLUg+VJkiRJknqwPEmSJElSD5YnSZIkSerB8iRJkiRJPUy8PCVZJ8mlST7W7e+Q5CtJlif5lyTrdePrd/vLu+Pbj73HK7rxbyXZf2z8gG5seZLjJ/2zSJIkSVq4hrjy9FLgG2P7bwTeWlWPAm4Bju7GjwZu6cbf2p1Hkp2A5wE7AwcA7+oK2TrAO4EDgZ2AI7pzJUmSJGm1m2h5SrI1cBDwnm4/wL7AB7tTTgUO6bYP7vbpjj+tO/9g4IyqurOqvgssB/bovpZX1Xeq6i7gjO5cSZIkSVrtJn3l6f8Afw7c0+0/CPhhVa3o9q8Ftuq2twKuAeiO39qd//PxlV4z17gkSZIkrXYTK09JngHcWFUXT+rPuA9ZjkmyLMmym266qXUcSZIkSWugSV552gt4VpKrGU2p2xd4G7BZksXdOVsD13Xb1wHbAHTHNwX+a3x8pdfMNX4vVXVSVS2tqqVLliy5/z+ZJEmSpAVnYuWpql5RVVtX1faMFny4oKqeD3wGeE532pHAWd322d0+3fELqqq68ed1q/HtAOwIfBW4CNixW71vve7POHtSP48kSZKkhW3xqk9Z7f4COCPJ3wCXAid34ycDpydZDtzMqAxRVVclORP4OrACOK6qfgaQ5MXAucA6wClVddWgP4kkSZKkBWOQ8lRVnwU+221/h9FKeSuf81PgsDle/zrgdbOMnwOcsxqjSpIkSdKshnjOkyRJkiSt8SxPkiRJktRDi3ueJGm12P74j7eOsOBdfeJBrSNIkjQYrzxJkiRJUg+WJ0mSJEnqwfIkSZIkST1YniRJkiSpB8uTJEmSJPVgeZIkSZKkHixPkiRJktSD5UmSJEmSerA8SZIkSVIPlidJkiRJ6sHyJEmSJEk9WJ4kSZIkqYdVlqckb0qySZJ1k5yf5KYkvztEOEmSJEmaFn2uPO1XVbcBzwCuBh4FvHySoSRJkiRp2vQpT4u77wcBH6iqWyeYR5IkSZKm0uJVn8LHknwT+Anwh0mWAD+dbCxJkiRJmi6rvPJUVccDTwKWVtXdwI+BgycdTJIkSZKmSZ8FIx4AHAu8uxt6OLB0kqEkSZIkadr0uefpvcBdjK4+AVwH/M3EEkmSJEnSFOpTnh5ZVW8C7gaoqh8DmWgqSZIkSZoyfcrTXUk2BAogySOBOyeaSpIkSZKmTJ/V9k4APglsk+Sfgb2AF04ylCRJkiRNm1WWp6o6L8klwJ6Mpuu9tKp+MPFkkiRJkjRF5ixPSXZbaej67vu2SbatqksmF0uSJEmSpst8V57ePM+xAvZdzVkkSZIkaWrNWZ6qap8hg0iSJEnSNOuzYARJHgvsBGwwM1ZVp00qlCRJkiRNm1WWpyQnAHszKk/nAAcCXwQsT5IkSZIWjD7PeXoO8DTghqo6CtgF2HSiqSRJkiRpyvQpTz+pqnuAFUk2AW4EtplsLEmSJEmaLn3ueVqWZDPgH4GLgR8BX55oKkmSJEmaMn0ekntst/n3ST4JbFJVl082liRJkiRNl/kekrsd8MOqurXb3wc4BPhekm9W1V0DZZQkSZKk5ua75+lMYCOAJLsCHwD+H6MFI941+WiSJEmSND3mm7a3YVX9Z7f9u8ApVfXmJIuAyyYfTZIkSZKmx3xXnjK2vS9wPkC38p4kSZIkLSjzXXm6IMmZwPXA5sAFAEm2BLzfSZIkSdKCMl95+mPgucCWwJOr6u5u/GHAqyYdTJIkSZKmyZzlqaoKOGOW8UsnmkiSJEmSptB89zxJkiRJkjqWJ0mSJEnqYc7ylOT87vsbh4sjSZIkSdNpvgUjtkzyJOBZSc7gl5cup6oumWgySZIkSZoi803b+yvg1cDWwFuAN499/e9VvXGSDZJ8NcnXklyV5H914zsk+UqS5Un+Jcl63fj63f7y7vj2Y+/1im78W0n2Hxs/oBtbnuT4+/7jS5IkSVI/c5anqvpgVR0IvKmq9lnpa98e730nsG9V7QLsChyQZE/gjcBbq+pRwC3A0d35RwO3dONv7c4jyU7A84CdgQOAdyVZJ8k6wDuBA4GdgCO6cyVJkiRptVvlghFV9dokz0ryv7uvZ/R54xr5Ube7bvdVwL7AB7vxU4FDuu2Du326409Lkm78jKq6s6q+CywH9ui+llfVd6rqLkbLqh/cJ5skSZIk3VerLE9J3gC8FPh69/XSJK/v8+bdFaLLgBuB84D/AH5YVSu6U64Ftuq2twKuAeiO3wo8aHx8pdfMNS5JkiRJq918C0bMOAjYtaruAUhyKnAp8MpVvbCqfgbsmmQz4MPAr9+PrL+yJMcAxwBsu+22LSJIkiRJWsP1fc7TZmPbm97XP6Sqfgh8BngisFmSmdK2NXBdt30dsA1Ad3xT4L/Gx1d6zVzjs/35J1XV0qpaumTJkvsaX5IkSZJ6lac3AJcmeV931eli4HWrelGSJd0VJ5JsCPw28A1GJeo53WlHAmd122d3+3THL6iq6saf163GtwOwI/BV4CJgx271vvUYLSpxdo+fR5IkSZLus1VO26uq9yf5LPD4bugvquqGHu+9JXBqtyreIuDMqvpYkq8DZyT5G0bT/07uzj8ZOD3JcuBmRmWIqroqyZmM7rdaARzXTQckyYuBc4F1gFOq6qo+P7QkSZIk3Vd97nmiqq7nPl7VqarLgcfNMv4dRivlrTz+U+CwOd7rdcxytauqzgHOuS+5JEmSJOlX0feeJ0mSJEla0CxPkiRJktTDvOWpe07TN4cKI0mSJEnTat7y1C3M8K0kPhxJkiRJ0oLWZ8GIzYGrknwVuGNmsKqeNbFUkiRJkjRl+pSnV088hSRJkiRNuT7Pefpcku2AHavq00kewOi5SpIkSZK0YKxytb0kLwI+CPxDN7QV8JFJhpIkSZKkadNnqfLjgL2A2wCq6tvAQyYZSpIkSZKmTZ/ydGdV3TWzk2QxUJOLJEmSJEnTp095+lySVwIbJvlt4APARycbS5IkSZKmS5/ydDxwE3AF8AfAOcBfTjKUJEmSJE2bPqvt3ZPkVOArjKbrfauqnLYnSZIkaUFZZXlKchDw98B/AAF2SPIHVfWJSYeTJEmSpGnR5yG5bwb2qarlAEkeCXwcsDxJkiRJWjD63PN0+0xx6nwHuH1CeSRJkiRpKs155SnJod3msiTnAGcyuufpMOCiAbJJkiRJ0tSYb9reM8e2vw/8Vrd9E7DhxBJJkiRJ0hSaszxV1VFDBpEkSZKkadZntb0dgJcA24+fX1XPmlwsSZIkSZoufVbb+whwMvBR4J7JxpEkSZKk6dSnPP20qt4+8SSSJEmSNMX6lKe3JTkB+BRw58xgVV0ysVSSJEmSNGX6lKffAP4HsC+/mLZX3b4kSZIkLQh9ytNhwCOq6q5Jh5EkSZKkabWoxzlXAptNOogkSZIkTbM+V542A76Z5CJ++Z4nlyqXJEmStGD0KU8nTDyFJEmSJE25VZanqvrcEEEkSZIkaZqtsjwluZ3R6noA6wHrAndU1SaTDCZJkiRJ06TPlacHzmwnCXAwsOckQ0mSJEnStOmz2t7P1chHgP0nlEeSJEmSplKfaXuHju0uApYCP51YIkmSJEmaQn1W23vm2PYK4GpGU/ckSZIkacHoc8/TUUMEkSRJkqRpNmd5SvJX87yuquq1E8gjSZIkSVNpvitPd8wythFwNPAgwPIkSZIkacGYszxV1ZtntpM8EHgpcBRwBvDmuV4nSZIkSWujee95SrIF8DLg+cCpwG5VdcsQwSRJkiRpmsx3z9PfAocCJwG/UVU/GiyVJEmSJE2Z+R6S+6fAw4G/BP4zyW3d1+1JbhsmniRJkiRNh/nueZqvWEmSJEnSgmJBkiRJkqQeLE+SJEmS1IPlSZIkSZJ6sDxJkiRJUg+WJ0mSJEnqYWLlKck2ST6T5OtJrkry0m58iyTnJfl2933zbjxJ3p5keZLLk+w29l5Hdud/O8mRY+O7J7mie83bk2RSP48kSZKkhW2SV55WAH9aVTsBewLHJdkJOB44v6p2BM7v9gEOBHbsvo4B3g2jsgWcADwB2AM4YaZwdee8aOx1B0zw55EkSZK0gE2sPFXV9VV1Sbd9O/ANYCvgYODU7rRTgUO67YOB02rkQmCzJFsC+wPnVdXNVXULcB5wQHdsk6q6sKoKOG3svSRJkiRptRrknqck2wOPA74CPLSqru8O3QA8tNveCrhm7GXXdmPzjV87y7gkSZIkrXYTL09JNgb+Ffjjqrpt/Fh3xagGyHBMkmVJlt10002T/uMkSZIkrYUmWp6SrMuoOP1zVX2oG/5+N+WO7vuN3fh1wDZjL9+6G5tvfOtZxu+lqk6qqqVVtXTJkiX374eSJEmStCBNcrW9ACcD36iqt4wdOhuYWTHvSOCssfEXdKvu7Qnc2k3vOxfYL8nm3UIR+wHndsduS7Jn92e9YOy9JEmSJGm1WjzB994L+B/AFUku68ZeCZwInJnkaOB7wOHdsXOApwPLgR8DRwFU1c1JXgtc1J33mqq6uds+FngfsCHwie5LkiRJkla7iZWnqvoiMNdzl542y/kFHDfHe50CnDLL+DLgsfcjpiRJkiT1Mshqe5IkSZK0prM8SZIkSVIPlidJkiRJ6sHyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1YHmSJEmSpB4m+ZBcSZI0gO2P/3jrCAKuPvGg1hEkTZhXniRJkiSpB8uTJEmSJPVgeZIkSZKkHixPkiRJktSD5UmSJEmSerA8SZIkSVIPlidJkiRJ6sHyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1YHmSJEmSpB4sT5IkSZLUg+VJkiRJknqwPEmSJElSD5YnSZIkSerB8iRJkiRJPVieJEmSJKkHy5MkSZIk9WB5kiRJkqQeLE+SJEmS1IPlSZIkSZJ6sDxJkiRJUg+WJ0mSJEnqwfIkSZIkST1YniRJkiSpB8uTJEmSJPVgeZIkSZKkHixPkiRJktSD5UmSJEmSerA8SZIkSVIPlidJkiRJ6sHyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1YHmSJEmSpB4sT5IkSZLUg+VJkiRJknqwPEmSJElSD5YnSZIkSephYuUpySlJbkxy5djYFknOS/Lt7vvm3XiSvD3J8iSXJ9lt7DVHdud/O8mRY+O7J7mie83bk2RSP4skSZIkTfLK0/uAA1YaOx44v6p2BM7v9gEOBHbsvo4B3g2jsgWcADwB2AM4YaZwdee8aOx1K/9ZkiRJkrTaTKw8VdXngZtXGj4YOLXbPhU4ZGz8tBq5ENgsyZbA/sB5VXVzVd0CnAcc0B3bpKourKoCTht7L0mSJEla7Ya+5+mhVXV9t30D8NBueyvgmrHzru3G5hu/dpZxSZIkSZqIZgtGdFeMaog/K8kxSZYlWXbTTTcN8UdKkiRJWssMXZ6+3025o/t+Yzd+HbDN2Hlbd2PzjW89y/isquqkqlpaVUuXLFlyv38ISZIkSQvP0OXpbGBmxbwjgbPGxl/Qrbq3J3BrN73vXGC/JJt3C0XsB5zbHbstyZ7dKnsvGHsvSZIkSVrtFk/qjZO8H9gbeHCSaxmtmncicGaSo4HvAYd3p58DPB1YDvwYOAqgqm5O8lrgou6811TVzCIUxzJa0W9D4BPdlyRJkiRNxMTKU1UdMcehp81ybgHHzfE+pwCnzDK+DHjs/ckoSZIkSX01WzBCkiRJktYklidJkiRJ6sHyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1YHmSJEmSpB4sT5IkSZLUg+VJkiRJknqwPEmSJElSD5YnSZIkSerB8iRJkiRJPVieJEmSJKkHy5MkSZIk9WB5kiRJkqQeLE+SJEmS1IPlSZIkSZJ6sDxJkiRJUg+WJ0mSJEnqwfIkSZIkST1YniRJkiSpB8uTJEmSJPVgeZIkSZKkHixPkiRJktSD5UmSJEmSerA8SZIkSVIPlidJkiRJ6sHyJEmSJEk9WJ4kSZIkqQfLkyRJkiT1YHmSJEmSpB4sT5IkSZLUg+VJkiRJknqwPEmSJElSD5YnSZIkSerB8iRJkiRJPVieJEmSJKkHy5MkSZIk9WB5kiRJkqQeLE+SJEmS1IPlSZIkSZJ6sDxJkiRJUg+WJ0mSJEnqwfIkSZIkST1YniRJkiSpB8uTJEmSJPVgeZIkSZKkHha3DnB/JTkAeBuwDvCeqjqxcSRJkiQ1sP3xH28dQcDVJx7UOsLErNFXnpKsA7wTOBDYCTgiyU5tU0mSJElaG63R5QnYA1heVd+pqruAM4CDG2eSJEmStBZa08vTVsA1Y/vXdmOSJEmStFqt8fc89ZHkGOCYbvdHSb7VMo94MPCD1iHuj7yxdQKtRdboz4OfBa1Ga/RnAfw8aLXxszAdtpttcE0vT9cB24ztb92N/ZKqOgk4aahQml+SZVW1tHUOaRr4eZBG/CxII34WptuaPm3vImDHJDskWQ94HnB240ySJEmS1kJr9JWnqlqR5MXAuYyWKj+lqq5qHEuSJEnSWmiNLk8AVXUOcE7rHLpPnEIp/YKfB2nEz4I04mdhiqWqWmeQJEmSpKm3pt/zJEmSJEmDsDxJkiRJUg+WJ0mSJGkKJNkoyTqtc2hu3vOkQSRZCjwFeDjwE+BK4LyquqVpMGkgSbYEnsu9PwcfBz5V/p+xFpDu8SJPZ5bPQ1X5IHstGEkWMXrUzvOBxwN3Auszekjux4F/qKrl7RJqZZYnTVSSo4CXAN8FLgZuBDYAHg3sxegfy1dX1f9rFlKasCTvAXZg9A/hMn75c7APsAvw51X1xWYhpYEkeTVwKPB57v3vwj5AgD+rqiubhZQGkuRzwKeBs4Arq+qebnwLRp+H/w58uKr+qV1KjbM8aaKSHMfo+Vs/meP4rsCDqur8YZNJw0myS1V9bZ7jGwDbVtW/DxhLaiLJwVV11jzHtwS2qaqvDhhLaiLJulV19/09R8OxPElSA6sqVJIkafpYnjS4JP9eVY9unUMaSpLfXHmI0RS+Axn9//Dlw6eS2kiyc1Vd1W0vBv4M2IPRNO43zDVTQVoIkny5qp7YOofmZnnSRCW5HZj5S5bu+wOAHwNVVZs0CSYNKMk9wEXAXWPDSxnd/1RV9dQmwaQGklxSVbt1228CtgTeBxwMPLCqjmoYT2oqyaVV9bjWOTS3xa0DaK33XmAz4OVV9X2AJN+tqh3axpIGdQTwh8Drquo8+Pnn4CltY0lNZGx7P+DxVXV3kgsAp7JqwUky8wu0ABuN7VNVn2+TSnOxPGmiquqPkuwOvD/JR4C/4xdXoqQFoar+Jck5wOuTHA38KX4OtHBtmuSZjJ41ud7MjfBVVd1VWmmhGb/a+iDghYyKVDFalVJTxGl7GkT3HIMXA4cBj6yqhzeOJDXRPfPszcBOVbWkdR5paElOX2no5VV1Q5KHAWdU1d4NYklTYXxaq6aT5UmD6pagfVxVndM6i9RKkgCb+ZBoSdI473mafotaB9DaLcm23TNsZv6D8QDgwCR/2K2yJK31kmyY5GVJ/iTJ+oweenhyktcn2ah1PmloSTZKst0s4zu3yCNNkb9oHUDzszxp0s7hF3/PTgQOAr4CPB44qVUoaWDvBbYDfh34KPBk4B3AhsA7G+aSBpfkd4DlwMeTXJFkfIrSylP6pAWlqj6V5CGtc2huTtvTRCX5elXt1G1fzGhVpXu6/a9V1S5NA0oDmPm73t37dz3wsO7m+ACX+TnQQpLkMuCgqrouyZMY/XLh5VV1tlOWtNAk2WKW4UuAxzH67/SbB46kVXDalCbtmiT7VtUFwNXANsD3kjyobSxpUAVQVfck+WR1v7XqClTbZNLwFlXVdQBV9aUk+wIfS7I1rkKphecHwPdWGtuKUYEq4BGDJ9K8nLanSft94NVJPg+sB1yW5DPAp4GXNU0mDeeyJBsDVNWRM4NJdgB+1CyV1MYd3d99ALoitTdwOLBTq1BSIy8HvgU8q6p26J6DeW23bXGaQk7b0yCSPAZ4NKOrndcCF81M35MWqm7a3jpVtaJ1Fmko3T1Ot1fVt1caXw84oqpObZNMaqO76vpW4BrgBOBrFqfpZXnS4JI8o6o+1jqH1FKSd1XVsa1zSJKmQ5JnAa8Etq+qh7XOo9k5bU8tvKZ1AGkK7Nk6gNRKks2TfHqlsdcl2b9VJqm1qjob2Af4b62zaG6WJ7XgHfIS/FfrAFIr3QOif5JkL4Du+WfPAz7bMpc0tCRPSLJJt70hcDzwhiRvTLJp23SajeVJLfxB6wBSa1X1260zSI29B/i9bvsQ4JNVdWfDPFILpwA/7rbfBmwKvLEbe2+rUJqbS5VrUN0KS1snua2qvtk6jzSEJDtX1VXd9mLgz4A9gCuBN1TVT1rmkxr5GPCmJA8AXsjoXg9poVk0tmjQ0qqaeWj0F7tnomnKeOVJE5XkI2PbBwMXAM8Ezkrywla5pIGdPrb9emBn4J3AZsC7miSSGquqnwEfYvTLhAdX1aWNI0ktXJnkqG77a0mWAiR5NHB3u1iai1eeNGnbjW3/BbBvVX03yYOB84H3NUklDWv8Pr/9gMdX1d1JLgC+1iiTNA1OBr4BvLR1EKmR3wfeluQvGT0w98tJrmG0bPnvN02mWVmeNGnja+EvrqrvAlTVD5L4nCctFJsmeSajq/3rVdXdAFVVfg60kFXV8iTPBz7ROovUQlXdCrywWzRiB7rnYVbV99sm01wsT5q0XZLcxug37+sn2bKqru8ehrhO42zSUP4NOLzbvjjJw6rqhiQPA37YMJfUXFWd2TqD1EqSjavqR1V1G3PMRJg5Z+BomoMPyVUTSTYDHlNVX26dRZI0nCTvBt5eVd+Y5diGwGHA3VX1/sHDSQNLcj5wGXAWcHFV3dGNP4LRM58OB/6xqj7YLqXGWZ40uCRbVNXNrXNIQ0qyEaOb4r+30vjPV+KTFoIkuwOvAh4NXAHcBGwA7Ag8mNG9sO+sqp+2yigNKcnTgecDewGbAyuAbwEfB06uqhsaxtNKLE+aqO4BiO8B7mH0PI+/AR4BrAcc7pUnLQRJfgf4O0YPxi3gyKq6pDt2ydjStNKC0d3jsQewJfAT4Bv+IkHStLM8aaKSfBU4GtgY+ChwSBzcDQYAAAxYSURBVFV9McluwDuqaq+mAaUBdM/qOKiqrkvyJEYPPnx5VZ2d5NKqelzjiJIkqQcXjNCkrVtVVwAkuamqvghQVZd0c9ulhWBRVV0HUFVfSrIv8LEkW/PLK1JKkqQp5kNyNWnjf8desdKx9YYMIjV0R5IdZna6IrU3oxuBd2oVSpIk3TeWJ03aq5M8AKCqPjIzmOSRwGnNUknDOg5Yd3yge7bHfsAfNEkkSZoaSR6ZZP1ue+8kf9StTKwp4z1PkiRpcEkeBbwM2J6x2wiqar9WmaRWuntjlzL6PJzDaOnynavq6S1z6d6850kTleQfGT3P44pZjm0EPBe4s6r+efBw0kCSfAY4Ezirqv5zbHwx8CTgSOCLVfXeRhGlFj4InAz8E/Czxlmk1u6pqhVJns1oQa13JLm0dSjdm+VJk/ZORlP3fgO4kl9+nscmwCmAxUlru4OA3wc+nGQr4GZGn4MNgU8zeqbNsob5pBbuqap3tA4hTYm7kxzB6Jdpz+zG1p3nfDXitD0NIsnGjC5Hjz/P41ttU0nD6+a0PwT4SVX9oHUeaWjd850A/gS4HvgwcOfM8aq6rUUuqaUkOwH/E/hyVb2/W2To8Kp6Y+NoWonlSZIkDSbJNYyW6M8sh6uqth04ktRUknWA06rq+a2zaNWctidJkgZTVdsAJFm3qu4eP5bEaUpacKrqZ0m2S7JeVd3VOo/mZ3mSJEktfAXYrceYtBB8B/i3JGcDd8wMVtVb2kXSbCxPGlySRcDGzmvXQpNkQ+CnVVXds85+DfhUVa1oHE0aTJKHMLr/dcNuMaGZ6XubAA9oFkxq6z+6r0XAAxtn0Ty850mDSPJ/Gd0I+TPgIkb/SL6tqv62aTBpQEmWAU8FNgUuBC4Bbq+qFzQNJg0oyVHA7wG7ApeNHbodeG9VfaBJMGkKdAtsUVU/ap1Fs7M8aRBJLquqXZM8n9GUjOOBi6vqNxtHkwaT5JKq2i3JixldfT1x5rPROps0tCSHV9WZrXNI0yDJY4HTgS26oR8AL6iqq9ql0myctqehrNvdCHwI8HdVdXcy20JL0lptUZLHA88HXtSNrdMwj9TSjkleufJgVb2+RRipsZOAl1XVZwCS7A38I6MHqWuKLGodQAvGPwBXAxsBn0+yHXBr00TS8P4E+F/Ax6rqyiSPAL7QOJPUygpGU7l/xuhhoIcweoC6tBBtNFOcAKrqs4z+m0lTxml7GkSSHarqu2P7AR5VVd9uGEsaVJJDq+pDqxqTFqIkGwCfrKq9W2eRhpbkw4zugz29G/pdYPeqena7VJqNV540lH8d36lRaz+jURaplb+cZexVg6eQptP6wNatQ0iN/B6wBPhQ97WkG9OU8Z4nTVSSXwd2BjZNcujYoU2ADdqkkoaVZH/gAGCrJOPP7NgEuKdNKqmtJJcCM9Nf1mG0fLn3O2lBqqpbgD9qnUOrZnnSpP0a8AxgM+CZY+O384sb5qW13Y3AVcBPu+8zbme08qS0ED1nbHsFcENV3dkqjNRCkv9TVX+c5KP84pcJP1dVz2oQS/PwnicNIskTq+rLrXNILSVZ3/84lH4hyc7AU7rdz1fV11vmkYaWZPequjjJb812vKo+N3Qmzc/ypIlK8g5m+U3KjKryErXWeitNT7qXqtptwDjSVOied3Ys8JFu6GDgnVX1rnapJGl+lidNVJIj5zteVacOlUVqJckj5zteVf8xVBZpWiS5HHhSVf2o298Y+JIPT9dClGQv4K+B7RjdVhNG62s9omUu3Zv3PGmiLEeS5UiaQ4C7xvbv7sakhehkRs8CvJjRs880pSxPGkSSzzD7jZD7NogjNZHkdn7xOVjMaIWxO6tqk3appGZOB76SZOZRFs8G/IWbFqpbq+oTrUNo1Zy2p0Ek2X1sdwPgd4AVVfXnjSJJTSVZBBwK7FpVsz3/SVorJTkHOLaqrk7yBGCv7tAXquqihtGkZpKcyOgXah8Cfr6wUFVd0iyUZmV5UjNJvlpVe7TOIbWU5NKqelzrHNJQkhwGvI7RVaY3VdXdjSNJzXUzdFZWztCZPk7b0yCSbDG2uwjYHdi0URypiSTjz+tYBCzll+/5kNZ6VfWBJJ8AXg0sS3I6Yw+Lrqq3zPliaS1VVfu0zqB+LE8aysWM7vUIo4chfhc4umkiaXiHjW2vAK5mtDyztNDcBdwBrA88kLHyJC1ESR4KvB54eFUdmGQn4IlVdXLjaFqJ0/YkSdJgkhwAvAU4G3hNVf24cSSpue5q7HuBV1XVLkkWA5dW1W80jqaVeOVJE5Xk0PmOV9WHhsoitZLkrcz/kNyXDRhHau1VwGFVdVXrINIUeXBVnZnkFQBVtSKJS5ZPIcuTJu2Z3feHAE8CLuj29wG+xGhVGWltd2X3fU/gscCZ3f5zAP8DUgtKVT2ldQZpCt2R5EF0v2hLsidwa9tImo3T9jSIJJ8Cjqyq67v9LYH3VdX+bZNJw0lyIfDkqlrR7a8HfK6qntg2mSSppSS7Ae9g9Au2K4ElwHOq6vKmwXQvXnnSULaZKU6d7wPbtgojNbI5sDHww27/AcAWc58uSVoIquqSJL8F/BqjxbW+5TL+08nypKGcn+Rc4P3d/vOATzfMI7Xwt8BlST7N6B/HfRg970aStAAleTxwTVXd0N3ntDvwO8D3kvx1Vd3cOKJW4rQ9DSbJs4Gndrufr6oPt8wjtZBkK0b3PgFcWFXXtcwjSWonySXAf6uqm5M8FTgDeAmwK/CYqnpO04C6F8uTmkjyFOB5VXVc6yxSC0m2B45g9DnYpW0aSVILSb42829AkncCN1XVX3f7l1XVri3z6d4WtQ6ghSPJ45K8KcnVwGuAbzaOJA0qyUOTvCTJlxn9/X8A8MK2qSRJDa3TPdMJ4Gn8YlVi8PaaqeT/KJqoJI9m9Nv1I4AfAP/C6IrnPk2DSQNK8nuMPgOPAD4AHAf8a1W9umkwSVJr7wc+l+QHwE+ALwAkeRQuVT6VnLaniUpyD6P/Izi6qpZ3Y9+pqke0TSYNJ8ndjJ5r9sdVdWk35udAkjTzTKctgU9V1R3d2KOBjavqkqbhdC9eedKkHcpoZb3PJPkkoxsh0zaSNLitgMOBv0uyOaMrsOu2jSRJmgZVdeEsY//eIotWzStPGkSSjYCDGU1d2hc4DfhwVX2qaTBpYEm2Y/QLhSOAdRh9Dv6qbSpJktSH5UmD637zfhjw3Kp6Wus8UitJdmK02p7lSZKkNYDlSZIkSZJ6cKlySZIkSerB8iRJkiRJPbjaniQNJMlvzjJ8K3BNVd0zdB5JknTfeM+TJA0kyUXArsBVjJbsfwzwdeCBwDFVdX7DeJIkaRWctidJw7ka2L2qdq2qXYDdgX8H9gfe3DKYJElaNcuTJA3nMVV1+cxOVV0B7FRVyxtmkiRJPXnPkyQN55tJ3gGc0e0/txtbH1jRLpYkSerDe54kaSBJHgC8BHhyN/RvwDuAnwIbV9WtrbJJkqRVszxJkiRJUg9O25OkgSTZEzgB2I6x//+tqkc3CyVJknrzypMkDSTJN4A/By4GfjYzXlXfbxZKkiT15pUnSRrObVX10dYhJEnSr8YrT5I0kCRv6DY/BNw5Mz6+fLkkSZpelidJGkiSL8wyXFX11MHDSJKk+8zyJEmSJEk9eM+TJA0kyStnG6+q1w+dRZIk3XeWJ0kazs/GtjcADgKuapRFkiTdR07bk6RGkmwAfLKq9m6dRZIkrdqi1gEkaQFbH9i6dQhJktSP0/YkaSBJLgVmLvevA2wJeL+TJElrCKftSdJAkjxybHcFcENV3TnX+ZIkabpYniRpQEl2Bp7S7X6+qr7eMo8kSerPe54kaSBJXgx8ANi2+/pAkmPbppIkSX155UmSBpLkcuBJVfWjbn9j4EtV9Zttk0mSpD688iRJwwlw19j+3d2YJElaA7janiQN53TgK0n+tdt/NnBqwzySJOk+cNqeJE1YknOAY6vq6iRPAPbqDn2hqi5qGE2SJN0HlidJmrAkhwGvY3SV6U1VdXfjSJIk6VdgeZKkAXSLQ7waOIDR9L17Zo5V1Vta5ZIkSf15z5MkDeMu4A5gfeCBjJUnSZK0ZrA8SdKEJTkAeAtwNrBbVf24cSRJkvQrcNqeJE1Yki8A/7OqrmqdRZIk/eosT5IkSZLUgw/JlSRJkqQeLE+SJEmS1IPlSZIkSZJ6sDxJkiRJUg+WJ0mSJEnqwfIkSZIkST38f0VO4i1MyeJKAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rL8J_iwcqTy-", + "outputId": "ba64f197-1e71-43f9-f42e-be90420d8aa5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 352 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Day Year Customer_Age Order_Quantity Unit_Cost \\\n", + "Day 1.000000 -0.007635 -0.014296 -0.002412 0.003133 \n", + "Year -0.007635 1.000000 0.040994 0.123169 -0.217575 \n", + "Customer_Age -0.014296 0.040994 1.000000 0.026887 -0.021374 \n", + "Order_Quantity -0.002412 0.123169 0.026887 1.000000 -0.515835 \n", + "Unit_Cost 0.003133 -0.217575 -0.021374 -0.515835 1.000000 \n", + "Unit_Price 0.003207 -0.213673 -0.020262 -0.515925 0.997894 \n", + "Profit 0.004623 -0.181525 0.004319 -0.238863 0.741020 \n", + "Cost 0.003329 -0.215604 -0.016013 -0.340382 0.829869 \n", + "Revenue 0.003853 -0.208673 -0.009326 -0.312895 0.817865 \n", + "\n", + " Unit_Price Profit Cost Revenue \n", + "Day 0.003207 0.004623 0.003329 0.003853 \n", + "Year -0.213673 -0.181525 -0.215604 -0.208673 \n", + "Customer_Age -0.020262 0.004319 -0.016013 -0.009326 \n", + "Order_Quantity -0.515925 -0.238863 -0.340382 -0.312895 \n", + "Unit_Cost 0.997894 0.741020 0.829869 0.817865 \n", + "Unit_Price 1.000000 0.749870 0.826301 0.818522 \n", + "Profit 0.749870 1.000000 0.902233 0.956572 \n", + "Cost 0.826301 0.902233 1.000000 0.988758 \n", + "Revenue 0.818522 0.956572 0.988758 1.000000 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DayYearCustomer_AgeOrder_QuantityUnit_CostUnit_PriceProfitCostRevenue
Day1.000000-0.007635-0.014296-0.0024120.0031330.0032070.0046230.0033290.003853
Year-0.0076351.0000000.0409940.123169-0.217575-0.213673-0.181525-0.215604-0.208673
Customer_Age-0.0142960.0409941.0000000.026887-0.021374-0.0202620.004319-0.016013-0.009326
Order_Quantity-0.0024120.1231690.0268871.000000-0.515835-0.515925-0.238863-0.340382-0.312895
Unit_Cost0.003133-0.217575-0.021374-0.5158351.0000000.9978940.7410200.8298690.817865
Unit_Price0.003207-0.213673-0.020262-0.5159250.9978941.0000000.7498700.8263010.818522
Profit0.004623-0.1815250.004319-0.2388630.7410200.7498701.0000000.9022330.956572
Cost0.003329-0.215604-0.016013-0.3403820.8298690.8263010.9022331.0000000.988758
Revenue0.003853-0.208673-0.009326-0.3128950.8178650.8185220.9565720.9887581.000000
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "corr", + "summary": "{\n \"name\": \"corr\",\n \"rows\": 9,\n \"fields\": [\n {\n \"column\": \"Day\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.33365361342851735,\n \"min\": -0.014296450304360848,\n \"max\": 1.0,\n \"num_unique_values\": 9,\n \"samples\": [\n 0.0033288452432415996,\n -0.007634626829874117,\n 0.0032070802950717593\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.39231661755859454,\n \"min\": -0.21757461489815563,\n \"max\": 1.0,\n \"num_unique_values\": 9,\n \"samples\": [\n -0.2156035934482762,\n 1.0,\n -0.21367281556612475\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Customer_Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.334427313594711,\n \"min\": -0.021374209195134886,\n \"max\": 1.0,\n \"num_unique_values\": 9,\n \"samples\": [\n -0.016013362599777044,\n 0.04099387350264856,\n -0.020261753809381364\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Order_Quantity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4679782693710731,\n \"min\": -0.5159246110602049,\n \"max\": 1.0,\n \"num_unique_values\": 9,\n \"samples\": [\n -0.3403815585098722,\n 0.12316897942062592,\n -0.5159246110602049\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Unit_Cost\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5861149519356822,\n \"min\": -0.5158349831003396,\n \"max\": 1.0,\n \"num_unique_values\": 9,\n \"samples\": [\n 0.8298690044467402,\n -0.21757461489815563,\n 0.9978935825333143\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Unit_Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5858883587617213,\n \"min\": -0.5159246110602049,\n \"max\": 1.0,\n \"num_unique_values\": 9,\n \"samples\": [\n 0.8263011226569932,\n -0.21367281556612475,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Profit\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5252624819932499,\n \"min\": -0.23886342119372153,\n \"max\": 1.0,\n \"num_unique_values\": 9,\n \"samples\": [\n 0.9022330172390257,\n -0.1815251993639599,\n 0.7498701726768856\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cost\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5664610401826804,\n \"min\": -0.3403815585098722,\n \"max\": 1.0,\n \"num_unique_values\": 9,\n \"samples\": [\n 1.0,\n -0.2156035934482762,\n 0.8263011226569932\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Revenue\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5641799830130205,\n \"min\": -0.31289502889711923,\n \"max\": 1.0,\n \"num_unique_values\": 9,\n \"samples\": [\n 0.9887584000728539,\n -0.20867270244970582,\n 0.8185217948173714\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 51 + } + ], + "source": [ + "corr = sales.select_dtypes(include=np.number).corr()\n", + "corr" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = sales['Age_Group'].value_counts().plot(kind='bar', figsize=(14,6))\n", - "ax.set_ylabel('Number of Sales')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "## Relationship between the columns?\n", - "\n", - "Can we find any significant relationship?" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DayYearCustomer_AgeOrder_QuantityUnit_CostUnit_PriceProfitCostRevenue
Day1.000000-0.007635-0.014296-0.0024120.0031330.0032070.0046230.0033290.003853
Year-0.0076351.0000000.0409940.123169-0.217575-0.213673-0.181525-0.215604-0.208673
Customer_Age-0.0142960.0409941.0000000.026887-0.021374-0.0202620.004319-0.016013-0.009326
Order_Quantity-0.0024120.1231690.0268871.000000-0.515835-0.515925-0.238863-0.340382-0.312895
Unit_Cost0.003133-0.217575-0.021374-0.5158351.0000000.9978940.7410200.8298690.817865
Unit_Price0.003207-0.213673-0.020262-0.5159250.9978941.0000000.7498700.8263010.818522
Profit0.004623-0.1815250.004319-0.2388630.7410200.7498701.0000000.9022330.956572
Cost0.003329-0.215604-0.016013-0.3403820.8298690.8263010.9022331.0000000.988758
Revenue0.003853-0.208673-0.009326-0.3128950.8178650.8185220.9565720.9887581.000000
\n", - "
" + }, + { + "cell_type": "markdown", + "source": [ + "fig = plt.figure(figsize=(8,8))\n", + "plt.matshow(corr, cmap='RdBu', fignum=fig.number)\n", + "plt.xticks(range(len(corr.columns)), corr.columns, rotation='vertical');\n", + "plt.yticks(range(len(corr.columns)), corr.columns);" + ], + "metadata": { + "id": "2VEnncSfqTy-" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "r7FzG2JsqTy-", + "outputId": "fa94360c-88b2-4747-94cd-b994b8ccb227", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 559 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 52 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAINCAYAAADLIv4fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYxJJREFUeJzt3XlcVOXiP/DPsA0gDvsiCohC7isGkqWZfCXjV1l++3q9VmYuN6NF7Wp5b2m7fltui5m2XS0zM7vVtTLN64KpKAqSa4iCYirgAowgsj6/P/xy4szGzHBg5oyf9+s1r5pzHs55zowwn3nOs2iEEAJEREREKuXm6AoQERERtQbDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREamah6Mr4CoaGxtx9uxZdOzYERqNxtHVISIiUg0hBC5fvozIyEi4udnezsIwo5CzZ88iKirK0dUgIiJSrdOnT6NLly42/xzDjEI6duwI4NobodPpHFwbIiIi9dDr9YiKipI+S23FMKOQpltLOp2OYYaIiMgO9nbTcHgH4DNnzuD+++9HcHAwfHx80K9fP+zbt0/aL4TA/Pnz0alTJ/j4+CAlJQX5+fmyY1y6dAkTJ06ETqdDQEAApkyZgsrKSlmZAwcO4JZbboG3tzeioqLw2muvGdVl7dq16NmzJ7y9vdGvXz+sX7++bS6aiIiIFOPQMFNWVoZhw4bB09MTP/30E44cOYI333wTgYGBUpnXXnsN7777LpYtW4Y9e/agQ4cOSE1NxdWrV6UyEydOxOHDh7Fp0yb88MMP2L59O6ZPny7t1+v1GD16NGJiYpCdnY3XX38dzz//PD788EOpzK5duzBhwgRMmTIF+/fvx9ixYzF27FgcOnSofV4MIiIiso9woKefflrcfPPNZvc3NjaKiIgI8frrr0vbysvLhVarFatXrxZCCHHkyBEBQOzdu1cq89NPPwmNRiPOnDkjhBDi/fffF4GBgaKmpkZ27h49ekjP/+d//kekpaXJzp+UlCT+8pe/WHUtFRUVAoCoqKiwqjwRERFd09rPUIe2zKxbtw5DhgzBfffdh7CwMAwaNAgfffSRtL+wsBDFxcVISUmRtvn7+yMpKQmZmZkAgMzMTAQEBGDIkCFSmZSUFLi5uWHPnj1SmeHDh8PLy0sqk5qairy8PJSVlUllmp+nqUzTeQzV1NRAr9fLHkRERNT+HBpmCgoKsHTpUsTHx2Pjxo2YMWMGnnjiCXz66acAgOLiYgBAeHi47OfCw8OlfcXFxQgLC5Pt9/DwQFBQkKyMqWM0P4e5Mk37DS1cuBD+/v7Sg8OyiYiIHMOhYaaxsRGDBw/Gq6++ikGDBmH69OmYNm0ali1b5shqWWXevHmoqKiQHqdPn3Z0lYiIiK5LDg0znTp1Qu/evWXbevXqhaKiIgBAREQEAKCkpERWpqSkRNoXERGB0tJS2f76+npcunRJVsbUMZqfw1yZpv2GtFqtNAybw7GJiIgcx6FhZtiwYcjLy5NtO3bsGGJiYgAAsbGxiIiIwObNm6X9er0ee/bsQXJyMgAgOTkZ5eXlyM7Olsps2bIFjY2NSEpKksps374ddXV1UplNmzahR48e0sip5ORk2XmayjSdh4iIiJyUwh2SbZKVlSU8PDzEK6+8IvLz88WqVauEr6+v+Pzzz6UyixYtEgEBAeLf//63OHDggLj77rtFbGysqK6ulsrcfvvtYtCgQWLPnj1ix44dIj4+XkyYMEHaX15eLsLDw8UDDzwgDh06JL788kvh6+srPvjgA6nMzp07hYeHh3jjjTfE0aNHxYIFC4Snp6c4ePCgVdfC0UxERET2ae1nqEPDjBBCfP/996Jv375Cq9WKnj17ig8//FC2v7GxUTz33HMiPDxcaLVaMWrUKJGXlycrc/HiRTFhwgTh5+cndDqdmDx5srh8+bKszK+//ipuvvlmodVqRefOncWiRYuM6vLVV1+JG264QXh5eYk+ffqIH3/80errYJghIiKyT2s/QzVCCOHYtiHXoNfr4e/vj4qKCvafISIiskFrP0MdvpwBERERUWswzBAREZGqMcwQERGRqnk4ugJERO2h4HwlTl26gq7BHRAb0sHR1SEiBTHMEJFLK79SiydW52J7/nlp2/D4UCyeMAj+vp4OrBkRKYW3mYjIpT2xOhc7j1+Qbdt5/AIeX73fQTUiIqUxzBCRyyo4X4nt+efRYDADRYMQ2J5/HoUXqhxUMyJSEsMMEbmsU5euWNx/8iLDDJErYJghIpcVE+RrcX/XYHYEJnIFDDNE5LK6hfpheHwo3DUa2XZ3jQbD40M5qonIRTDMEJFLWzxhEIbFhci2DYsLweIJgxxUIyJSGodmE5FL8/f1xGdTElF4oQonL1ZxnhkiF8QwQ0TXhdgQhhgiV8XbTERERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqHo6uABFReyg4X4lTl66ga3AHxIZ0cHR1iEhBDDNE5NLKr9TiidW52J5/Xto2PD4UiycMgr+vpwNrRkRK4W0mInJpT6zOxc7jF2Tbdh6/gMdX73dQjYhIaQwzROSyCs5XYnv+eTQIIdveIAS2559H4YUqB9WMiJTEMENELuvUpSsW95+8yDBD5AoYZojIZcUE+Vrc3zWYHYGJXAHDDBG5rG6hfhgeHwp3jUa23V2jwfD4UI5qInIRDDNE5NIWTxiEYXEhsm3D4kKweMIgB9WIiJTGodlE5NL8fT3x2ZREFF6owsmLVZxnhsgFMcwQ0XUhNoQhhshV8TYTERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqZpDw8zzzz8PjUYje/Ts2VPaf/XqVaSnpyM4OBh+fn4YN24cSkpKZMcoKipCWloafH19ERYWhjlz5qC+vl5WZtu2bRg8eDC0Wi3i4uKwYsUKo7osWbIEXbt2hbe3N5KSkpCVldUm10xERETKcnjLTJ8+fXDu3DnpsWPHDmnfrFmz8P3332Pt2rXIyMjA2bNnce+990r7GxoakJaWhtraWuzatQuffvopVqxYgfnz50tlCgsLkZaWhpEjRyI3NxczZ87E1KlTsXHjRqnMmjVrMHv2bCxYsAA5OTkYMGAAUlNTUVpa2j4vAhEREdlPONCCBQvEgAEDTO4rLy8Xnp6eYu3atdK2o0ePCgAiMzNTCCHE+vXrhZubmyguLpbKLF26VOh0OlFTUyOEEGLu3LmiT58+smOPHz9epKamSs8TExNFenq69LyhoUFERkaKhQsXWn0tFRUVAoCoqKiw+meIiIio9Z+hDm+Zyc/PR2RkJLp164aJEyeiqKgIAJCdnY26ujqkpKRIZXv27Ino6GhkZmYCADIzM9GvXz+Eh4dLZVJTU6HX63H48GGpTPNjNJVpOkZtbS2ys7NlZdzc3JCSkiKVMaWmpgZ6vV72ICIiovbn0DCTlJSEFStWYMOGDVi6dCkKCwtxyy234PLlyyguLoaXlxcCAgJkPxMeHo7i4mIAQHFxsSzINO1v2mepjF6vR3V1NS5cuICGhgaTZZqOYcrChQvh7+8vPaKioux6DYiIiKh1PBx58jFjxkj/379/fyQlJSEmJgZfffUVfHx8HFizls2bNw+zZ8+Wnuv1egYaIiIiB3D4babmAgICcMMNN+D48eOIiIhAbW0tysvLZWVKSkoQEREBAIiIiDAa3dT0vKUyOp0OPj4+CAkJgbu7u8kyTccwRavVQqfTyR5ERETU/pwqzFRWVuLEiRPo1KkTEhIS4Onpic2bN0v78/LyUFRUhOTkZABAcnIyDh48KBt1tGnTJuh0OvTu3Vsq0/wYTWWajuHl5YWEhARZmcbGRmzevFkqQ0RERE5M4Q7JNnnqqafEtm3bRGFhodi5c6dISUkRISEhorS0VAghxCOPPCKio6PFli1bxL59+0RycrJITk6Wfr6+vl707dtXjB49WuTm5ooNGzaI0NBQMW/ePKlMQUGB8PX1FXPmzBFHjx4VS5YsEe7u7mLDhg1SmS+//FJotVqxYsUKceTIETF9+nQREBAgGyXVEo5mIiIisk9rP0MdGmbGjx8vOnXqJLy8vETnzp3F+PHjxfHjx6X91dXV4tFHHxWBgYHC19dX3HPPPeLcuXOyY5w8eVKMGTNG+Pj4iJCQEPHUU0+Juro6WZmtW7eKgQMHCi8vL9GtWzexfPlyo7osXrxYREdHCy8vL5GYmCh2795t07UwzBAREdmntZ+hGiGEcGzbkGvQ6/Xw9/dHRUUF+88QERHZoLWfoU7VZ4aIiIjIVgwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkak4TZhYtWgSNRoOZM2dK265evYr09HQEBwfDz88P48aNQ0lJieznioqKkJaWBl9fX4SFhWHOnDmor6+Xldm2bRsGDx4MrVaLuLg4rFixwuj8S5YsQdeuXeHt7Y2kpCRkZWW1xWUSERGRwpwizOzduxcffPAB+vfvL9s+a9YsfP/991i7di0yMjJw9uxZ3HvvvdL+hoYGpKWloba2Frt27cKnn36KFStWYP78+VKZwsJCpKWlYeTIkcjNzcXMmTMxdepUbNy4USqzZs0azJ49GwsWLEBOTg4GDBiA1NRUlJaWtv3FExERUesIB7t8+bKIj48XmzZtEiNGjBBPPvmkEEKI8vJy4enpKdauXSuVPXr0qAAgMjMzhRBCrF+/Xri5uYni4mKpzNKlS4VOpxM1NTVCCCHmzp0r+vTpIzvn+PHjRWpqqvQ8MTFRpKenS88bGhpEZGSkWLhwodXXUVFRIQCIiooK6y+eiIiIWv0Z6vCWmfT0dKSlpSElJUW2PTs7G3V1dbLtPXv2RHR0NDIzMwEAmZmZ6NevH8LDw6Uyqamp0Ov1OHz4sFTG8NipqanSMWpra5GdnS0r4+bmhpSUFKmMKTU1NdDr9bIHERERtT8PR578yy+/RE5ODvbu3Wu0r7i4GF5eXggICJBtDw8PR3FxsVSmeZBp2t+0z1IZvV6P6upqlJWVoaGhwWSZ3377zWzdFy5ciBdeeMG6CyUiIqI247CWmdOnT+PJJ5/EqlWr4O3t7ahq2G3evHmoqKiQHqdPn3Z0lYiIiK5LDgsz2dnZKC0txeDBg+Hh4QEPDw9kZGTg3XffhYeHB8LDw1FbW4vy8nLZz5WUlCAiIgIAEBERYTS6qel5S2V0Oh18fHwQEhICd3d3k2WajmGKVquFTqeTPYiIiKj9OSzMjBo1CgcPHkRubq70GDJkCCZOnCj9v6enJzZv3iz9TF5eHoqKipCcnAwASE5OxsGDB2WjjjZt2gSdTofevXtLZZofo6lM0zG8vLyQkJAgK9PY2IjNmzdLZYiIiMh5OazPTMeOHdG3b1/Ztg4dOiA4OFjaPmXKFMyePRtBQUHQ6XR4/PHHkZycjKFDhwIARo8ejd69e+OBBx7Aa6+9huLiYjz77LNIT0+HVqsFADzyyCN47733MHfuXDz88MPYsmULvvrqK/z444/SeWfPno1JkyZhyJAhSExMxNtvv42qqipMnjy5nV4NIiIispdDOwC35K233oKbmxvGjRuHmpoapKam4v3335f2u7u744cffsCMGTOQnJyMDh06YNKkSXjxxRelMrGxsfjxxx8xa9YsvPPOO+jSpQs+/vhjpKamSmXGjx+P8+fPY/78+SguLsbAgQOxYcMGo07BRERE5Hw0Qgjh6Eq4Ar1eD39/f1RUVLD/DBERkQ1a+xnq8HlmiIiIiFqDYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFTN7jBTXl6Ojz/+GPPmzcOlS5cAADk5OThz5oxilSMiIiJqiYc9P3TgwAGkpKTA398fJ0+exLRp0xAUFIRvvvkGRUVF+Oyzz5SuJxEREZFJdrXMzJ49Gw899BDy8/Ph7e0tbb/jjjuwfft2xSpHRERE1BK7wszevXvxl7/8xWh7586dUVxc3OpKEREREVnLrjCj1Wqh1+uNth87dgyhoaGtrhQRERGRtewKM3fddRdefPFF1NXVAQA0Gg2Kiorw9NNPY9y4cYpWkIiIiMgSu8LMm2++icrKSoSFhaG6uhojRoxAXFwcOnbsiFdeeUXpOhIRERGZZddoJn9/f2zatAk7duzAgQMHUFlZicGDByMlJUXp+hERERFZpBFCCEdXwhXo9Xr4+/ujoqICOp3O0dUhIiJSjdZ+htrVMvPiiy9a3D9//nx7DktERERkM7vCzLfffit7XldXh8LCQnh4eKB79+4MM0RERNRu7Aoz+/fvN9qm1+vx0EMP4Z577ml1pYiIiIispdhCkzqdDi+88AKee+45pQ5JRERE1CJFV82uqKhARUWFkockIiIissiu20zvvvuu7LkQAufOncPKlSsxZswYRSpGREREZA27wsxbb70le+7m5obQ0FBMmjQJ8+bNU6RiRERERNaw6zZTYWGh7HHixAns3r0br776Kjp27Gj1cZYuXYr+/ftDp9NBp9MhOTkZP/30k7T/6tWrSE9PR3BwMPz8/DBu3DiUlJTIjlFUVIS0tDT4+voiLCwMc+bMQX19vazMtm3bMHjwYGi1WsTFxWHFihVGdVmyZAm6du0Kb29vJCUlISsry7YXhYiIiBxC0T4zturSpQsWLVqE7Oxs7Nu3D7fddhvuvvtuHD58GAAwa9YsfP/991i7di0yMjJw9uxZ3HvvvdLPNzQ0IC0tDbW1tdi1axc+/fRTrFixQjY0vLCwEGlpaRg5ciRyc3Mxc+ZMTJ06FRs3bpTKrFmzBrNnz8aCBQuQk5ODAQMGIDU1FaWlpe33YhAREZF9hB0qKyvFs88+K5KTk0X37t1FbGys7NEagYGB4uOPPxbl5eXC09NTrF27Vtp39OhRAUBkZmYKIYRYv369cHNzE8XFxVKZpUuXCp1OJ2pqaoQQQsydO1f06dNHdo7x48eL1NRU6XliYqJIT0+Xnjc0NIjIyEixcOFCq+tdUVEhAIiKigrbLpiIiOg619rPULv6zEydOhUZGRl44IEH0KlTJ2g0mlaHqoaGBqxduxZVVVVITk5GdnY26urqZOs99ezZE9HR0cjMzMTQoUORmZmJfv36ITw8XCqTmpqKGTNm4PDhwxg0aBAyMzON1oxKTU3FzJkzAQC1tbXIzs6W9fVxc3NDSkoKMjMzzda3pqYGNTU10nO9Xt/al4CIiIjsYFeY+emnn/Djjz9i2LBhra7AwYMHkZycjKtXr8LPzw/ffvstevfujdzcXHh5eSEgIEBWPjw8HMXFxQCA4uJiWZBp2t+0z1IZvV6P6upqlJWVoaGhwWSZ3377zWy9Fy5ciBdeeMGuayYiIiLl2NVnJjAwEEFBQYpUoEePHsjNzcWePXswY8YMTJo0CUeOHFHk2G1p3rx50rw6FRUVOH36tKOrREREdF2yK8y89NJLmD9/Pq5cudLqCnh5eSEuLg4JCQlYuHAhBgwYgHfeeQcRERGora1FeXm5rHxJSQkiIiIAABEREUajm5qet1RGp9PBx8cHISEhcHd3N1mm6RimaLVaaRRW04OIiIjan11h5s0338TGjRsRHh6Ofv36YfDgwbJHazQ2NqKmpgYJCQnw9PTE5s2bpX15eXkoKipCcnIyACA5ORkHDx6UjTratGkTdDodevfuLZVpfoymMk3H8PLyQkJCgqxMY2MjNm/eLJUhIiIi52VXn5mxY8cqcvJ58+ZhzJgxiI6OxuXLl/HFF19g27Zt2LhxI/z9/TFlyhTMnj0bQUFB0Ol0ePzxx5GcnIyhQ4cCAEaPHo3evXvjgQcewGuvvYbi4mI8++yzSE9Ph1arBQA88sgjeO+99zB37lw8/PDD2LJlC7766iv8+OOPUj1mz56NSZMmYciQIUhMTMTbb7+NqqoqTJ48WZHrJCIiojak8Ogqmzz88MMiJiZGeHl5idDQUDFq1Cjx888/S/urq6vFo48+KgIDA4Wvr6+45557xLlz52THOHnypBgzZozw8fERISEh4qmnnhJ1dXWyMlu3bhUDBw4UXl5eolu3bmL58uVGdVm8eLGIjo4WXl5eIjExUezevduma+HQbCIiIvu09jNUI4QQ9oSg8vJyfP311zhx4gTmzJmDoKAg5OTkIDw8HJ07d1Y2camAXq+Hv78/Kioq2H+GiIjIBq39DLXrNtOBAweQkpICf39/nDx5EtOmTUNQUBC++eYbFBUV4bPPPrPnsEREREQ2s6sD8OzZs/HQQw8hPz8f3t7e0vY77rgD27dvV6xyRERERC2xK8zs3bsXf/nLX4y2d+7cWZqsjoiIiKg92BVmtFqtyen7jx07htDQ0FZXioiIiMhadoWZu+66Cy+++CLq6uoAABqNBkVFRXj66acxbtw4RStIREREZIndk+ZVVlYiLCwM1dXVGDFiBOLi4tCxY0e88sorSteRiIiIyCy7RjP5+/tj06ZN2LFjBw4cOIDKykoMHjzYaHVqIiIiorZm1zwzp0+fRlRUVFvUR7U4zwwREZF9WvsZatdtpq5du2LEiBH46KOPUFZWZs8hiIiIiBRhV5jZt28fEhMT8eKLL6JTp04YO3Ysvv76a9TU1ChdPyIiIiKL7AozgwYNwuuvv46ioiL89NNPCA0NxfTp0xEeHo6HH35Y6ToSERERmWX32kyGcnJyMGXKFBw4cAANDQ1KHFJV2GeGiIjIPg7pM9Pk999/x2uvvYaBAwciMTERfn5+WLJkSWsOSURERGQTu4Zmf/DBB/jiiy+wc+dO9OzZExMnTsS///1vxMTEKF0/IiIiIovsCjMvv/wyJkyYgHfffRcDBgxQuk5EREREVrMrzBQVFUGj0ShdFyIiIiKb2dVnRqPR4JdffsH999+P5ORknDlzBgCwcuVK7NixQ9EKEhEREVliV5j517/+hdTUVPj4+GD//v3S/DIVFRV49dVXFa0gERERkSV2hZmXX34Zy5Ytw0cffQRPT09p+7Bhw5CTk6NY5YiIiIhaYleYycvLw/Dhw422+/v7o7y8vLV1IiIiIrKaXWEmIiICx48fN9q+Y8cOdOvWrdWVIiIiIrKWXWFm2rRpePLJJ7Fnzx5oNBqcPXsWq1atwlNPPYUZM2YoXUciIiIis+wamv3MM8+gsbERo0aNwpUrVzB8+HBotVrMmTMHU6dOVbqORERERGbZPTT773//Oy5duoRDhw5h9+7dOH/+PPz9/REbG6t0HYmIiIjMsinM1NTUYN68eRgyZAiGDRuG9evXo3fv3jh8+DB69OiBd955B7NmzWqruhIREREZsek20/z58/HBBx8gJSUFu3btwn333YfJkydj9+7dePPNN3HffffB3d29repKREREZMSmMLN27Vp89tlnuOuuu3Do0CH0798f9fX1+PXXX7m8ARERETmETbeZfv/9dyQkJAAA+vbtC61Wi1mzZjHIEBERkcPYFGYaGhrg5eUlPffw8ICfn5/ilSIiIiKylk23mYQQeOihh6DVagEAV69exSOPPIIOHTrIyn3zzTfK1ZCIiIjIApvCzKRJk2TP77//fkUrQ0RERGQrm8LM8uXL26oeRERERHaxa9I8IiIiImfBMENERESqxjBDREREqsYwQ0RERKrGMENERESqxjBDREREqsYwQ0RERKrGMENERESqxjBDREREqsYwQ0RERKrGMENERESqxjBDREREqsYwQ0RERKrGMENERESqxjBDREREqsYwQ0RERKrGMENERESqxjBDREREqsYwQ0RERKrGMENERESqxjBDREREqsYwQ0RERKrGMENERESqxjBDREREqsYwQ0RERKrGMENERESqxjBDREREqsYwQ0RERKrGMENERESq5tAws3DhQtx4443o2LEjwsLCMHbsWOTl5cnKXL16Fenp6QgODoafnx/GjRuHkpISWZmioiKkpaXB19cXYWFhmDNnDurr62Vltm3bhsGDB0Or1SIuLg4rVqwwqs+SJUvQtWtXeHt7IykpCVlZWYpfMxERESnLoWEmIyMD6enp2L17NzZt2oS6ujqMHj0aVVVVUplZs2bh+++/x9q1a5GRkYGzZ8/i3nvvlfY3NDQgLS0NtbW12LVrFz799FOsWLEC8+fPl8oUFhYiLS0NI0eORG5uLmbOnImpU6di48aNUpk1a9Zg9uzZWLBgAXJycjBgwACkpqaitLS0fV4MIiIiso9wIqWlpQKAyMjIEEIIUV5eLjw9PcXatWulMkePHhUARGZmphBCiPXr1ws3NzdRXFwslVm6dKnQ6XSipqZGCCHE3LlzRZ8+fWTnGj9+vEhNTZWeJyYmivT0dOl5Q0ODiIyMFAsXLrSq7hUVFQKAqKiosPGqiYiIrm+t/Qx1qj4zFRUVAICgoCAAQHZ2Nurq6pCSkiKV6dmzJ6Kjo5GZmQkAyMzMRL9+/RAeHi6VSU1NhV6vx+HDh6UyzY/RVKbpGLW1tcjOzpaVcXNzQ0pKilTGUE1NDfR6vexBRERE7c9pwkxjYyNmzpyJYcOGoW/fvgCA4uJieHl5ISAgQFY2PDwcxcXFUpnmQaZpf9M+S2X0ej2qq6tx4cIFNDQ0mCzTdAxDCxcuhL+/v/SIioqy78KJiIioVZwmzKSnp+PQoUP48ssvHV0Vq8ybNw8VFRXS4/Tp046uEhER0XXJw9EVAIDHHnsMP/zwA7Zv344uXbpI2yMiIlBbW4vy8nJZ60xJSQkiIiKkMoajjppGOzUvYzgCqqSkBDqdDj4+PnB3d4e7u7vJMk3HMKTVaqHVau27YCIiIlKMQ1tmhBB47LHH8O2332LLli2IjY2V7U9ISICnpyc2b94sbcvLy0NRURGSk5MBAMnJyTh48KBs1NGmTZug0+nQu3dvqUzzYzSVaTqGl5cXEhISZGUaGxuxefNmqQwRERE5KWX7I9tmxowZwt/fX2zbtk2cO3dOely5ckUq88gjj4jo6GixZcsWsW/fPpGcnCySk5Ol/fX19aJv375i9OjRIjc3V2zYsEGEhoaKefPmSWUKCgqEr6+vmDNnjjh69KhYsmSJcHd3Fxs2bJDKfPnll0Kr1YoVK1aII0eOiOnTp4uAgADZKClLOJqJiIjIPq39DHVomAFg8rF8+XKpTHV1tXj00UdFYGCg8PX1Fffcc484d+6c7DgnT54UY8aMET4+PiIkJEQ89dRToq6uTlZm69atYuDAgcLLy0t069ZNdo4mixcvFtHR0cLLy0skJiaK3bt3W30tDDNERET2ae1nqEYIIRzVKuRK9Ho9/P39UVFRAZ1O5+jqEBERqUZrP0OdZjQTERERkT0YZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1TwcXQFyPgXnK3Hq0hV0De6A2JAOjq4OERGRRQwzLiQjrxS5v5djcHQgbokPtfnny6/U4onVudief17aNjw+FIsnDIK/r6eSVVUsMJk7jqsGMkddl6u+nkTkGhhmXMCpi1UYu2Qnyq7USdsCfT2xLv1mRAX7Wn2cJ1bnYufxC7JtO49fwOOr9+OzKYkWf9baIGVvYDI8vrnjvDy2L5797pDZ47d1iGor7RU0Da+rPQOutXVS+jht/V4qdd7rLbgT2UIjhBCOroQr0Ov18Pf3R0VFBXQ6Xbuee9CLP8uCTJNAX0/snz/aqmMUnK/EbW9mmN2/9a+3mvxDaWuQevCTLOw8fgENzf7ZuWs0GBYXYjIwmTt+fFhHZJ8qMzqOr9YNl682GB1ncJQ//Ly9Wv2h7KgP9wkf7kZmwUWj7cndgrF6+tBWH9/cdV2prce+U2Vtdl576qTUe9ZS8G2r+r88tg+e/e6w1ed1VP2J2lNrP0PZAVjlMvJKTQYZACi7Uodfmv2hs+TUpSsW95+8WAXgWujZmleKwgvXnhsGjabz3rVkh9ExCs5XYnv+eVkAAYAGIbA9/7x0zObMHT/r5CWTxzEVZAAg53QFdhi8Fk2tTraw1HrVVgrOV5oMMgCQWXDR5OvW/Gebv1/mmLquHcfPmwwy1pxXCUq91uaOc/eSHW36Xpo/706bzuuo+hOpCW8zqVzu7+UW9+cUlVnVfyYmyPLtqCBfTzz4SZbsW2DfzroWg1Tzc1sTmJq3/lgKavZoNHjePERZ28y/3UQ4tPU4ttpTeMni/t0FF43Oa0urhrnramyhzdbUeZWi1Gtt6Tim/m0p9V4qdV5H1Z9Ibdgyo3IDuwRY3D84OtCq43QL9cPw+FC4azSy7e4aDYbHh+LNn/ONvgUePqO3eMycIvm3+pYCU9dg+R/floKaUppanVpibeuV8iynCo2Jbba0arR0XbacVylKvdb2Xltr30ulzuuo+hOpDcOMyo3oEYZAM/fHA309bRrVtHjCIAyLC5FtGxYXgqdGx5u8PdRSZ6tIfx/Z85YCk+E3yYiO3haPr1Ho09QwRDXX/DaNrWFMKUmxwZb3d5Pvt/V2XkvXZe15laTUa23vtbX2vVTqvI6qP5HaMMy4gHXpNxsFmqZOuLbw9/XEZ1MSsfWvt2L55Bux9a+34rMpibhk562ekI5ao23mAtPiCYOMyob5Ww4zfSLlncT6RlruNOZmEH7MhSjg2m2aBz/Jwm1vZmDy8r0Y+cY2PL/uCG7qHmx1GFNKt1A/JHY13cKW2DXI6Ly2tmpYCpkBPqaD8k3dg9v0Noatwdee4wT6erbZe6nUeR1VfzWytn8YuSaGGRcQFeyL/fNHY+WURMz6r3isnJKI/fNH2zQsu7nYkA4Y2SNM+oOo5LdDc4HJ1OiLls67eMJg2XHeNRGImkuIkQcCcyEKMH+bRghYHcaU5O5m+lfV3TChwb5WDXMh8/vHbsZwg9a94fGhWDoxoaUqt5otwdee46xLv7lN30ulzuuo+quFqS8eD36ShQoF+9uR8+PQbIU4cmh2ezA3pFrn4wF9db3VQ62VOq+547dUvvBCFU5erLI4J4c1w9QBtHgcpdgzbN7W162JudfHmtetrSh1bkddm1Lndcb3xhnY+2+dnEtrP0MZZhTi6mGm4kodHl+932h0zCtj++LvbTjXhbnzmju+reVN2ZpXisnL95rdv3zyjRjZI8yGq2gde+qjxOtA5OzsnR+LnE9rP0M5NJus0nR7yNS3QGtbPJQ+rxLlTXFUR9/mms/qak99lHgdiJydrdM9kOtimCGbxIaY/lA0t72tz6tU+eaaOl2aa7puy+s0Nz/MTd2Dsafgks31aev3hciRnOGLBzkHdgAmI5ZGBahlxIC5elpbf6U6n9paH0d3PFbL+6smfE3bjlKj3kj92GdGIc7cZ8bahegszRorIByy0KGtlF7HprW3aWxZn+fGroHYe9L08gGAfR2PlXjv2cfGPnxN2wf7h7kGdgB2Es4YZmz9Y2ppVACANh0xoNQffkeNulKiPm4ay0sI2NLxWMn3niNC7MPXtH2xf5i6caHJ61BrFg80N6V9S7PG2rpApK2UWFTQ0jWUXalr0/orUZ+W1kKy5f6/ku89b4/Yjq9p+zOcH4uuL+wArCJKLB5obiE6e9eAAVo/YkCpRQVbs45NW/wBtLc+bpAvimlrx2Ol33uOCLEdX1Oi9sWWGRVRcvFAwynt7Z3lF2j9iAGlFhVszUzFGXmleGfzMfxiEAJs7bxpy1pO5tgyU7EpSr/3HBFiO76mRO2LLTMqYeu3bVv/mLY0HBkw32emtd8wlfrD3y3UDzd1D8auExeN9gX4eOLyVeM+MwkxAbj3/Z0oazb1eaCvJz5/OAn/uzHP6j4ntg6pbqkPT3vOk+PIoeiuiq8pUftiy4xKKLl4oLkhi5aGIys9VLm1dTXHXHf2+DA/k/XPK7ksCzIAUHalDne/v9OmPjzTP9tnFDa355/H1doGu9bVac39f6Xfe7IPX1Oi9sPRTApp69FM9kzbbe+QRUutAkqNGDAcMqzE8Epb11QquliFSRaWCbB0nObX3pq1nNpqBIbS731rh8xfzzjKhqhlXM7gOmFPs7W9U9pbmjXWXPZVYj6Tz6YkYvuxUuw/XY7B0YG4pdlqzdYc35rWq+atHet+PWOxvKXjNK/DDwfOWiz/44GzeOy2+HadOVmp976lTueuEHLa+hr4fZGo7THMqMjiCYOMvm1b02ytxAemUpPRzfg8B5kF8j4t2/PPY9pne+Ht6dGq49vaV2RglwCL5a09zqWqWovlL1TW2HUeJbT2vTfX6XzGqmx4uLmpeqKytp7UjpPmEbUf3mZSSHtOmueIZmslJqNr6XaMqSHJLR3f8Fu1rROVDXrxZ6M+MwDg4aaBELDqOBl5pRZvV62ckihrZVILe94vNU0I19aT2nHSPCLrcdK861B7Tw6l1GR0ewovWTxPo8Hzlo5/37JduO3NDExevhcj39iGBz/Jwitj+9rU6XJd+s0INPiWHOjriXXpw6w+Tkae8SgzW/Y7q5Zu25l6v9QyIVxbT2rHSfOI2hdvM7mQjLxS5P5u3N+ktVozGV3RxSqpToCyjYDZp+TrGO08fgF//+6QTX1FooJ9sX/+aHy1rwi7TlzEsO4huG9IFABY3Ydn27FSi/Xc8lsJnv1/vVtxpX8w9x63Rb8Pe+fJaa8J4VpzzW09qR0nzSNqXwwzTszaP9anLlZh7BLjuVLWpd+MqGD7J8NrYu+H2pOr90N/tV56rvNW9p+b4fT/zb/1ZhVcRGbhtXDS/LWb/uleZJ8uw40xQVj2wBCjfg3f7T+L7389Z3IhSHN9eIJ8LV9XXFhHm6/tvc352HniAm6JD8WjI+PMvsefT0nE/244pli/jIkfZuLA2QoM7BKAlVOHIrFrILIsLH5pSltPCGdvX5TmQbCtJ7Vri+PbGt5coXM2kbXYZ0YhSvaZsfWPtbl+H4G+ntg/f3Sr6tLE3P1/jQaob2lRISuY66MiIFpcs8iQuwZoaPYzHm4aTL+lK97PKDQqGx/mh4LzVVb3BfJyF6iuNzqMRaaGzZuz6/h5/PnjLKPtfl7uqKxtMNrurgEATav7ZXyYcRyv/pRntN0LgKnuzRoAbprWn9cetvZFMRcEy6/UmWwrdNMABQvTWl3PCR/uNursDgDJ3YKxevpQq49j698DdjwmNWKfGRdky7IFGXmlJoMMcG3yN8Pp+e2V2jvU5P1/JYIMcC0QDY4OkG0bFB1gc5C5Vi/jY5sKMgCQX1ppU18gW4MMAPxeZv1tOlNBBoDJIHOtTlCkX4apIAOYDjLAtRuG3p7yPx86Hw+8Mrav1ee0hz19UQyDDHDtd8PcP61GAUV+bwzmLGxxuzm2LsKqxKKtRGrj0DCzfft23HnnnYiMjIRGo8F3330n2y+EwPz589GpUyf4+PggJSUF+fn5sjKXLl3CxIkTodPpEBAQgClTpqCyslJW5sCBA7jlllvg7e2NqKgovPbaa0Z1Wbt2LXr27Alvb2/069cP69evV/x6rWHrH+vc38stHi+nyLZbBOb8/d9HFDmOJY/eFoetf70VyyffiK1/vRXRrVgvypmszDxpVbn3Nue3XMgG1q5pNfHDTLuOX2UQsPTV9fj7d4fsOpa1rOmL0nx9LEth35KVu07ZW0UA136PTS2rAQC7Tly0aa0vW/4esOMxXa8cGmaqqqowYMAALFmyxOT+1157De+++y6WLVuGPXv2oEOHDkhNTcXVq1elMhMnTsThw4exadMm/PDDD9i+fTumT58u7dfr9Rg9ejRiYmKQnZ2N119/Hc8//zw+/PBDqcyuXbswYcIETJkyBfv378fYsWMxduxYHDrUtn+YTbF12YKIjt4Wy0f6+7S6Tk+tyW31MazRdG+/aaRWVqHpDwO1qayxrjln54kLLReygbX9Mg6crVDkfM0/MG1doNNaLfVFeX/LcdkIt/nr7PsdrqyxPQA1p9TiqbYeR6nzEqmNQzsAjxkzBmPGjDG5TwiBt99+G88++yzuvvtuAMBnn32G8PBwfPfdd/jTn/6Eo0ePYsOGDdi7dy+GDBkCAFi8eDHuuOMOvPHGG4iMjMSqVatQW1uLf/7zn/Dy8kKfPn2Qm5uLf/zjH1Loeeedd3D77bdjzpw5AICXXnoJmzZtwnvvvYdly5a1wyvxB1s7Dob5Ww4zIR21ra7TnpPKhgp3M30tDPuVdPT2BHAVbU0D+TgrN41x5+LWuGdQF6vKDesegswCy8PXrWHrYob9I/2xU4HzNnn8ixwcOquXnivZX8PSTNg6Hw/kFJXLyhddrLbrPPcMtu49M0epDsDWHKd5R1+u1k3XK6ftM1NYWIji4mKkpKRI2/z9/ZGUlITMzGvN4pmZmQgICJCCDACkpKTAzc0Ne/bskcoMHz4cXl5eUpnU1FTk5eWhrKxMKtP8PE1lms5jSk1NDfR6veyhBFsXCWyrURPNv1UndQ22+RiWDI4JkD03N3/LQzd1VfS85hgOY0+ICVTs2G6ANNS7JY+NirfrHP06yzvLWTMrdPP3eNX0ZLvOa86Rs/LfBaX7a5hawHFwTIDJfk72ZFJ3N8vvmblWp+bblVo81dJxbuoejAX/PixriXp+3RHc1D3Y4nnbqtWMyJGcdmh2cXExACA8PFy2PTw8XNpXXFyMsLAw2X4PDw8EBQXJysTGxhodo2lfYGAgiouLLZ7HlIULF+KFF16w48paZsuyBfas2WSOpVEQ/9pv3zpGpjw6Mg5dgzu0OA/M+MRoPPPNQYVnp5FbdE9f/CkpxmheGlMjZgxnvDXk7gY0NCvg4abBuvRhVtclI8/yfDXmeHu6W13W3Hs8Z/QNeP3nYzad17AFq+m5pcn0lBgibGrdqZMXqzDZwizMflp3VNb80ccn0NcTL9zZG0+s+dWo7BdTTI80Mr+kh+lh/K+M7Yu/Gwzjt2fVbHN/D+oaGk129E2MDcKwuBCj8i+P7YMHP8niKCdySU4bZpzdvHnzMHv2bOm5Xq9HVJR138Bb0tIigYZzkNi7ZpPhPBSWRkH4uAPVpgfU2KzpfKY+2AyvzU/rgctW9jlpSd9IndHtjzH9IgEYr2Fk6jXtbfDzhnp10uHQmT/239Q9BJ0Dre/E3FJnbnNMTR74+Or9+GxKotHrae49rm9sxPD4UNn19u0svx5DvSPl+w2fG1J6orjm71lLM0x8//gt+L3sCnKKyqQJBx/8JMvkLc8l204gqXuw1b8fdy/ZCb3BMDd7JnBsYnheU38PhBAml5poEAKZBRdNrtTeFNAN69n0b8VWnMeGnInThpmIiAgAQElJCTp16iRtLykpwcCBA6UypaXyb7P19fW4dOmS9PMREREoKSmRlWl63lKZpv2maLVaaLWt749iieEHrOEcJJkFl/Daxjw8e0cP2YcQcG3xxt/O6ZHU3fgWkalvmDd2DcReE5OjNX2rVkpyt2CTf/jMXZuSDIPI9vzzmLx8D75Jv9morDDRHlRTbznNGX6QW/NB0fwDoaXO3OaYmzyw6zM/StssvZ4NQmDXiYtG95wNbxcZ8jFoEWppxLGHm41jkm1gTQtlbEgH6ZZi06gfQ82Xymj++2Dp98PUaCnD1ihrPuxbmh+m+XG2ttCKZ7hCfEvXa0urGeexIWfktH1mYmNjERERgc2bN0vb9Ho99uzZg+Tka/f4k5OTUV5ejuzsbKnMli1b0NjYiKSkJKnM9u3bUVf3xx+cTZs2oUePHggMDJTKND9PU5mm8zgLc3OQvLze9IfU+I92m9xu6hum4bf7ttJ0K9/wvr25a2trOacrUHihCmuyijBzzX6s3XcagOnX6HipbX0MLA2HLb9Siwc/yZL1d1i5u3XDgVvL8PZQS52gDT/cD1polQEsT66oRD8OU31pzLVQtjTqx/D3wd7fD1tGD9kyP4ytfeWUHOXEeWzIGTm0ZaayshLHjx+XnhcWFiI3NxdBQUGIjo7GzJkz8fLLLyM+Ph6xsbF47rnnEBkZibFjxwIAevXqhdtvvx3Tpk3DsmXLUFdXh8ceewx/+tOfEBl57fbBn//8Z7zwwguYMmUKnn76aRw6dAjvvPMO3nrrLem8Tz75JEaMGIE333wTaWlp+PLLL7Fv3z7Z8G1Hs3cOkve3HsejI+Ok5+a+oSk5eseSXScu4r6lu7C32YdDTFDrh4+3xsg3tkn//93+s3jmXweMJt4D7F9Z6uTFKgghWrxlYekWlisw1RldyW/5Ld2eba6lMGD4+2Dv74e1HfBtbTmxta+cUgMFlGzhIVKSQ8PMvn37MHLkSOl5Ux+USZMmYcWKFZg7dy6qqqowffp0lJeX4+abb8aGDRvg7f1Hc/yqVavw2GOPYdSoUXBzc8O4cePw7rvvSvv9/f3x888/Iz09HQkJCQgJCcH8+fNlc9HcdNNN+OKLL/Dss8/ib3/7G+Lj4/Hdd9+hb9+2nc20Jc1vQdg7B8kv+edlYcbeRSOVZPgt99Ql+4bPthVTQaY13t9yXBbehsQEYl87tYQ5O0vf8lvqx2Guz4Y1K7R0C/VDoK+nXRPqmWLYOdzWDvj2LEzpiIECXECTnBXXZlJIW6/NFBPkY9eH/tzUHkYtM6Y6DlLbMBxFcz1bPvlGjOzxx+jDlv4tmlvTyvyoIuNFQM218ij9e3BjTKAssNraumTvawHA6g7GFVfqjMJPe9aTyJLWfoY6bQfg65mpb6v2tl48OjJO9g32tBO0zFxPGGT+YE8/DlMfjOZHFe0wOarIVCuPPS2U5hZDbVrg0tZRS821puXE2g7GttyGa4t6ErUlhhknY+6etD0Wju1rNK9EpH/bjsAiMpxRWcl+HJb6bFgzqqiJPSMf6huF0aim5rd1rA0V5tg7xYKt1FJPIlswzDgZJfu0PLfuEISQD4c9W1Gj2PFJndp6+YZOAd44W/7HMhSW+nEkdwtGZoHxchnmhvDb+/th2MpjafJDS6yd8NEeSrSctAe11JOuLwwzTqalb6u2qG8E7B+D4zoMP7yvd4avhdIj2Wal3IAhXYOs+qDTmJl6xtx2e38/DOe4sfc4liZ8VEpbH18paqknXR+cdp6Z61XTt1Wy33CDtZY6Bdg3GR3Zp6FRyFY/N6fgfCV2nTC9iOmuExdNzjljbq2ilv6QWZrjxhTD41mzphLXPCJyHIYZJ9TQaG8jOM2/o5fRtqAOXiZKOp63h/zXr4OX9Wsstae+kfKRBfFhlr+NWxsb7J3IzfRCk5YXB7W183HvSOsX7zQ1AeKDn2ShQqFh30TUMt5mcjIF5yuRZWLadHsZ9ocwXItGzVZOScSq3aew99Ql3BgThGUPDDG5/szRs5cdVEPL3A1ufRg+dxaL/zwYwB/r/BRdrMIkC4s6dgm0bhJEeydyM9dn43+W7TL5u5PYNcioRaWlb3FPj+kJIQT2ny6X1nIyp6W5cpxtDSNnqw+REhhmnMyeQtPN7pbovD2gv2q8GOPgqAD4eXvKRh0Mig5w+IRtXu4a1CowM93moyVY9sAQ6bmlkS7OqKpWPmzb1HvYnjQaQBgE36ZRSGuyipBZeBHDuocgpKPlEXHW3tJp7TBfwz4beSWmQ2teifHMyr/+XmHx2M9+dxCnLv4xHYKl+WosrvFkMNu1I9cw4ppK5Mp4m8npWP52Hh/mJ3s+PD4Uq6clIdDgj1GgryfmpvbAwTPlsu2/FTt+yvxbbwjDyimJmPVf8Vg5JRH/1Sus5R8yIcRP/qHqDLMbq1lcqPzf1rC4EMy4NRZxf1uPp785iO/2n8Wcrw9g6qfmW2UA66fGB2xbT8mSjLxSVFSbDoMV1fX4xSBwXKqyPKqveZABzK89ZOsaT45cw4hrKpErY8uMk0mKDbK4/8MHh+D0pSpZ8/eDn2QZTRamr67H/f/MMvqW7AyTuPWP8kdjs3rdPzQGm45aXgXYlHCdvGOvkiPBlGQ4mspZR1d9+OC1Vq7mt27i/rbe6N9Qw/916TK8Zdm8RcXaWxlKDfPN/b3c4v6cojLZraKRPcKwYpf1C3uam6+mxTWerDxOW+OaSuTqGGacjKW5N4bEBGLBvw/L/igZTuLVpEEIi5+YpvrS6Hw8oK+uN/qA6tWpo8VFEA3XpTG8XWHo/W0ncKXZLRY/rX0dXw+f1eO+Zs+7hfrB38cTFdXGHS/dNcqvuWStjga3ATsovMRBfJgf8ksrpeeR/lqb5xO6qfsf87o0/XdNVpHFW0ZaTw2u1P6xX+fjgadv72E0UaM1tzJaO8x3YJcAi/sHR8s7CI/oEYYAH0+Um/i3YonhfDXmbpW1NHdPe69hxDWVyNXxNpMTWnZ/gtHw4uHxofDycDNqJjZsxrZWlME3ymFxIXj93gFG/UsahMCUYbEWj5VgMJIkuoVvq1cM+orY+8Ee4ueFO97KwA1/X4//9852FJyvNBlkgLYPMr0jOprc7u/jiSqD66uubTSa96Q1mgcZoOWJEQ0GUSHQ1xP/e29/AEDXZ36UHpkt9N+6Uitvdyi7Uoc/f7zHrlsZ723Ox4QPM/H+1uNG++59bwd6PfcT/vv9nbLta7KKMHPNfqzddxojeoQZ3Wptfn23xIei/4IN6PrMjxiwYAMA4PvHbjb6GZ235e93XYM7yM4LAC+P7QOdj/zn/LQtH+epNbm4+X83Y87aXy2WbfLiusO4/e0MvPzDEdl2c69P8/JKrZpN5Ky40KRClFxo8tTFKoxdslM2Pbu5Tr726tdZh4Nn/mhtGR4fil0nzv/fRHtyznpbxJl4Aah1dCXs5K7RQCME2rr78da/3oqsgotSR+L7hkRh1/Hz+PPHWUZl10wbit0FF/DWZuNw82BSFL7Y+7us1cjDTYOX7uqDed8dMio/ILIjfjUxoi1S54WzeuN3LbKjFiWVtUYtlP0663DorN7ovPFhfjhabHz8jlp3XDYR1LuF+KLggnFLybvjB+KuQZ2RkVeK3N//uI3886FzmP55jlH5u/pFYN3BYqPtd/ePwL8PGG83x8NNg+Ov3mF1eaK20NrPUIYZhSgZZga9+LPJdWaUZNjfgYGF2prhrT4PN43Nk9m1l0BfT9nvYKDvtduXbV1dU+dt678FwLVpDiwNPydqa639DOVtJieTkVfaLn+8DG8nOedHCrkSw1t9zhpkABj9DpZdafsgY+687SGnyLHTNSiBMzBf39gB2Mm0NCqDiEhphh2k1YTz5xDAlhmn09KoDCIiJTV1kFYrzp9DAMOM07E0KoOIqDV8Ddb/CvT1xLr0mx1Um9Zrmj/H1CjMpvlz6PrA20xO6PV7+2Pq59mOrgYRtZJhx3ol5zsK8fXAhSu2jUH7y4huGBwdiJyishbXnFIDzp9DTdgy44Qe+cJ4GCYRqY9hbrEUZHw9NCaXJVn/+M0m553a/NfbcHJRGoZEB8DH0w1DogPw6eQbLdanKcA8OeoG1QcZwP7FSsn1sGXGybQ06yoRqV8HL3fZQqNNt3uign3xS/55o5YTS0s+fP3oMNmxzQ3nVnvfGFNau1gpuQ7OM6MQpeaZmblmP77bf1bBmhGRs3nophiM6hWuyO0ew3WwTl+8gruW7DCar6YpLBlOyqd2FVfq8Pjq/RzNpHKt/Qxly4yTCfLxcnQViKiNhfhpcUt8aKvChKUhyfvnj8ZXe4uwq+CP2ZZPXawympCzecgxx9pFQx1FqcVKSd3YMqMQpVpmZq3Zj2/ZMkPk0rb+9VYIIVoVEh78JMvk7ZWkbkHwcHMzCjm5p8tMLokS4OOJ3AWjjbZz/hZqT2yZISJSmb98thfHSv8YNmxrSGgakmyoQQjsOmG8QKipsk3Kq+vwS/55o1YiS/O3fDYl0ap6ErUXjmZyMmMHdnZ0FYiojTUPMoDtk7y1NCTZVluOlsqec/4WUhuGGSczokcYdN7uLRckIpdha0hoaUiyrYL85H31rJm/hciZMMw4oR8fH25yvgkick4ag+duhhusZG1IaBqS7K6Rn8jO0+L/9Y+ULdTI+VtIbRhmnFBHHw/06xwg29avcwAev7W7YypE1M46eCr7p6lvpLxD4ZAYZRdWNBxF0Sjs65DYNbgDXlx3GLe/nYGXfzhiseziCYMwLC5Eti3BjuuKC+mABf8+jNvezMDk5Xsx8o1teH7dESR3CzYKS+4aDYbHh7r8aKGMvFK8s/kYfrHQ14icC0czKUSp0UyA+VEKgFBsKnSi9uamufYh38TDTQNPdw2q6xqNyvpp3VFZ02C0vb0Ynt/cRHT2ctdojH6/48M74LfiSqOynzw4BKN6hxsNkT51sQpjl+w0GmodG+yLnNMVra6PuVFRTR2VnX3Itj3MvaYtDV+n1mvtZyjDjEKUCjMF5ytx25sZitXLcC0Yww8UIjJmOEOvj6ebydBlL093oK5ZVmspLA2PDzUKFQd+L0d5tfHPBPh4on+XAFn5rsG+OHnR9k7DW/96KwDI5m9x5SHbhvPwNAn09cT++cbD10k5rf0M5W0mJ6P0KAXDlhwGGaKWNQ8yABQNMoA8yABosdXHcGj19vzzJoMMcG2o9bThsdj611uxfPKN2PrXW+HtYd+f+qaFGkf2CJNaXywN2VazjLxSs+9D2ZU63nJycgwzTkbpUQpEdP3JKSqThRAfL/tGSB49q5c9b4sh287SPyX393KL+3OKytqnImQXTprnZLqF+il+f56Iri+R/j6y5yN7hmO/jf1oAOBY6WXZc2uGbFvbf8bZ+qcM7BJgcf/gaGU7jZOy2DLjZArOVzLIEFGrhHTUyoZa/7/+new6zrDu8tFSSg7ZNgwywLXbOXct2WF9BRU0okeY2SkwXHHFcVfDlhkno3SfGSK6/ry/9Tj2nvzjtsjw+FD076zDgTN6Cz8l5+GmwX1DomTbmua3MTXaclhciNWtMtb0T3FEeFiXfrPZFcfJubFlxsl8nHHC0VUgIge50WCemOHxodB52/ad08NNIwsywLUOw+ZGM/WL1MHDYJY/DzcN1qUPM1ne1Pw2w+JCsHjCIKvr2Bb9U5q3RNkrKtgX++ePxsopiZj1X/FYOSUR++eP5rBsFWDLjJM5cNb2+9pE5Bpeu28AAPlQ6E2HizFtZbbVx6g3M2TR1IrZAHDwrB43dg2UBaCbuoegc6DpD3B/X098NiURhReqZPW0hZL9U9piqPgt8aG8raQybJlxMl7ufEuIrlemhkLPWJXT5ufNPiVvCbFmqLVhPW2hZP8UVx0qTrbhJ6eTMWzuJaLrx/oD52TP12QVmW1pUZLhKawZat3a2zrr0m82uQadLf1TuLo3NeFtJidTXeu4KdyJyLEOnimXPc8svNim53MDYGk6QFNDre29rZORV4rc38sxODoQt8SHSv1Tfsk/j5yiMmm7LZQcKk7qxjDjZHy9PKB34Jo0ROQ4oX5a2Yd+XIifosf30AD1zRoxBscEYt8p851tTQ21fnRVDnadkIes7fnnMWNVNr6YNtSofEvzybSmfwpX96YmDDNOpm8XfxQfLXV0NYjIAXYXXMIvx/8ICn5a+2buNUfr6YZNTwyXddw1t7CtqaHWBecrjYJMk10nLqLwgnFLiKX5ZFq73pFSQ8VJ/dhnxsm01MufiFxXnUHnFaVXDu8VoYPh2sItDbVu3jdmTwu3vfYUyPe3x3pHSgwVJ/Vjy4yTWbGr0NFVICInY7javQaAPd2CK2rqcNubGdLzpr4un01JxPZj57H/9B99V8qv1OLBT7JkfWPiwyy3dBjWyZr5ZFo7BFqJoeKkfgwzTqacSxkQkYGoIF+cajbpXWhHLUov19h8nPwS+eie7fnncc/7O9El0NeoQ299YyP2FFySlT9Ranl00NBuwbLn7bneUWwIQ8z1jGHGycQE+eKEmZk6iej6dMrgb4I9QcacggtVKLhgHHJMsTTyqX8XnVGYaJpPxtStJq53REpinxknM4ArsxKRCh02s+7T0j8PNrl92cQEANf61byz+Zgi/Wfo+sWWGSez8fC5lgsRETmZBgGs3XfaaHHKGV+YnsF46sq98HBzMztkm8gWDDNOpqrWUkMuEZHz2nniAsI6aqV5chobhdnRTJevNgCQj9ZSasg2XX8YZoiISBE/Hy7Bd/vPSs+9PW3vydA0ZFup/jQF5ytx6tIVk6OcLO0jdb0+DDNERKSIKwbLsVyts6+lWYkh25aWXRAQiq+07UraYiXytsYOwERE5FSUGLI94/Mco1FZ2/PP45HPs/HoKtP7ZqzKbvV5XYEaXx+2zBARUZvy9nDD1fo/WmkCfT3R0Cigv1pvVNbeIdvN17TqHOCDzALTsxWb2w6YX5LhemLPkhXOgGHGyXgAMP71JiJSr48mDQEA2erYpy9ewV1LdpgczWQLUwtZ+nrZv6bVnoKLNn9YG64IrmbWLFnBMEMtYpAhIldzS3woCs5Xor5RoEvgtWHX5dW1uGzQMnP5aj0uX70WStZkFSGz8CKGdQ8xGu7d3F3v7URFtXzElGHfHVvYskxESyuCq5PG4l57ltFoDwwzRETUpu589xccPPvHpHrD40OxI/+80YzC9Y0CdyzeAQ83Der/bzGq7/afxbxvDmJd+jD07uwvK5+RV2oUZFpraLdgq1ta2nJF8Lbw3uZ87DxxAbfEh+LRkXEmyyTFBlk8huGSFc6CYYaIiNpU8yADmF8uoUm9werh9Y0Cd763AycWpsm2b82zb9bg5G7BJvvODOzij3vft66lxZoVwdv6lpO1Q6d3HT+PP3+cJT3PLLiE1zbmYc20oUjqLg8n3UL9zL4+yd2CnfIWE8DRTEREpAJNMwwXnK/E1rxSFF6oQlAH+4YJh+tM/9xv5ypMtrTc8e4vRmWtWRFcqaUaml8zAGlF89vezMDk5Xsx8o1tePCTLFSYCVfNg0xz4z/abXL7svsTMNwgiA2PD8Wy+xNacRVtiy0zRESkCgvXH8WlZh/YQ2LsG8L9XW6xye1XzXS1uVxTb9TS0tKK4B9mFKCqWd+d5i081t7GMjffy9W6BmSdlK9o3jR0+otpQ2Xb39ucb7Ge7289bnTLqby6FgfPlMu2HTxTDn11ndPOM8MwQ0REqnDJoOVh36mydjv3sm0nZMFjRI8wi+Wrao2Xarhj8Xab1qOa8XmO0e0eS7foTA2d3nnigsV6/pJ/Ho2NQtaXpqW+QM44eothhoiIqAVFl67gqTW52HPyIpK7hSAmyPbRSi2tR9V8BFdCTKDFOXHMMRw63StCh8yCS2bLZxZckvY39aUxp+xKHfrM32C2xcmRGGYMLFmyBK+//jqKi4sxYMAALF68GImJiY6uFhEROdDpsmqcLjsDAFib/buixy67Uoduz/woje76bv9ZuFkeIW2W4dDp02VXWlM1I6ZanJxh9BY7ADezZs0azJ49GwsWLEBOTg4GDBiA1NRUlJaWOrpqRETkwgyHqTfaOaGL4dDpE+cr7TuQDZpGbzkSw0wz//jHPzBt2jRMnjwZvXv3xrJly+Dr64t//vOfjq4aERFRi343aImpq7dvsU9b5RS1X/8lUxhm/k9tbS2ys7ORkpIibXNzc0NKSgoyMzONytfU1ECv18seREREjmQYKi7XtM+88r9fqm6X85jDMPN/Lly4gIaGBoSHh8u2h4eHo7jYeBjfwoUL4e/vLz2iosxPt01ERNQeDFcc7xbs1y7nNWwRam8MM3aaN28eKioqpMfp06cdXSUiIrJCXKhzzmLbWqZWHH9j/IB2Obejh2gzzPyfkJAQuLu7o6SkRLa9pKQEERERRuW1Wi10Op3soYSTi9JaLkRERHb714xhJme4tdU9AzspVSWbaD00CDSYvM7ciuPdQv0QH9b2rTPm1npqLwwz/8fLywsJCQnYvHmztK2xsRGbN29GcnKyA2tGROT8OnU0PTPstJu7mtye1jfc5PYhUaa/GA7s3NHs8U19sK+ZNtTk9l/mjIS/ryc+m5KIrX+9Fcsn34itf70Vn01JxPrHb4aHwZhoDzcN1j9+M04uSsN9CV3QJdAb9yV0wclFaXjrT4NxclEabokLRkdvd9wSF4yTi9Lwy5yRJs+9/vGbTYaoNdOGmjzvJw8OMXmc/8y6Ffvnj8bKKYmY9V/xWDklEfvnjzY718vXj9xk8ryL7ulrsvz8tF4mz/vu+IEmy68xmHXYETRCCGdd0bvdrVmzBpMmTcIHH3yAxMREvP322/jqq6/w22+/GfWlMaTX6+Hv74+KigrFWmm6PvOj9P/NW2wctd0Z68Ttrr3dGevE7dfEPvMjBAANgMJm29/felya+r/5t/VHVu7D3lOXcGNMEJY9METa/sDHu5H7ezkGdgnAyql/fCiO+N8tOF1ejagAH2Q8fZu0/b/f34nD5/To00mHrx8dJm3/Jf88corKjGalNbfdkrX7TmPniQsY1j0E9w2xvz+kuXMXXqjCyYtVRgtEmjuvPddgirnzzln7KzILLiC5Wwhev++P21LmzmvuPW6N1n6GMswYeO+996RJ8wYOHIh3330XSUlJLf5cW4QZIiKi6wHDjJNgmCEiIrJPaz9D2WeGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVM3D0RVwFU2Lj+v1egfXhIiISF2aPjubPkttxTCjkMuXLwMAoqKiHFwTIiIidbp8+TL8/f1t/jmNsDcGkUxjYyPOnj2Ljh07QqPROLo6Mnq9HlFRUTh9+jR0Op2jq9Murrdrvt6uF7j+rpnX6/qut2tufr0dO3bE5cuXERkZCTc323vAsGVGIW5ubujSpYujq2GRTqe7Ln5Bmrvervl6u17g+rtmXq/ru96uuel67WmRacIOwERERKRqDDNERESkagwz1wGtVosFCxZAq9U6uirt5nq75uvteoHr75p5va7vertmJa+XHYCJiIhI1dgyQ0RERKrGMENERESqxjBDREREqsYwQ0RERKrGMONCFi5ciBtvvBEdO3ZEWFgYxo4di7y8PFmZq1evIj09HcHBwfDz88O4ceNQUlLioBq3ztKlS9G/f39pwqXk5GT89NNP0n5XulZTFi1aBI1Gg5kzZ0rbXO2an3/+eWg0GtmjZ8+e0n5Xu14AOHPmDO6//34EBwfDx8cH/fr1w759+6T9QgjMnz8fnTp1go+PD1JSUpCfn+/AGrdO165djd5jjUaD9PR0AK73Hjc0NOC5555DbGwsfHx80L17d7z00kuyNYlc7T2+fPkyZs6ciZiYGPj4+OCmm27C3r17pf2KXK8gl5GamiqWL18uDh06JHJzc8Udd9whoqOjRWVlpVTmkUceEVFRUWLz5s1i3759YujQoeKmm25yYK3tt27dOvHjjz+KY8eOiby8PPG3v/1NeHp6ikOHDgkhXOtaDWVlZYmuXbuK/v37iyeffFLa7mrXvGDBAtGnTx9x7tw56XH+/Hlpv6td76VLl0RMTIx46KGHxJ49e0RBQYHYuHGjOH78uFRm0aJFwt/fX3z33Xfi119/FXfddZeIjY0V1dXVDqy5/UpLS2Xv76ZNmwQAsXXrViGE673Hr7zyiggODhY//PCDKCwsFGvXrhV+fn7inXfekcq42nv8P//zP6J3794iIyND5OfniwULFgidTid+//13IYQy18sw48JKS0sFAJGRkSGEEKK8vFx4enqKtWvXSmWOHj0qAIjMzExHVVNRgYGB4uOPP3bpa718+bKIj48XmzZtEiNGjJDCjCte84IFC8SAAQNM7nPF63366afFzTffbHZ/Y2OjiIiIEK+//rq0rby8XGi1WrF69er2qGKbe/LJJ0X37t1FY2OjS77HaWlp4uGHH5Ztu/fee8XEiROFEK73Hl+5ckW4u7uLH374QbZ98ODB4u9//7ti18vbTC6soqICABAUFAQAyM7ORl1dHVJSUqQyPXv2RHR0NDIzMx1SR6U0NDTgyy+/RFVVFZKTk136WtPT05GWlia7NsB139/8/HxERkaiW7dumDhxIoqKigC45vWuW7cOQ4YMwX333YewsDAMGjQIH330kbS/sLAQxcXFsmv29/dHUlKSaq+5udraWnz++ed4+OGHodFoXPI9vummm7B582YcO3YMAPDrr79ix44dGDNmDADXe4/r6+vR0NAAb29v2XYfHx/s2LFDsevlQpMuqrGxETNnzsSwYcPQt29fAEBxcTG8vLwQEBAgKxseHo7i4mIH1LL1Dh48iOTkZFy9ehV+fn749ttv0bt3b+Tm5rrctQLAl19+iZycHNn95iau+P4mJSVhxYoV6NGjB86dO4cXXngBt9xyCw4dOuSS11tQUIClS5di9uzZ+Nvf/oa9e/fiiSeegJeXFyZNmiRdV3h4uOzn1HzNzX333XcoLy/HQw89BMA1/00/88wz0Ov16NmzJ9zd3dHQ0IBXXnkFEydOBACXe487duyI5ORkvPTSS+jVqxfCw8OxevVqZGZmIi4uTrHrZZhxUenp6Th06BB27Njh6Kq0qR49eiA3NxcVFRX4+uuvMWnSJGRkZDi6Wm3i9OnTePLJJ7Fp0yajbzmuqunbKgD0798fSUlJiImJwVdffQUfHx8H1qxtNDY2YsiQIXj11VcBAIMGDcKhQ4ewbNkyTJo0ycG1a3uffPIJxowZg8jISEdXpc189dVXWLVqFb744gv06dMHubm5mDlzJiIjI132PV65ciUefvhhdO7cGe7u7hg8eDAmTJiA7Oxsxc7B20wu6LHHHsMPP/yArVu3okuXLtL2iIgI1NbWory8XFa+pKQEERER7VxLZXh5eSEuLg4JCQlYuHAhBgwYgHfeecclrzU7OxulpaUYPHgwPDw84OHhgYyMDLz77rvw8PBAeHi4y12zoYCAANxwww04fvy4S77HnTp1Qu/evWXbevXqJd1aa7ouw9E8ar7mJqdOncJ//vMfTJ06Vdrmiu/xnDlz8Mwzz+BPf/oT+vXrhwceeACzZs3CwoULAbjme9y9e3dkZGSgsrISp0+fRlZWFurq6tCtWzfFrpdhxoUIIfDYY4/h22+/xZYtWxAbGyvbn5CQAE9PT2zevFnalpeXh6KiIiQnJ7d3ddtEY2MjampqXPJaR40ahYMHDyI3N1d6DBkyBBMnTpT+39Wu2VBlZSVOnDiBTp06ueR7PGzYMKPpFI4dO4aYmBgAQGxsLCIiImTXrNfrsWfPHtVec5Ply5cjLCwMaWlp0jZXfI+vXLkCNzf5R6+7uzsaGxsBuPZ73KFDB3Tq1AllZWXYuHEj7r77buWuV6key+R4M2bMEP7+/mLbtm2yoY5XrlyRyjzyyCMiOjpabNmyRezbt08kJyeL5ORkB9bafs8884zIyMgQhYWF4sCBA+KZZ54RGo1G/Pzzz0II17pWc5qPZhLC9a75qaeeEtu2bROFhYVi586dIiUlRYSEhIjS0lIhhOtdb1ZWlvDw8BCvvPKKyM/PF6tWrRK+vr7i888/l8osWrRIBAQEiH//+9/iwIED4u6771b1sF0hhGhoaBDR0dHi6aefNtrnau/xpEmTROfOnaWh2d98840ICQkRc+fOlcq42nu8YcMG8dNPP4mCggLx888/iwEDBoikpCRRW1srhFDmehlmXAgAk4/ly5dLZaqrq8Wjjz4qAgMDha+vr7jnnnvEuXPnHFfpVnj44YdFTEyM8PLyEqGhoWLUqFFSkBHCta7VHMMw42rXPH78eNGpUyfh5eUlOnfuLMaPHy+bc8XVrlcIIb7//nvRt29fodVqRc+ePcWHH34o29/Y2Ciee+45ER4eLrRarRg1apTIy8tzUG2VsXHjRgHA5HW42nus1+vFk08+KaKjo4W3t7fo1q2b+Pvf/y5qamqkMq72Hq9Zs0Z069ZNeHl5iYiICJGeni7Ky8ul/Upcr0aIZtMOEhEREakM+8wQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBCR1YqLi/H444+jW7du0Gq1iIqKwp133ilbV8VeJ0+ehEajQW5ubusr6gR69uwJrVaL4uJiR1eFyOUxzBCRVU6ePImEhARs2bIFr7/+Og4ePIgNGzZg5MiRSE9Pd3T12kVdXZ1V5Xbs2IHq6mr893//Nz799NM2rhURMcwQkVUeffRRaDQaZGVlYdy4cbjhhhvQp08fzJ49G7t37zbZslJeXg6NRoNt27YBAMrKyjBx4kSEhobCx8cH8fHxWL58OQBIq7wPGjQIGo0Gt956K4BrK6G/+OKL6NKlC7RaLQYOHIgNGzZI52g671dffYVbbrkFPj4+uPHGG3Hs2DHs3bsXQ4YMgZ+fH8aMGYPz58/Lrunjjz9Gr1694O3tjZ49e+L99983Ou6aNWswYsQIeHt7Y9WqVVa9Vp988gn+/Oc/44EHHsA///lPo/3nzp1DWloafHx8EBsbiy+++AJdu3bF22+/LXvtpk6ditDQUOh0Otx222349ddfrTo/0XVH2eWkiMgVXbx4UWg0GvHqq6+aLVNYWCgAiP3790vbysrKBACxdetWIYQQ6enpYuDAgWLv3r2isLBQbNq0Saxbt04IcW3FaADiP//5jzh37py4ePGiEEKIf/zjH0Kn04nVq1eL3377TcydO1d4enqKY8eOyc7bs2dPsWHDBnHkyBExdOhQkZCQIG699VaxY8cOkZOTI+Li4sQjjzwi1e3zzz8XnTp1Ev/6179EQUGB+Ne//iWCgoLEihUrZMft2rWrVObs2bMtvlZ6vV506NBBHDp0SNTX14vw8HCxfft2WZmUlBQxcOBAsXv3bpGdnS1GjBghfHx8xFtvvSUrc+edd4q9e/eKY8eOiaeeekoEBwdLrwsR/YFhhohatGfPHgFAfPPNN2bLWBNm7rzzTjF58mSrf14IISIjI8Urr7wi23bjjTeKRx99VPZzH3/8sbR/9erVAoDYvHmztG3hwoWiR48e0vPu3buLL774Qnbcl156SSQnJ8uO+/bbb5u9ZlM+/PBDMXDgQOn5k08+KSZNmiQ9P3r0qAAg9u7dK23Lz88XAKQw88svvwidTieuXr0qO3b37t3FBx98YFN9iK4HHo5oDSIidRFCKHKcGTNmYNy4ccjJycHo0aMxduxY3HTTTWbL6/V6nD17FsOGDZNtHzZsmNEtl/79+0v/Hx4eDgDo16+fbFtpaSkAoKqqCidOnMCUKVMwbdo0qUx9fT38/f1lxx0yZIhN1/jPf/4T999/v/T8/vvvx4gRI7B48WJ07NgReXl58PDwwODBg6UycXFxCAwMlJ7/+uuvqKysRHBwsOzY1dXVOHHihE31IboeMMwQUYvi4+Oh0Wjw22+/mS3j5natC17z4GPYYXbMmDE4deoU1q9fj02bNmHUqFFIT0/HG2+80eo6enp6Sv+v0WhMbmtsbAQAVFZWAgA++ugjJCUlyY7j7u4ue96hQwer63DkyBHs3r0bWVlZePrpp6XtDQ0N+PLLL2XByZLKykp06tRJ6mvUXEBAgNX1IbpesAMwEbUoKCgIqampWLJkCaqqqoz2l5eXIzQ0FMC1zq1NTA2zDg0NxaRJk/D555/j7bffxocffggA8PLyAnDtg7+JTqdDZGQkdu7cKTvGzp070bt3b7uvJzw8HJGRkSgoKEBcXJzs0dQR2R6ffPIJhg8fjl9//RW5ubnSY/bs2fjkk08AAD169EB9fT32798v/dzx48dRVlYmPR88eDCKi4vh4eFhVL+QkBC760fkqtgyQ0RWWbJkCYYNG4bExES8+OKL6N+/P+rr67Fp0yYsXboUR48exdChQ7Fo0SLExsaitLQUzz77rOwY8+fPR0JCAvr06YOamhr88MMP6NWrFwAgLCwMPj4+2LBhA7p06QJvb2/4+/tjzpw5WLBgAbp3746BAwdi+fLlyM3NtXpkkTkvvPACnnjiCfj7++P2229HTU0N9u3bh7KyMsyePdvm49XV1WHlypV48cUX0bdvX9m+qVOn4h//+AcOHz6MPn36ICUlBdOnT8fSpUvh6emJp556Cj4+PlKLUkpKCpKTkzF27Fi89tpruOGGG3D27Fn8+OOPuOeee2y+9UXk8hzdaYeI1OPs2bMiPT1dxMTECC8vL9G5c2dx1113SR18jxw5IpKTk4WPj48YOHCg+Pnnn2UdgF966SXRq1cv4ePjI4KCgsTdd98tCgoKpON/9NFHIioqSri5uYkRI0YIIYRoaGgQzz//vOjcubPw9PQUAwYMED/99JP0M6Y6Dm/dulUAEGVlZdK25cuXC39/f9n1rFq1SgwcOFB4eXmJwMBAMXz4cKmTs7kOyeZ8/fXXws3NTRQXF5vc36tXLzFr1izpdRwzZozQarUiJiZGfPHFFyIsLEwsW7ZMKq/X68Xjjz8uIiMjhaenp4iKihITJ04URUVFVtWH6HqiEUKhnn1ERGSX33//HVFRUfjPf/6DUaNGObo6RKrDMENE1M62bNmCyspK9OvXD+fOncPcuXNx5swZHDt2TNZpmYisww7ARERWGjNmDPz8/Ew+Xn31VauPU1dXh7/97W/o06cP7rnnHoSGhmLbtm0MMkR2YssMEZGVzpw5g+rqapP7goKCEBQU1M41IiKAYYaIiIhUjreZiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjV/j/CCUz+wgNDcwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } ], - "text/plain": [ - " Day Year Customer_Age Order_Quantity Unit_Cost \\\n", - "Day 1.000000 -0.007635 -0.014296 -0.002412 0.003133 \n", - "Year -0.007635 1.000000 0.040994 0.123169 -0.217575 \n", - "Customer_Age -0.014296 0.040994 1.000000 0.026887 -0.021374 \n", - "Order_Quantity -0.002412 0.123169 0.026887 1.000000 -0.515835 \n", - "Unit_Cost 0.003133 -0.217575 -0.021374 -0.515835 1.000000 \n", - "Unit_Price 0.003207 -0.213673 -0.020262 -0.515925 0.997894 \n", - "Profit 0.004623 -0.181525 0.004319 -0.238863 0.741020 \n", - "Cost 0.003329 -0.215604 -0.016013 -0.340382 0.829869 \n", - "Revenue 0.003853 -0.208673 -0.009326 -0.312895 0.817865 \n", - "\n", - " Unit_Price Profit Cost Revenue \n", - "Day 0.003207 0.004623 0.003329 0.003853 \n", - "Year -0.213673 -0.181525 -0.215604 -0.208673 \n", - "Customer_Age -0.020262 0.004319 -0.016013 -0.009326 \n", - "Order_Quantity -0.515925 -0.238863 -0.340382 -0.312895 \n", - "Unit_Cost 0.997894 0.741020 0.829869 0.817865 \n", - "Unit_Price 1.000000 0.749870 0.826301 0.818522 \n", - "Profit 0.749870 1.000000 0.902233 0.956572 \n", - "Cost 0.826301 0.902233 1.000000 0.988758 \n", - "Revenue 0.818522 0.956572 0.988758 1.000000 " + "source": [ + "sales.plot(kind='scatter', x='Customer_Age', y='Revenue', figsize=(6,6))" ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "corr = sales.corr()\n", - "\n", - "corr" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAIjCAYAAAA6HaCyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZhlVXn+/e/d3QjIpAgoIoIaUFGhlcYBh6BRY94kClFEVNBoRBNnoz8ENU5xNkGBJNqKIGoUiRKHGEcExQkaaEZFo2IMTuCANCjQzfP+cXaFolLdXcPpteuc+n6uq646Z52993lWdVfVXWuvvXaqCkmSpJaW9F2AJElafAwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpozgEi6hST36bsGSeMvroQqabIkXwU2B04CPlRVV/dbkaRx5AiIpFuoqocCTwF2Bc5N8q9JHtVzWZLGjCMgkqaVZClwIHAs8FsgwNFV9fFeC5M0FhwBkTaBJLfuu4a5SrJ3kmOAbwOPAP68qu7ZPT6m1+IkjQ0DiDRESfZPcinwne75Pkn+ueeyZus44Dxgn6p6blWdB1BVPwFe2WtlksaGAUQarmOAPwZ+CVBVFwAP67Wi2Tutqj5QVb+baEjyQoCq+kB/ZUkaJwYQaciq6sdTmtb1UsjcHT5N29NbFyFpvC3ruwBpzPw4yf5AJdkMeCGDuRQLXpJDgScDd0nyyUkvbQP8qp+qJI0rA4g0XM8B3gnsAlwBfB54bq8VzdzXgZ8COwD/MKn9GuDCXiqSNLa8DFeSJDXnCIg0REmOnab5amBVVX2idT2zkeSsqnpIkmuAyX+ZBKiq2ran0iSNIUdApCFKshK4B3Bq1/R44IfA7YAfVNWL+qpNkhYSA4g0REm+CTy4qtZ1z5cBXwUeAlxUVXv1Wd9MJPlAVR22sTZJmg8vw5WG67bA1pOebwVs3wWS6/spadbuNflJF6L27akWSWPKOSDScL0VWJ3kDAZzJx4GvDHJVsAX+yxsY5IcBRwNbJnktxPNwA3Ayt4KkzSWPAUjDVmSnYH7d0/P6ZYwHxlJ3lRVR/Vdh6TxZgCRNpEkd2OwsNeTqupeG9t+IUmyC7Abk0ZJq+or/VUkadx4CkYaoiR3BA5hEDzuA7wJeFKvRc1SkjczqPlSbl5GvgADiKShcQREGoIkRwCHMlgB9aPdxyeq6i69FjYHSS4D9q6qUZk0K2kEOQIiDcfxwDeAJ1fVKoAko5rufwBsxuhctSNpBBlApOHYGTgY+Ickd2AwArJZvyXN2XUMruT5EpNCSFW9oL+SJI0bT8FIQ5bkTgzmgRzKYB2Q06rq6H6rmrkkT5uuvare37oWSePLACJtQkn2ZHAVzOu654+qqi/0XJYk9c4AIjWU5Lyqul/fdWxIkj0YXL2zF7DFRHtV3bW3oiSNHZdil9pK3wXMwInAvwBrgYcDJwMf7LUiSWPHACK1NQpDjltW1ZcYjJD+qKpeA/xpzzVJGjNeBSNpquuTLAG+l+R5wBXc8gZ7aihJgKcAd62q1yW5M3CHqjq759KkeXEERBqSJEuS7L+RzS5vUcs8vRC4NfACBnfBPQyY9soYNfHPwIMYXFUFcA3wT/2VIw2Hk1ClIUpyflXdt+86BEkeXFVf21jbQjcxcXny/60kF1TVPn3XJs2Hp2Ck4fpSkscDH68RTfdJvsw0c1Wq6hE9lDMfxwFTrziarm2huzHJUrp/kyQ7Ajf1W5I0fwYQabieDbwEWJfkdwyueqmq2rbfsmblpZMebwE8nsEVMSMhyYOA/YEdk7xk0kvbAkv7qWpejgVOA3ZK8gbgCcAr+y1Jmj8DiDREVbVN3zXMV1WdO6Xpa0lGacLjrRhMml0GTP73+C2DX94jpao+lORc4I8YBNoDq+rbPZclzZtzQKQhmnTFwl2q6vVJdgV2HqUrFpJsP+npEgYTUY+tqrv3VNKcJNmtqn7UPV4CbF1Vv+25rFlL8kDgkqq6pnu+LXDPqvpWv5VpVCXZDdijqr6YZEtg2cT/r5a8CkYarokrFp7cPV/D6F2xcO6kj28Afws8s9eK5uZNSbZNshVwMXBpkpf1XdQc/AuD/0cT1nRt0qwleRbwb8C7u6Y7Af/eRy2egpGG6wETVywAVNWvk9yq76Jmo6ru0ncNQ7JXVf02yVOA/wReziBUva3fsmYtkyc0V9VNSfzZrbl6LnB/4FsAVfW9JDv1UYj/iaXhGukrFpLszOAH1F5d0yrg3VX1y/6qmrPNkmwGHAgcX1U3JhnFc84/SPICbh71+BvgBz3Wo9F2fVXdMDhbDF2Y7eX7wlMw0nBNvWLhLOCN/ZY0M0n+EDibQWA6qfvYHDg9yV2SfKC/6ubk3QwWftsK+Ep33nvk5oAAz2FwVc8VwP8ADwCO6LUijbIzkxwNbJnkUcCpwKf6KMRJqNKQJbkHN1+x8KVRuWKhu9Ll2VV1/pT25cBXgNOqaqRXRE2yrKpG5pJiadi6CdnPBB7N4GfU54D39rFukQFEGrIktwV2ZdIpzqo6r7+KZibJpVW113pe+x5w96oapdNJ2wGvBh7WNZ0JvK6qru6vqplL8v+q6q1JjmP6heFe0ENZ0tA4B0QaoiSvB54OfJ+bf2kUMAqriCbJbavq11MatwfWjlL46LyPwdUvT+yeHwacCPxFbxXNzsTI2apeq9BYSfJDpg+0d21diwFEGq4nAnerqhv6LmQOjgE+n+SlwMSIzb7AW7rXRs3dqurxk56/Nsnq3qqZpar6VDeh+T5V9dKN7iDNzIpJj7cADga2X8+2m5QBRBqui4HbAL/ou5DZqqqVSX4CvB64F4O/ki4F/r6qepmkNk+/S/KQqjoLBjeiA37Xc02zUlXrurqloZjmirZ3dCvt/l3rWpwDIg1RkhXAJxgEkesn2qvqsb0VNWRJjqqqN/Vdx8Yk2Qc4Gdiua/o18PSquqC/qmYvyb8AuzC4WuHaifaq+nhvRWlkJZl8M8YlDEZE/rqPuysbQKQhSnIJg8s/L2LS+h9VdWZvRQ3ZxO3h+65jprqlyxnFZdgBkpw4TXNV1TOaF6OR193tesJaBpeqv72qLmteiwFEGp4k51TVfn3XsSklOb+q7tt3HevT3QH36qo6YUr7M4Ftquod/VQ2N0l2qKqr+q5DGjYDiDRESf6RwamXT3LLUzAL/jLcmVroIyDd+ewHVtWNU9pvBayqqr37qWx2kvw5gyt5bmQwmvbEqvp6v1Vp1CXZHHg8sDu3XCrgda1rcRKqNFwTIwMPnNQ2KpfhzlT6LmAjlk0NHwDd8tMLvfbJ3gA8tKq+k+QBwFuBP+y5Jo2+TwBXM7gv0vUb2XaTMoBIQ1RVD++7hvnoLvt8QVVt6LLbU1vVM0dLkty+qn4+uTHJ7fsqaI7WVtV3AKrqW0m26bsgjYU7VdVj+i4CDCDSUI366pvdZZ+HsoF1P6pqod/b5m3AfyT5W265nsnbgLf3VtXs7dTNZ5n2eVX9Yw81afR9Pcl9quqivgtxDog0REk+xuAS3Pd3TYcB+1TVqKy+SZJjgM2AU7jlZZ8jM48lyZ8ALwfuzeAU2CXAm6vqP3stbBaSvHpDr1fVa1vVMl9JHlxVX9tYmza9JJcCfwD8kMEpmDC4qqr53CgDiDRESVZX1fKNtS1kUy7Tm1BVNU7zWEZmPZONGYV+TDdxeaFPZh5X3V2h/4+q+lHrWjwFIw3XOKy+OdLzWGbhYGBB/+KeoQXbjyQPAvYHdpxyOmlbYGk/VS1uVfWjJA8B9qiqE5PsCGzdRy1L+nhTaUKSpUkev/EtR8ZzgH9KcnmSy4HjgWf3W9LsJLl9khOS/Gf3fK9uDY1xM0pXxGzIQu7HrRj8clsGbDPp47fAE3qsa9HqTu0dCRzVNW0GfLCXWjwFo74lObeq9u27jmFIcpeq+uHk1Tcn2vqubaa64HEi8Iqq2ifJMuD8qrpPz6UN1bicAhiFfiTZrY8hfv1f3Q0Z7wucN7GgYJIL+5gD4giIFoLPJ3lRkp2TbDvx0XdRc/QxGASPSUt//1uP9czFDlX1Ubql5KtqLbCu35I2iYU8cjAbC7YfSSZWnT0+ySenfvRa3Cwl+cBM2kbADTUYeSiAJFv1VYhzQLQQPLX7/LeT2gq4cw+1zEmSezC4g+x2SSZf8bItg1tej5Jrk9yOm39APZDBwkUjZQZXXiz09UyAke/Hyd3nUbr8eX3uNflJt2bOKI7cfjTJu4HbJHkW8AzgPX0U4imYMdAt2fwfVXXTRjfWJpHkccCBwGMZLMM+4RrgI6O0hHZ3t8zjGFzCejGwI/CEqrqw18JmaVyuvBjlfiT5UlX9UZK3VNWRfdczF0mOAo4GtgSum2gGbgBWVtVR69t3oUryKODRDPrxuar6Qi91GEBGX5IPAg9iMPz/vonVE0dJN4KwF5NGC6rqX/uraG6SPKiqvtF3HfPVzfu4O4MfUJdNt7T5QjXpyosXccsF1bYFDurjtuNzMQ796Nac+CvgBODJTDldNGJry7xpFMPGVN3VSKdU1RV91+IpmDFQVU/t5kwcCpyUpBhMIvxwVV3Tb3Ubl+SVDNL4PYDPAX8MnAWMXAABDkpyCYNLbz8L7A28uKp6mWU+G1NOHU22ZxKq6uNNC5q7qVdeTBi1Ky/GoR9/B7wKuBMwdeXWUbtH0qeTbFVV1yZ5KnA/4J0jOLl2Gwbz7n7FYLHBU6fetqAVR0DGSHfe/jAGfzF9m8Fqd8dW1XG9FrYRSS4CljOYlb1Pkp2Bk6rqj3subdYmFh1LchDwZ8BLgK+MyF+rJ3YPd2Lwl/fp3fOHA1+vqj/rpbA5GpcrL8ahH0leVVWv77uO+UhyIbAPgz8qTgLey+AOxSN5g8AkewOHMLgz7v9U1SNb1+AIyBhI8ljgLxkEjpOB+1fVL5LcGriUwfn8hex33T1I1nY33PoZMO1qfSNgs+7znzL4y+LqUbkBa1X9JUCSzwN7VdVPu+c7M/iBOxKSvKOqXsTgyov/8xdWVT22h7JmbVz6AVBVr+9+Tk3cI+mMqvp0nzXNwdqqqm6+1/FVdcKIr4/zCwY/a3/J4I+O5gwg4+HxwDFV9ZXJjVV13Yh8g5yf5DbA+4BVDIaYz+63pDn7VJLvMDgF89fdKoO/77mm2dp1Inx0fs4IXZEETFwaOepXXoxLP0jyJuD+wIe6phcm2b+qju6xrNm6ppuQehjw0CRLuPkPjpGR5G+AJzKYXH4q8KyqurSXWjwFo4UkyR8A247S5LSpkmwPXN2N6tyaQX9+1nddM5XkeGAP4MNd0yHAf1XV8/urSqOsO32xfOJKve4S1vP7WPxqrpLcgcFE2nOq6qtJ7gwcUFUnb2TXBaULg6dU1ereazGAjL5unYbjgHsymLi2FLi2qkZmMa8kTwLuVlVvSLIrsFNVndt3XbOV5PDp2kfwh9RB3Dxc/pWqOq3PeuYig/vwvIbB6bxl3HzXz7v2WddsjUM/ugByQFX9qnu+PYPTMCMTQGBwmwJgv+7p2VX1iz7rmatMcy+YPlZrNoCMgSSrgCcxGE5bARwO7Dkql4x1f3FvBjysqu7Z/XD6XFXtt5FdF5wkk+fbbAH8EYPJtSNx1UL3l+kXx+GGdN2psBcD5zJpJdeq+mVvRc3BOPQjyaHAm4EvMwhQDwNeXlWn9FrYLCR5IvA24AwGfXgo8LKqGqmVjjO4F8wK4O5VtWeSOzKYr/bg1rU4B2RMVNV/JVlaVeuAE5Ocz803G1ro9q+q+3U1U1W/SnKrvouai6mnKbq5LR/pqZxZ604b3ZRku6oaudVPp7i6qv6z7yKGYKT7kcEs7LOAB3Lz6MGRo3RasvMKYL+JUY9u5OCLjN6tFg6iuxcMQFX9pJv835wBZDxc1/3CXp3krcBPGa37/NzYTeiaWPr7dnT3IRkD1wIjM1TeWQNclOQLDOoHoKpe0F9Jc/LlJG8DPg5cP9E4gvOLRrof3ZUjn6nBzQxH6v4vUyyZcsrll4zWz9kJN3T/Jt4LRkNxGINvhOcxGKrdlcGVMaPinxis4rpjktcymKH92n5Lmpskn6ILUgz+TfYCPtpfRXPyWQZ/2RWwlsEVPaPoAd3nift1hNFb/ArGox/nJdmvqs7pu5B5+GySz3HLydmf6bGeuZruXjDv7aMQ54CMiW44kKq6su9aZirJZ4C/qarLk9wLeCSDH65frKqL+61udrqrd27PLUP9Wgb9+WlVfb+XwmahW379jQx+IP2IQe13ZrCq7tGjshx7t9Q03LzsdwFXAmf1MdFursalH/C/81j2AC5nMKo2MZF2wU9CnfjerqqvdasFP6R76TfAh0bhe3sq7wWjeevOrb6awcjHEgb/mdYCx1XV6/qsbSaSHAy8AXg/8NZR+QU3nSSfBo6qqoumtN8HeGNV/Xk/lc1ckmMYLNP84okl/Lsl/t8OXNctirXgdZPsptqewRL/r6mqkZiTMy79gMFqrtO1j8IKr+Pwvb0h3envQ6vqQxvdeNjvbQAZXd1fSH8CHDHxF1GSuwL/Any2qo7Z0P4LQZKtGdwr4jEMFl7637kfVTX13hELVpJz1nfVTpKLuvPfC1qS7zG4eqqmtC8FvlNVe/RT2XB0V1d9sUbgLrIbMkr9SLIF8BwGqzRfBJxQVWv7rWp2xuF7G/73j4nnArswmIvzhe75S4ELqupxrWtyDshoOwx4VFVdNdFQVT/I4EZJn+eWd9BcqG5gMCS7OYO/vkd18ultNvDals2qmJ+aGj66xnXTLQU+arqrq0ZjXfwNGLF+vB+4Efgqgz+W9gJe2GtFszcO39sw+APv18A3GNyh+GgGo+YH9rUomQFktG02OXxMqKorkyz4JYKTPIbBHTI/Cdyvqq7ruaT5WJXkWVX1nsmNSf6KwfoNo+DSJIdPXTStC7Tf6ammoUnycAY/gEfaiPVjr4kRgiQnMJq3WBiH722Au076t3gvg6sl71xVvd0qwgAy2m6Y42sLxSuAg6vqkr4LGYIXAacleQo3/1BawWBl2oN6q2p2ngt8PMkzuGUftmR0+jBxd+WpIzbbAz9hsEjfSBiTfvzvvK6qWjs6Aze3MA7f23DLf4t1Sf6nz/ABzgEZaUnWMWmdhskvAVtU1YIfBRk33V+n9+6eXlJVp29o+4UoySOAe3VPL62qL/VZz2xNM+GxgF9W1XTfKwvWOPRjys+oMAiz13HzVTCjdLuIkf7eXoj/FgYQSZLU3Ciu4iZJkkacAWTMJDmi7xrmaxz6AOPRj3HoA9iPhWQc+gDj0Y+++2AAGT8j/03BePQBxqMf49AHsB8LyTj0AcajHwYQSZK0uDgJtaEs26Jyq6036XvU2t+TZVts0ve47y6b9uaJV/52DTtuu4m/Tpv06ANXXb2GHbbbtP3Y1Jc1Xnn1Ney4XS936h6qK69ew46b+N+ihXHoxzj0AcajHy368KOf/5Krrr5m2h9UrgPSUG61Ncvu/ti+y5i3r73xARvfaIGrm0Z1wdVbymZjcqX1kqV9VyBpE3jw36z/xuaegpEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1t6zvAhaCJOuAi4DNgLXAycAxVXVTr4VJkjSmDCADv6uq5QBJdgL+FdgWeHWvVUmSNKY8BTNFVf0COAJ4XgZ2T/LVJOd1H/sDJDk5yYET+yX5UJLH9VW3JEmjxAAyjar6AbAU2An4BfCoqrofcAhwbLfZCcDTAZJsB+wP/MfUYyU5IsmqJKtq7e8bVC9J0sJnANm4zYD3JLkIOBXYC6CqzgT2SLIjcCjwsapaO3XnqlpZVSuqakWWbdGybkmSFizngEwjyV2BdQxGP14N/BzYh0FgmzyMcTLwVOBJwF82LlOSpJFlAJmiG9F4F3B8VVV3euV/quqmJE9jcGpmwknA2cDPqurS9tVKkjSaDCADWyZZzc2X4X4A+MfutX8GPpbkcOCzwLUTO1XVz5N8G/j3xvVKkjTSDCBAVS3dwGvfA/ae1HTkxIMktwb2AD686aqTJGn8OAl1jpI8Evg2cFxVXd13PZIkjRJHQOaoqr4I7NZ3HZIkjSJHQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzS3ru4DF5L67bMXX3viAvsuYt22P/lbfJczbtSsP7LuEochOu/VdwlBc9qpX9F3CvC1ZOh5/z222za37LmEorv/Nmr5LmLdx+D91/a9+s97XRr93kiRp5BhAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0tygCSgbOS/MmktoOTfLbPuiRJWiyW9V1AH6qqkjwHODXJlxl8Hd4IPGY+x02yrKrWDqNGSZLG2aIcAQGoqouBTwFHAn8HnFxV30/ytCRnJ1md5J+TLAFIsjLJqiSXJPm7ieMk+Z8kb05yPnBQL52RJGnELMoRkEleC5wH3ACsSHJvBiFi/6pam2Ql8CTgX4GXV9WvkiwDvpzk36rq0u44v6iq+073BkmOAI4A2HWn7TdxdyRJGg2LOoBU1bVJTgHWVNX1SR4J7AesSgKwJfDjbvNDkzyTwdfsjsBewEQAOWUD77ESWAmw7x671SbpiCRJI2ZRB5DOTd0HQID3VdWrJm+QZA/ghcD9q+o3ST4IbDFpk2ubVCpJ0phYtHNA1uOLwBOT7ACQ5HZJ7gxsC1wD/DbJzsAf91ijJEkjzxGQSarqoiSvBb7YTT69EXgOsIrB6ZbvAD8CvtZflZIkjb5FH0Cq6jVTnv8rg0mnUx22nv3vtAnKkiRprHkKRpIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNLeu7gMWkgLrppr7LmLdrVx7YdwnzttUR/953CUOx5rjH9F3CUNz14PHoxzjIllv1XcJQ1PW/77uEecuS0R8j2PysC9b72uj3TpIkjRwDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpozgEiSpOYMIJIkqTkDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpqbUwBJcockH0ny/STnJvlMkj1neYwDk+w1l/ffFJLskOTGJM/puxZJksbdrANIkgCnAWdU1d2qal/gKOD2szzUgUDTAJJk6QZePhj4JnBoo3IkSVq05jIC8nDgxqp610RDVV0ALE3y6Ym2JMcneXr3+M1JLk1yYZK3J9kfeCzwtiSrk9wtyfIk3+y2OS3Jbbt9z0hyTJJVSb6dZL8kH0/yvSR/P+n9nprk7O54754IG0nWJPmHJBcAD9pAvw4F/hbYJcmdJh33mUm+2x37PUmO79p3TPKxJOd0Hw+e7qBJjuhqX3XV1Wtm+aWWJGk8zSWA3Bs4d6YbJ7kdcBBwr6raG/j7qvo68EngZVW1vKq+D5wMHNltcxHw6kmHuaGqVgDvAj4BPLer4+lJbpfknsAhwIOrajmwDnhKt+9WwLeqap+qOms9Ne4K7FxVZwMf7Y5FkjsCrwIeCDwYuMek3d4JHFNV+wGPB9473bGramVVraiqFTtst/VMv2ySJI21ZQ3e42rg98AJ3QjJp6dukGQ74DZVdWbX9H7g1EmbfLL7fBFwSVX9tNvvB8CuwEOAfYFzBmeI2BL4RbfPOuBjG6nxEAbBA+AjwPuAfwDuD5xZVb/q3u9UYGKuyyOBvbr3A9g2ydZV5TCHJEkbMZcAcgnwhGna13LLEZUtAKpqbZL7A3/U7fc84BGzfM/ru883TXo88XwZEOD9VXXUNPv+vqrWbeT4hwJ3SDIxanLHJHtsZJ8lwAOr6vcb2U6SJE0xl1MwpwObJzlioiHJ3gxCwF5JNk9yGwaBgyRbA9tV1WeAFwP7dLtdA2wDUFVXA79O8tDutcOAidGQmfgS8IQkO3XvuX2S3WayY3f1ztZVtUtV7V5VuwNvYhBKzgH+MMltkyxjcKplwueB5086zvJZ1CtJ0qI26wBSVcVgTscju8twL2HwC/tnDE5jXNx9Pr/bZRvg00kuBM4CXtK1fwR4WZLzk9wNeBqDSakXAsuB182ipkuBVwKf7/b/ArDzDHc/lMFVPZN9DDi0qq4A3gicDXwNuJzBKSWAFwArukmzlwJevitJ0gxlkCe0PhPzOroRkNOA91XV1MAyI/fbY7f62jtePtwCe7Bsp136LmHetjri3/suYSjWHPeYvksYinW//sXGN1IT2XKrvksYirp+9M+OZ8norxX64Be8kXO/96NM99ro927Te02S1QxGdn4IjMdvLkmSetTiKpgFI8lpwF2mNB9ZVZ9b3z5V9dJNW5UkSYvPogogVXVQ3zVIkiRPwUiSpB4YQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnPL+i5gMUlCNtus7zLmLTvt1ncJ87bmuMf0XcJQbP38z/ZdwlA8Y/XpfZegzrMPunvfJQzFz1b/vO8S5m2L7Tbvu4R5W3PFVet9zREQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBo+mVcMAABRiSURBVBBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNTejAJLkTkk+keR7Sb6f5J1JbjWD/U5K8oT5lwlJjkjyne5jVZIDhnHcad7n6CnPv9593j3JkzfFe0qStNhsNIAkCfBx4N+rag9gT2Br4A1Ttls232LWd4wkfwY8G3hIVd0DOAL4YJJd5vue07hFAKmq/buHuwMGEEmShmAmIyCPAH5fVScCVNU64MXAM5L8TZJPJjkd+FIGjk9yWZIvAjtNHCTJvknOTHJuks8l2blrPyPJO5KsAl64nhqOBF5WVVd1NZwHnAg8tzvG5Ul26B6vSHJG9/j+Sb6R5PwkX09y96796Uk+nuSz3ajOW7v2NwNbJlmd5ENd25quhjcDD+1ee3GSryRZPql/ZyXZZwZfT0mSFr2ZjFrcCzh3ckNV/TbJf3f73w/Yu6p+leQvgLsDewG3By4F3pdkM+A44HFVdWWSQxiMoDyjO+StqmrFbGoAVgF/uZHavwM8tKrWJnkk8Ebg8d1ry4H7AtcDlyU5rqpenuR5VbV8mmO9HHhpVf0ZQJJfAU8HXpRkT2CLqrpg6k5JjmAwYsOuO22/kXIlSVoc5n3aBPhCVf2qe/ww4MPdKMlPupERGISSewNfGJzRYSnw00nHOGUIdUxnO+D9SfYACths0mtfqqqrAZJcCuwG/HgWxz4VeFWSlzEIUidNt1FVrQRWAuy75+412w5IkjSOZhJALgVuMZE0ybbAnYG1wLUzOEaAS6rqQet5fWPHuBTYFzh9Utu+DEZB6OqYOJ20xaRtXg98uaoOSrI7cMak166f9HgdswxjVXVdki8AjwOe2NUjSZJmYCZzQL4E3DrJ4QBJlgL/wOAv/uumbPsV4JAkS7s5Hg/v2i8DdkzyoO4YmyW51yzqfCvwliS36/ZfDhwEvLt7/XJuDgCPn7TfdsAV3eOnz/C9buxOGU11DbDNlLb3AscC51TVr2d4fEmSFr2NBpCqKga/7A9O8j3gu8DvmXK1SOc04HsMRixOBr7RHeMGBqMob0lyAbAa2H+a/ddXwyeBE4CvJfkv4CzgwKq6stvktcA7u4ms6ybt+lbgTUnOZ+YjHCuBCycmoU5yIbAuyQVJXtzVdS7wWwYTYiVJ0gxlkC9GR3ep7okMwtNTq8cOJLkjg9M696iqmza2/b577l5fO/6Vm7yuTW3Z3ffru4R5u+nHl/VdwlBs/fzP9l3CUDxj9ekb30hNPPugu/ddwlD8bPXP+y5h3rbYbvO+S5i351x2MZddd22me20Yk1Cbqqq1wGF919GdknoD8JKZhA9JknSzBRVAkrwCOHhK86lV9Ybptu9TVZ3M4DSTJEmapQUVQLqgseDChiRJGi5vRidJkpozgEiSpOYMIJIkqTkDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpozgEiSpOYMIJIkqbllfRew6CxZ2ncF83bZq17RdwnzdteDH9N3CUPxjNWn913CULxv+SP6LkGdC/Z9ct8lDMVVO1/TdwnztnTp6I8R/Ognf7ve10a/d5IkaeQYQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzCzKAJNk9ycVT2l6T5KUb2GdFkmO7xwck2X8G73N4kouTXJTk/A0dfwPHmNF7SZKkmy3ru4BhqapVwKru6QHAGuDr69s+yZ8ALwIeXVU/SbI5cPgc3nqj7yVJkm5pQY6AbEiSM5K8JcnZSb6b5KFd+wFJPp1kd+A5wIuTrJ54fRpHAS+tqp8AVNX1VfWe7ljLk3wzyYVJTkty2679BUku7do/MpP3SnJEklVJVl159ZrhfjEkSRpRozoCsqyq7p/k/wNeDTxy4oWqujzJu4A1VfX2DRzj3sC563ntZOD5VXVmktd17/Ei4OXAXarq+iS3qarfbOy9qmolsBJg3z13r1n2U5KksbRQR0DW94t6ov3j3edzgd2H+cZJtgNuU1Vndk3vBx7WPb4Q+FCSpwJrh/m+kiQtJgs1gPwSuO2Utu2Bq7rH13ef1zH3UZxLgH1nuc+fAv8E3A84J8mojiBJktSrBRlAqmoN8NMkjwBIsj3wGOCsGR7iGmCbjWzzJuBtSe7QvcetkvxVVV0N/HrSfI7DgDOTLAF2raovA0cC2wFbz/C9JEnSJAsygHQOB16VZDVwOvDaqvr+DPf9FHDQhiahVtVngOOBLya5BDgP2LZ7+WkMwsmFwHLgdcBS4INJLgLOB46tqt/M5L0kSdItLdhTCFV1KfDwadoPmPT4Kro5IFV1BnBG9/i7wN4zeI8TgROnaV8NPHCaXR4yzbYzei9JknSzhTwCIkmSxtSCHQEZliSvAA6e0nxqVb2hj3okSdIiCCBd0DBsSJK0gHgKRpIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzS3ruwCNniVLza3SuKqqvksYiixJ3yVoI/xNIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpozgEiSpOYMIJIkqTkDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpozgEiSpOYMIJIkqbkFFUCS7J7k4iltr0ny0g3ssyLJsd3jA5Lsv5H3eE2SK5KsTnJxkseuZ7vHJnn5XPohSZI2bFnfBcxXVa0CVnVPDwDWAF/fyG7HVNXbk9wT+GqSnarqpokXkyyrqk8Cn9wUNUuStNgtqBGQDUlyRpK3JDk7yXeTPLRrPyDJp5PsDjwHeHE3uvHQjR2zqr4NrAV2SHJSkncl+Rbw1iRPT3J89x63T3Jakgu6j/279qd29axO8u4kS6ep+4gkq5KsuvLqNUP7ekiSNMpGJoB0llXV/YEXAa+e/EJVXQ68i8HoxvKq+urGDpbkAcBNwJVd052A/avqJVM2PRY4s6r2Ae4HXNKNnhwCPLiqlgPrgKdMfY+qWllVK6pqxY7bbT2LrkqSNL4W2imY2kj7x7vP5wK7z+N9XpzkqcA1wCFVVUkATq2qddNs/wjgcIDu9auTHAbsC5zT7bsl8It51CRJ0qKx0ALIL4HbTmnbHvhh9/j67vM65lf7MVX19mnar53FMQK8v6qOmkcdkiQtSgvqFExVrQF+muQRAEm2Bx4DnDXDQ1wDbLMJSvsS8NddTUuTbNe1PSHJThO1JtltE7y3JEljZ0EFkM7hwKuSrAZOB15bVd+f4b6fAg6a6STUWXgh8PAkFzE4/bNXVV0KvBL4fJILgS8AOw/xPSVJGlsL7RQM3S/2h0/TfsCkx1fRzQGpqjOAM7rH3wX23sjxX7Oe9qdPeX4ScFL3+OfA46bZ5xTglA29nyRJ+r8W4giIJEkacwtuBGRYkrwCOHhK86lV9YY+6pEkSTcb2wDSBQ3DhiRJC5CnYCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1NyyvgvQ6Nlsm1v3XcK8Zcut+i5hKJ590N37LmEoLtj3yX2XMG9V1XcJQ3Hexz7cdwlDcdu77NN3CfN23S+v6LuEebvxujXrfc0REEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktTcogkgSdYlWZ3k4iSnJrn1LPc/OMm3k3w5yYokx3btByTZf9NULUnSeFo0AQT4XVUtr6p7AzcAz5n8YgY29PV4JvCsqnp4Va2qqhd07QcABhBJkmZhMQWQyb4K/EGS3ZNcluRk4GJg1ySHJrmoGyl5C0CSvwMeApyQ5G3dqMenk+zOIMi8uBtdeWhP/ZEkaaQs67uA1pIsA/4E+GzXtAfwtKr6ZpI7Am8B9gV+DXw+yYFV9bokjwBeWlWrkhwAUFWXJ3kXsKaq3r6e9zsCOAJg151utym7JknSyFhMIyBbJlkNrAL+Gziha/9RVX2ze7wfcEZVXVlVa4EPAQ+bz5tW1cqqWlFVK3bcbuv5HEqSpLGxmEZAfldVyyc3JAG4tp9yJElavBbTCMhMnA38YZIdkiwFDgXO3Mg+1wDbbPLKJEkaIwaQSarqp8DLgS8DFwDnVtUnNrLbp4CDnIQqSdLMLZpTMFX1fyZgVNXlwL2ntH0Y+PA02x4w6fEZwBnd4+8Cew+zVkmSxp0jIJIkqTkDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpozgEiSpOYMIJIkqTkDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaW9Z3ARo91/9mTd8lzFtd//u+SxiKn63+ed8lDMVVO1/TdwnzliXpu4ShuO1d9um7hKH49Q8v6LuEecuS0R8jqJvWrfe10e+dJEkaOQYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnMGEEmS1JwBRJIkNWcAkSRJzRlAJElScwYQSZLUnAFEkiQ1ZwCRJEnNGUAkSVJzBhBJktScAUSSJDVnAJEkSc0ZQCRJUnOLOoAkuUOSjyT5fpJzk3wmyZ6zPMbRm6o+SZLG1aINIEkCnAacUVV3q6p9gaOA28/yUAYQSZJmadEGEODhwI1V9a6Jhqq6ADgryduSXJzkoiSHACTZOclXkqzuXntokjcDW3ZtH+qpH5IkjZxlfRfQo3sD507T/hfAcmAfYAfgnCRfAZ4MfK6q3pBkKXDrqvpqkudV1fL1vUmSI4AjAHbd6XbD7oMkSSNpMY+ArM9DgA9X1bqq+jlwJrAfcA7wl0leA9ynqq6ZycGqamVVraiqFTtut/UmK1qSpFGymAPIJcC+M924qr4CPAy4AjgpyeGbqjBJksbdYg4gpwObd6dIAEiyN/Ab4JAkS5PsyCB0nJ1kN+DnVfUe4L3A/brdbkyyWePaJUkaaYt2DkhVVZKDgHckORL4PXA58CJga+ACoID/V1U/S/I04GVJbgTWABMjICuBC5OcV1VPad0PSZJG0aINIABV9RPgidO89LLuY/K27wfeP80xjgSO3CQFSpI0phbzKRhJktQTA4gkSWrOACJJkpozgEiSpOYMIJIkqTkDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpozgEiSpOYMIJIkqTkDiCRJam5Z3wVo9CxZOvq5NUtGvw8AW2y3ed8lDMXSMfg/NS6u++UVfZcwFOPwPV433dR3CfNXtd6XRv9fSJIkjRwDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpozgEiSpOYMIJIkqTkDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKm5ZX0XMBNJ1gEXMaj3h8BhVfWbfquSJElzNSojIL+rquVVdW/gV8Bz+y5IkiTN3agEkMm+Aewy8STJy5Kck+TCJK/t2t6c5LmTtnlNkpduYPvdk3w7yXuSXJLk80m27F47I8mK7vEOSS7vHi9N8rZJx3p2qy+AJEmjbqQCSJKlwB8Bn+yePxrYA7g/sBzYN8nDgFOAJ07a9YnAKRvYnq79n6rqXsBvgMdvpJxnAldX1X7AfsCzktxl/r2UJGn8jcQcEGDLJKsZjHx8G/hC1/7o7uP87vnWwB5VdUKSnZLcEdgR+HVV/TjJC6fbHvhv4IdVtbprPxfYfSM1PRrYO8kTuufbdcf64eSNkhwBHAGw6063m1WnJUkaV6MSQH5XVcuT3Br4HIM5IMcCAd5UVe+eZp9TgScAd2AwIsL6tk+yO3D9pKZ1wJbd47XcPFK0xeTdgOdX1ec2VHhVrQRWAuy75+61oW0lSVosRuoUTFVdB7wA+NskyxiEkWck2RogyS5Jduo2PwV4EoMQcmrXtqHt1+dyYN/u8RMmtX8O+Oskm3XH2jPJVvPpnyRJi8WojID8r6o6P8mFwKFV9YEk9wS+kQRgDfBU4BdVdUmSbYArquqn3b6fX8/26zbwlm8HPtqdSvmPSe3vZXCa5rwMDnYlcOAQuypJ0tgaiQBSVVtPef7nkx6/E3jneva7zzRt69v+3pO2efukx98B9p603Su79puAo7sPSZI0CyN1CkaSJI0HA4gkSWrOACJJkpozgEiSpOYMIJIkqTkDiCRJas4AIkmSmjOASJKk5gwgkiSpOQOIJElqzgAiSZKaM4BIkqTmDCCSJKk5A4gkSWrOACJJkpozgEiSpOYMIJIkqTkDiCRJas4AIkmSmktV9V3DopHkSuBHm/htdgCu2sTvsamNQx9gPPoxDn0A+7GQjEMfYDz60aIPu1XVjtO9YAAZM0lWVdWKvuuYj3HoA4xHP8ahD2A/FpJx6AOMRz/67oOnYCRJUnMGEEmS1JwBZPys7LuAIRiHPsB49GMc+gD2YyEZhz7AePSj1z44B0SSJDXnCIgkSWrOACJJkpozgEiSpOYMIJIkqTkDiCRJau7/B5AVBWCp7MjNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "LPndIHI1qTy_", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 559 + }, + "outputId": "3ba4d0b9-a53c-4153-aada-7086403ef48b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 8 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAINCAYAAAA6KaWSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLe0lEQVR4nO3deXhU9d3//9dkGxJgkhBCQjBAFGSTskjFFEir5iYoaqnWKkalGLG2QUWsAi6IbS0ItVYRoXQRbRW3n1IEAfMFJAqRJRJWjSBhEcwCIRkStpB8fn/QnDIQskCSmZw8H9c1182cz3vOeZ9zTzMvz+owxhgBAADYmJ+3GwAAAGhoBB4AAGB7BB4AAGB7BB4AAGB7BB4AAGB7BB4AAGB7BB4AAGB7BB4AAGB7Ad5uwC4qKip04MABtW7dWg6Hw9vtAADQZBhjdOTIEcXExMjPr2H2xRB46smBAwcUGxvr7TYAAGiy9u3bp0suuaRB5k3gqSetW7eWdPr/WS6Xy8vdAADQdLjdbsXGxlq/pQ2BwFNPKg9juVwuAg8AABegIU8J4aRlAABgewQeAABgewQeAABgewQeAABgewQeAABgewQeAABgewQeAABgewQeAABgewQeAABgewQeAABgewQeAABgewQeAABgewQeAABgewQeAABgewHebgAAADQduwpKtKfwqDpHtFRc25bebqfWCDwAAKBGRUdP6qH5WUrfUWBNS+gaqZkj+yk0JNCLndUOh7QAAECNHpqfpdU7D3pMW73zoB6cv9FLHdUNgQcAAFRrV0GJ0ncUqNwYj+nlxih9R4FyDpZ6qbPaI/AAAIBq7Sk8Wu347kMEHgAA0MR1ahNS7XjnCN8/eZnAAwAAqnVpZCsldI2Uv8PhMd3f4VBC18gmcbUWgQcAANRo5sh+GtSlrce0QV3aaubIfl7qqG64LB0AANQoNCRQb6RcpZyDpdp9qJT78AAAAPuKa9u0gk4lDmkBAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbI/AAAADbC/B2AwAA4MLsKijRnsKj6hzRUnFtW3q7HZ/m1T086enpuummmxQTEyOHw6EFCxact/aBBx6Qw+HQX/7yF4/phYWFSk5OlsvlUlhYmFJSUlRSUuJRs3nzZg0ZMkQtWrRQbGyspk+ffs7833vvPXXv3l0tWrRQ79699fHHH9fHKgIAUO+Kjp7UPf9Yp2tfWKXRr63XNX/6VPf8Y52Kj5Z5uzWf5dXAU1paqj59+mjWrFnV1n344Yf64osvFBMTc85YcnKytm3bprS0NC1atEjp6em6//77rXG3262hQ4eqU6dOyszM1IwZMzRlyhTNnTvXqlmzZo1GjhyplJQUbdy4USNGjNCIESO0devW+ltZAADqyUPzs7R650GPaat3HtSD8zd6qSPf5zDGGG83IUkOh0MffvihRowY4TF9//79GjhwoJYtW6bhw4dr3LhxGjdunCTpq6++Us+ePbV+/XoNGDBAkrR06VLdcMMN+u677xQTE6PZs2frySefVG5uroKCgiRJEydO1IIFC/T1119Lkm6//XaVlpZq0aJF1nKvvvpq9e3bV3PmzKlV/263W6GhoSouLpbL5brIrQEAQNV2FZTo2hdWnXd85W9/0uQObzXGb6hPn7RcUVGhu+++W4899ph69ep1znhGRobCwsKssCNJiYmJ8vPz09q1a62ahIQEK+xIUlJSkrKzs3X48GGrJjEx0WPeSUlJysjIOG9vJ06ckNvt9ngBANDQ9hQerXZ896HSRuqkafHpwPP8888rICBADz30UJXjubm5ateunce0gIAAtWnTRrm5uVZNVFSUR03l+5pqKserMnXqVIWGhlqv2NjYuq0cAAAXoFObkGrHO0c0rb07jcVnA09mZqZeeuklzZs3Tw6Hw9vtnGPSpEkqLi62Xvv27fN2SwCAZuDSyFZK6Bop/7N+G/0dDiV0jWxyh7Mai88Gns8++0z5+fnq2LGjAgICFBAQoD179ujRRx9V586dJUnR0dHKz8/3+NypU6dUWFio6OhoqyYvL8+jpvJ9TTWV41VxOp1yuVweLwAAGsPMkf00qEtbj2mDurTVzJH9vNSR7/PZ+/DcfffdVZ5Xc/fdd2v06NGSpPj4eBUVFSkzM1NXXnmlJGnFihWqqKjQwIEDrZonn3xSZWVlCgwMlCSlpaWpW7duCg8Pt2qWL19unQxdWRMfH9/QqwkAQJ2FhgTqjZSrlHOwVLsPlXIfnlrwauApKSnRzp07rfc5OTnKyspSmzZt1LFjR0VERHjUBwYGKjo6Wt26dZMk9ejRQ8OGDdOYMWM0Z84clZWVaezYsbrjjjusS9jvvPNOPfvss0pJSdGECRO0detWvfTSS3rxxRet+T788MP68Y9/rBdeeEHDhw/X22+/rQ0bNnhcug4AgK+Ja0vQqTXjRStXrjSSznmNGjWqyvpOnTqZF1980WPaoUOHzMiRI02rVq2My+Uyo0ePNkeOHPGo2bRpkxk8eLBxOp2mQ4cOZtq0aefM+9133zWXX365CQoKMr169TKLFy+u07oUFxcbSaa4uLhOnwMAoLlrjN9Qn7kPT1PHfXgAALgwzf4+PAAAAPWBwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGyPwAMAAGzPq4EnPT1dN910k2JiYuRwOLRgwQJrrKysTBMmTFDv3r3VsmVLxcTE6J577tGBAwc85lFYWKjk5GS5XC6FhYUpJSVFJSUlHjWbN2/WkCFD1KJFC8XGxmr69Onn9PLee++pe/fuatGihXr37q2PP/64QdYZAAA0Pq8GntLSUvXp00ezZs06Z+zo0aP68ssv9fTTT+vLL7/UBx98oOzsbN18880edcnJydq2bZvS0tK0aNEipaen6/7777fG3W63hg4dqk6dOikzM1MzZszQlClTNHfuXKtmzZo1GjlypFJSUrRx40aNGDFCI0aM0NatWxtu5QEAQKNxGGOMt5uQJIfDoQ8//FAjRow4b8369et11VVXac+ePerYsaO++uor9ezZU+vXr9eAAQMkSUuXLtUNN9yg7777TjExMZo9e7aefPJJ5ebmKigoSJI0ceJELViwQF9//bUk6fbbb1dpaakWLVpkLevqq69W3759NWfOnFr173a7FRoaquLiYrlcrgvcCgAAND+N8RvapM7hKS4ulsPhUFhYmCQpIyNDYWFhVtiRpMTERPn5+Wnt2rVWTUJCghV2JCkpKUnZ2dk6fPiwVZOYmOixrKSkJGVkZDTwGgEAgMYQ4O0Gauv48eOaMGGCRo4caaW/3NxctWvXzqMuICBAbdq0UW5urlUTFxfnURMVFWWNhYeHKzc315p2Zk3lPKpy4sQJnThxwnrvdrsvfOUAAECDahJ7eMrKyvSLX/xCxhjNnj3b2+1IkqZOnarQ0FDrFRsb6+2WAADAefh84KkMO3v27FFaWprHsb3o6Gjl5+d71J86dUqFhYWKjo62avLy8jxqKt/XVFM5XpVJkyapuLjYeu3bt+/CVxIAADQonw48lWFnx44d+n//7/8pIiLCYzw+Pl5FRUXKzMy0pq1YsUIVFRUaOHCgVZOenq6ysjKrJi0tTd26dVN4eLhVs3z5co95p6WlKT4+/ry9OZ1OuVwujxcAAPBNXg08JSUlysrKUlZWliQpJydHWVlZ2rt3r8rKyvTzn/9cGzZs0Jtvvqny8nLl5uYqNzdXJ0+elCT16NFDw4YN05gxY7Ru3TqtXr1aY8eO1R133KGYmBhJ0p133qmgoCClpKRo27Zteuedd/TSSy9p/PjxVh8PP/ywli5dqhdeeEFff/21pkyZog0bNmjs2LGNvk0AAEADMF60cuVKI+mc16hRo0xOTk6VY5LMypUrrXkcOnTIjBw50rRq1cq4XC4zevRoc+TIEY/lbNq0yQwePNg4nU7ToUMHM23atHN6effdd83ll19ugoKCTK9evczixYvrtC7FxcVGkikuLr6gbQEAQHPVGL+hPnMfnqaO+/AAAHBhuA8PAABAPSDwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2yPwAAAA2/Nq4ElPT9dNN92kmJgYORwOLViwwGPcGKPJkyerffv2Cg4OVmJionbs2OFRU1hYqOTkZLlcLoWFhSklJUUlJSUeNZs3b9aQIUPUokULxcbGavr06ef08t5776l79+5q0aKFevfurY8//rje1xcAAHiHVwNPaWmp+vTpo1mzZlU5Pn36dL388suaM2eO1q5dq5YtWyopKUnHjx+3apKTk7Vt2zalpaVp0aJFSk9P1/3332+Nu91uDR06VJ06dVJmZqZmzJihKVOmaO7cuVbNmjVrNHLkSKWkpGjjxo0aMWKERowYoa1btzbcygMAgMZjfIQk8+GHH1rvKyoqTHR0tJkxY4Y1raioyDidTjN//nxjjDHbt283ksz69eutmiVLlhiHw2H2799vjDHm1VdfNeHh4ebEiRNWzYQJE0y3bt2s97/4xS/M8OHDPfoZOHCg+dWvflXr/ouLi40kU1xcXOvPAACAxvkN9dlzeHJycpSbm6vExERrWmhoqAYOHKiMjAxJUkZGhsLCwjRgwACrJjExUX5+flq7dq1Vk5CQoKCgIKsmKSlJ2dnZOnz4sFVz5nIqayqXU5UTJ07I7XZ7vAAAgG/y2cCTm5srSYqKivKYHhUVZY3l5uaqXbt2HuMBAQFq06aNR01V8zhzGeerqRyvytSpUxUaGmq9YmNj67qKAACgkfhs4PF1kyZNUnFxsfXat2+ft1sCAADn4bOBJzo6WpKUl5fnMT0vL88ai46OVn5+vsf4qVOnVFhY6FFT1TzOXMb5airHq+J0OuVyuTxeAADAN/ls4ImLi1N0dLSWL19uTXO73Vq7dq3i4+MlSfHx8SoqKlJmZqZVs2LFClVUVGjgwIFWTXp6usrKyqyatLQ0devWTeHh4VbNmcuprKlcDgAAaNq8GnhKSkqUlZWlrKwsSadPVM7KytLevXvlcDg0btw4/eEPf9DChQu1ZcsW3XPPPYqJidGIESMkST169NCwYcM0ZswYrVu3TqtXr9bYsWN1xx13KCYmRpJ05513KigoSCkpKdq2bZveeecdvfTSSxo/frzVx8MPP6ylS5fqhRde0Ndff60pU6Zow4YNGjt2bGNvEgAA0BAa7PqvWli5cqWRdM5r1KhRxpjTl6Y//fTTJioqyjidTnPdddeZ7Oxsj3kcOnTIjBw50rRq1cq4XC4zevRoc+TIEY+aTZs2mcGDBxun02k6dOhgpk2bdk4v7777rrn88stNUFCQ6dWrl1m8eHGd1oXL0gEAuDCN8RvqMMYYL+Yt23C73QoNDVVxcTHn8wAAUAeN8Rvqs+fwAAAA1BcCDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD0CDwAAsD2fDjzl5eV6+umnFRcXp+DgYF122WX6/e9/L2OMVWOM0eTJk9W+fXsFBwcrMTFRO3bs8JhPYWGhkpOT5XK5FBYWppSUFJWUlHjUbN68WUOGDFGLFi0UGxur6dOnN8o6AgCAhndBgWfv3r0eoaOSMUZ79+696KYqPf/885o9e7ZeeeUVffXVV3r++ec1ffp0zZw506qZPn26Xn75Zc2ZM0dr165Vy5YtlZSUpOPHj1s1ycnJ2rZtm9LS0rRo0SKlp6fr/vvvt8bdbreGDh2qTp06KTMzUzNmzNCUKVM0d+7celsXAADgReYC+Pn5mby8vHOmHzx40Pj5+V3ILKs0fPhwc++993pMu+WWW0xycrIxxpiKigoTHR1tZsyYYY0XFRUZp9Np5s+fb4wxZvv27UaSWb9+vVWzZMkS43A4zP79+40xxrz66qsmPDzcnDhxwqqZMGGC6datW617LS4uNpJMcXFx3VcUAIBmrDF+Qy9oD48xRg6H45zpJSUlatGixcUlsDP86Ec/0vLly/XNN99IkjZt2qTPP/9c119/vSQpJydHubm5SkxMtD4TGhqqgQMHKiMjQ5KUkZGhsLAwDRgwwKpJTEyUn5+f1q5da9UkJCQoKCjIqklKSlJ2drYOHz5cZW8nTpyQ2+32eAEAAN8UUJfi8ePHS5IcDoeefvpphYSEWGPl5eVau3at+vbtW2/NTZw4UW63W927d5e/v7/Ky8v13HPPKTk5WZKUm5srSYqKivL4XFRUlDWWm5urdu3aeYwHBASoTZs2HjVxcXHnzKNyLDw8/Jzepk6dqmeffbYe1hIAADS0OgWejRs3Sjq9h2fLli0ee0SCgoLUp08f/fa3v6235t599129+eabeuutt9SrVy9lZWVp3LhxiomJ0ahRo+ptORdi0qRJVgCUTp8HFBsb68WOAADA+dQp8KxcuVKSNHr0aL300ktyuVwN0lSlxx57TBMnTtQdd9whSerdu7f27NmjqVOnatSoUYqOjpYk5eXlqX379tbn8vLyrD1N0dHRys/P95jvqVOnVFhYaH0+OjpaeXl5HjWV7ytrzuZ0OuV0Oi9+JQEAQIO7oHN4XnvttQYPO5J09OhR+fl5tujv76+KigpJUlxcnKKjo7V8+XJr3O12a+3atYqPj5ckxcfHq6ioSJmZmVbNihUrVFFRoYEDB1o16enpKisrs2rS0tLUrVu3Kg9nAQCApqXWe3huueUWzZs3Ty6XS7fccku1tR988MFFNyZJN910k5577jl17NhRvXr10saNG/XnP/9Z9957r6TT5xKNGzdOf/jDH9S1a1fFxcXp6aefVkxMjEaMGCFJ6tGjh4YNG6YxY8Zozpw5Kisr09ixY3XHHXcoJiZGknTnnXfq2WefVUpKiiZMmKCtW7fqpZde0osvvlgv6wEAALyr1oEnNDTUujLL5XJVeZVWfZs5c6aefvpp/eY3v1F+fr5iYmL0q1/9SpMnT7ZqHn/8cZWWlur+++9XUVGRBg8erKVLl3pcLfbmm29q7Nixuu666+Tn56dbb71VL7/8sse6ffLJJ0pNTdWVV16ptm3bavLkyR736gEAAE2Xw5gq7iBYhYULF+r6669XYGBgQ/fUJLndboWGhqq4uLhRDvcBAGAXjfEbWutzeH72s5+pqKhI0unzaM4+ERgAAMBX1TrwREZG6osvvpB0/hsPAgAA+KJan8PzwAMP6Kc//akcDoccDsd5L9eWTt+EEAAAwFfUOvBMmTJFd9xxh3bu3Kmbb75Zr732msLCwhqwNQAAgPpRpxsPdu/eXd27d9czzzyj2267zePREgAAAL6q1ldpVaWgoEDZ2dmSpG7duikyMrLeGmtquEoLAIAL41NXaZ3p6NGjuvfeexUTE6OEhAQlJCQoJiZGKSkpOnr0aH33CAAAcFEuKPA88sgjWrVqlRYuXKiioiIVFRXpP//5j1atWqVHH320vnsEAAC4KBd0SKtt27Z6//339ZOf/MRj+sqVK/WLX/xCBQUF9dVfk8EhLQAALoxPH9KKioo6Z3q7du04pAUAAHzOBQWe+Ph4PfPMMzp+/Lg17dixY3r22Wetp5QDAAD4ijpdll7pL3/5i4YNG6ZLLrlEffr0kSRt2rRJLVq00LJly+q1QQAAgIt1wZelHz16VG+++aa+/vprSVKPHj2UnJys4ODgem2wqeAcHgAALkxj/IbWeQ9PWVmZunfvrkWLFmnMmDEN0RMAAEC9qvM5PIGBgR7n7gAAAPi6CzppOTU1Vc8//7xOnTpV3/0AAADUuws6aXn9+vVavny5PvnkE/Xu3VstW7b0GP/ggw/qpTkAAID6cEGBJywsTLfeemt99wIAANAg6hR4KioqNGPGDH3zzTc6efKkrr32Wk2ZMqXZXpkFAACahjqdw/Pcc8/piSeeUKtWrdShQwe9/PLLSk1NbajeAAAA6kWdAs8bb7yhV199VcuWLdOCBQv00Ucf6c0331RFRUVD9QcAAHDR6hR49u7dqxtuuMF6n5iYKIfDoQMHDtR7YwAAAPWlToHn1KlTatGihce0wMBAlZWV1WtTAAAA9alOJy0bY/TLX/5STqfTmnb8+HE98MADHpemc1k6AADwJXUKPKNGjTpn2l133VVvzQAAADSEOgWe1157raH6AAAAaDAX9GgJAACApoTAAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbI/AAwAAbM/nA8/+/ft11113KSIiQsHBwerdu7c2bNhgjRtjNHnyZLVv317BwcFKTEzUjh07POZRWFio5ORkuVwuhYWFKSUlRSUlJR41mzdv1pAhQ9SiRQvFxsZq+vTpjbJ+AACg4fl04Dl8+LAGDRqkwMBALVmyRNu3b9cLL7yg8PBwq2b69Ol6+eWXNWfOHK1du1YtW7ZUUlKSjh8/btUkJydr27ZtSktL06JFi5Senq7777/fGne73Ro6dKg6deqkzMxMzZgxQ1OmTNHcuXMbdX0BAEADMT5swoQJZvDgwecdr6ioMNHR0WbGjBnWtKKiIuN0Os38+fONMcZs377dSDLr16+3apYsWWIcDofZv3+/McaYV1991YSHh5sTJ054LLtbt2617rW4uNhIMsXFxbX+DAAAaJzfUJ/ew7Nw4UINGDBAt912m9q1a6d+/frpb3/7mzWek5Oj3NxcJSYmWtNCQ0M1cOBAZWRkSJIyMjIUFhamAQMGWDWJiYny8/PT2rVrrZqEhAQFBQVZNUlJScrOztbhw4er7O3EiRNyu90eLwAA4Jt8OvDs2rVLs2fPVteuXbVs2TL9+te/1kMPPaTXX39dkpSbmytJioqK8vhcVFSUNZabm6t27dp5jAcEBKhNmzYeNVXN48xlnG3q1KkKDQ21XrGxsRe5tgAAoKH4dOCpqKhQ//799cc//lH9+vXT/fffrzFjxmjOnDnebk2TJk1ScXGx9dq3b5+3WwIAAOfh04Gnffv26tmzp8e0Hj16aO/evZKk6OhoSVJeXp5HTV5enjUWHR2t/Px8j/FTp06psLDQo6aqeZy5jLM5nU65XC6PFwAA8E0+HXgGDRqk7Oxsj2nffPONOnXqJEmKi4tTdHS0li9fbo273W6tXbtW8fHxkqT4+HgVFRUpMzPTqlmxYoUqKio0cOBAqyY9PV1lZWVWTVpamrp16+ZxRRgAAGiafDrwPPLII/riiy/0xz/+UTt37tRbb72luXPnKjU1VZLkcDg0btw4/eEPf9DChQu1ZcsW3XPPPYqJidGIESMknd4jNGzYMI0ZM0br1q3T6tWrNXbsWN1xxx2KiYmRJN15550KCgpSSkqKtm3bpnfeeUcvvfSSxo8f761VBwAA9anBrv+qJx999JG54oorjNPpNN27dzdz5871GK+oqDBPP/20iYqKMk6n01x33XUmOzvbo+bQoUNm5MiRplWrVsblcpnRo0ebI0eOeNRs2rTJDB482DidTtOhQwczbdq0OvXJZekAAFyYxvgNdRhjjLdDlx243W6FhoaquLiY83lsZFdBifYUHlXniJaKa9vS2+0AgC01xm9oQIPMFWjiio6e1EPzs5S+o8CaltA1UjNH9lNoSKAkwhAANCUEHqAKD83P0uqdBz2mrd55UA/O36iXR/atMQwBAHyLT5+0DHjDroISpe8oUPlZR3vLjVH6jgKNeWPDecMQAMA3EXiAs+wpPFrt+Prdh88bhnIOljZkawCAC0TgAc7SqU3IBX929yECDwD4IgIPcJZLI1spoWuk/B0Oj+n+DocuCW9R7Wc7R3DyMgD4IgIPUIWZI/tpUJe2HtMGdWmr7w4fP+9nErpGcrUWAPgortICqhAaEqg3Uq5SzsFS7T5Uqs4RLTV18fZqPxPo30jNAQDqjMADVCOu7f/usZO573C1tVnfFTVCRwCAC8EhLaCWyk6VVTv+w05tGqkTAEBdEXiAWnKf//QdSdKcuwc0TiMAgDoj8AC10OOpj6sdD3BUOwwA8DICD1ALx05V/4zdGoYBAF5G4AFqIbiGXTgh7OIBAJ9G4AFq4as/3FDt+PYaxgEA3kXgAWpp8GXhdZoOAPAd3IcHqKXLo0J1sLRMO3JLVK7Th7HYswMATQOBB/ivXQUl2lN4VJ0jWno8IuKTrd/r/n9/eU79zDuvbMz2AAAXgcCDZq/o6Ek9ND9L6TsKrGkJXSM1c2Q/hYYEVhl2JCnljQ3aPW14Y7UJALgInMODZu+h+VlavfOgx7TVOw/qwfkb9buF26r97B8WVf98LQCAb2APD5q1XQUlHnt2KpUbo/QdBfrucGm1n/9857mfBQD4HvbwoFnbU3i02vHLIltVOz64S2R9tgMAaCAEHjRrndqEVDv+xPCe1Y4/dWP14wAA30DgQbN2aWQrJXSNlL/D807J/g6HErpGKq5tS/3jnqofCnq+6QAA3+MwxvAUoHrgdrsVGhqq4uJiuVwub7eDOig+WqYH528871Valf6waLs+31mgwV0i2bMDAPWoMX5DCTz1hMDT9OUcLNXuQ6Xn3IcHANCwGuM3lKu0gP+Ka0vQAQC7IvAA1ViVna+s74rUv2O4hnTliiwAaKoIPEAV9hwq1YhZq3X4aJk1LTwkUAtTBys2ovoruwAAvoertIAqnB12JOnw0TLdPOtzL3UEALgYBB7gLKuy888JO5UOHy3TZ1XcmRkA4NsIPMBZsr4rqnb8y72HG6cRAEC9IfAAZ+l7SVi14/07hjdOIwCAekPgAc7y427tFH7GDQfPFB4SyNVaANAEEXiAKixMHXxO6Km8SgsA0PRwWTpQhdiIEG2cPFSf7SjQl3sPcx8eAGjiCDxANYZ0jSToAIANcEgLAADYHnt40KTtKijRnsKjPPATAFAtAg+apKKjJ/XQ/Cyln3ETwISukZo5sp9Cz3OFFQCg+eKQFpqkh+ZnafXOgx7TVu88qAfnb/RSRwAAX8YeHjQJZz61vENYsMeenUrlxih9R4FyDpZyeAsA4IHAA59W1VPLWzn9q/3MdX/6VBWSAh3SjqnDG7hDAEBTwCEt+LSqnlpecqK82s9U/Pf/lhmp88TFGjEz3RrbVVCildn5yjlYWt+tAgB8GHt44LNeX7PrvE8tr4us/Uc4yRkAmrkmtYdn2rRpcjgcGjdunDXt+PHjSk1NVUREhFq1aqVbb71VeXl5Hp/bu3evhg8frpCQELVr106PPfaYTp065VHz6aefqn///nI6nerSpYvmzZvXCGuE6jyz8Kt6m1ff36Wdc95P+o4CjXljQ70tAwDgu5pM4Fm/fr3++te/6gc/+IHH9EceeUQfffSR3nvvPa1atUoHDhzQLbfcYo2Xl5dr+PDhOnnypNasWaPXX39d8+bN0+TJk62anJwcDR8+XNdcc42ysrI0btw43XfffVq2bFmjrR88vbNub6MsZ93uQg5vAUAz0CQCT0lJiZKTk/W3v/1N4eHh1vTi4mL94x//0J///Gdde+21uvLKK/Xaa69pzZo1+uKLLyRJn3zyibZv365///vf6tu3r66//nr9/ve/16xZs3Ty5ElJ0pw5cxQXF6cXXnhBPXr00NixY/Xzn/9cL774olfWF9LMlTsabVmLNx9otGUBALyjSQSe1NRUDR8+XImJiR7TMzMzVVZW5jG9e/fu6tixozIyMiRJGRkZ6t27t6KioqyapKQkud1ubdu2zao5e95JSUnWPKpy4sQJud1ujxfqT27x8UZb1sGSE422LACAd/j8Sctvv/22vvzyS61fv/6csdzcXAUFBSksLMxjelRUlHJzc62aM8NO5XjlWHU1brdbx44dU3Bw8DnLnjp1qp599tkLXi9UL9DfT6cqKmourAfX9YiquQgA0KT59B6effv26eGHH9abb76pFi1aeLsdD5MmTVJxcbH12rdvn7dbspUfXRZR7XhUq7pdWRUaXHW2Dw0O4GnoANAM+PQenszMTOXn56t///7WtPLycqWnp+uVV17RsmXLdPLkSRUVFXns5cnLy1N0dLQkKTo6WuvWrfOYb+VVXGfWnH1lV15enlwuV5V7dyTJ6XTK6XRe9DriXFu+K9Lyr8+9k/KZ1j41VDkHS7X7UKk6R7TUNX/69Ly1u6cN175DR3XzrM89LnMPDwnUwtTBkqTkuRnafKBYfS8J07/uu7pe1gMA4Dt8OvBcd9112rJli8e00aNHq3v37powYYJiY2MVGBio5cuX69Zbb5UkZWdna+/evYqPj5ckxcfH67nnnlN+fr7atWsnSUpLS5PL5VLPnj2tmo8//thjOWlpadY80LhufmV1teMjr7pEkhTXtqXGvbVBmw6U1DjP2IgQbZw8VJ/tKNCXew+rf8dwDekaqbmrduqPS7Ktus92HlLniYs1eXgP3Tvk0otbEQCAz/DpwNO6dWtdccUVHtNatmypiIgIa3pKSorGjx+vNm3ayOVy6cEHH1R8fLyuvvr0f6UPHTpUPXv21N13363p06crNzdXTz31lFJTU609NA888IBeeeUVPf7447r33nu1YsUKvfvuu1q8eHHjrjD0zrq9MjXU7D541HpeVnVhZ/e0cx8rMaRrpMchrDPDzpl+t/grAg8A2IhPn8NTGy+++KJuvPFG3XrrrUpISFB0dLQ++OADa9zf31+LFi2Sv7+/4uPjddddd+mee+7R7373O6smLi5OixcvVlpamvr06aMXXnhBf//735WUlOSNVWrWMnIO1Vyzq1DX/OlTdZ5YfSC9/Inqx5Pnnv8qPEm6++9f1NgLAKBpcBhjavoPatSC2+1WaGioiouL5XK5vN1Ok/XOur2a8MGWmgtrqaq9PJV6T1mqI8fP/1yu1i38tWXKsHrrBQBQtcb4DW3ye3hgL7df1VEBfo56mVdQDd/uS9uGVDve95KweukDAOB9BB74nIWpg+rli/nNH8+/d0eSttVwsjNXawGAfRB44FO2fFekm2et1pm3HLyQ/T0DYqvfJfrOur06VXH+o7k3946+gKUCAHyVT1+lhebnZ6+uOSeI1PUks/CQQL2fOkSStKugRHsKj6pzREvFtW1p1dR0crRfAP8tAAB2QuCBz6hpr4szwKETp2qOP4ePlmnJlgOav+47pe/43w0ME7pGaubIfgoNCVR8XIQWbDz/Q0MHXda2bs0DAHwa/xkLn1HTXpeyWoSdStOWfK3VOw96TFu986AenL9RUvUnRwf4OXTbgNhaLwsA4PsIPPAZ8XHVPz+rLo8S3VN4TOVn3XGh3Bil7yhQzsFSSadPjj479AT4ObQwdVAdlgQAaAo4pAWfcftVHfXkgq1VHtZyqPbn8vip+nC0+9DpuzS3CPLX30YN0FcH3Pom/4gGXdaWPTsAYFMEHviUhamDdPOs1R6hJ8DPoWdu7KmnF26r1TycgX46Vnb+yNMmJEj3/GPdOef3DO3JlVkAYFfcabmecKfl+vXehn1a/e1Ba6/LnkOl+vGMT2v12SFdIuRw+Gn1zoMeh7X8HQ4N6nL6ZOTzjb2RclW9rgcAoGaN8RvKHh74pNsGxHocXkp84dNaf/Zf912t4qNlenD+Ro+9OIO6tNWjQy/XT2ed+zT2M8/vOfPydQCAPRB44PNWZeermiNUHiYP7yFJCg0J1BspVynnYKl2Hyq17sOzMju/2s9Xnt8DALAXAg8axfluAFgbWd8V1VjTrmWg1j099JzpcW09l9epTfXPz+ocQdgBADsi8KBBFR09qYfmZ533BoDVefSdLC3afKDamxFWqirsVOXSyFZK6Bp53nN42LsDAPbEfXjQoM4OO5LnDQCr8mHmPnWeuFj/38b9OlFuVF5D3nn59r516mnmyH7WycuVBnVpq5kj+9VpPgCApoM9PGgwd81do893HT5nek0nCD/y3uY6LedEuecJPjUdPvtXxm6VlZfrvsFxGtS17QUdZgMANC0EHjSYqsLOmc48Qfj+19crc99hBZ7ncQ/V+c/G/bptQGyNh8/W7CzQnX9fZ41l7CrU3z/P0TtjribwAIDNcUgLDaLfs8tqrOkc0VL/zshR54mL9clX+TpUUqZc98k6L+vzb08/g+uh+VnVPj/rzLBzptv/9kWdlwkAaFoIPGgQh4+dqrEma0+hnvrP9npZ3h8+2qb0HQXnfX7W7z6q/i7Nr67cWS99AAB8E4EHXlPXc3Wq8/m3B6sdX1PD+GdnnVgNALAXAg/qXeeJixt9mYMva1vt+I9qGB/SNbI+2wEA+BgCD2zhqZt6KaFrpPwdnic9+zscSugaqck39ar287+5pktDtgcA8DICD7zi1n4d6m1eE5O6Sar5/jrvjLm6ys+fbzoAwD64LB1esWV/cb3NK6l3e0nnf35WpYGXRWj3tOF6deVOfbajQEO6RrJnBwCaCYcxpub79qNGjfFo+6agtufvOCTV1xdv97Th9TQnAIA3NMZvKIe04BWkbABAYyLwAAAA2+McHjRptT2ctSo7X1nfFal/x3AuQQeAZojAg3qzq6DE2y2cY8+hUo2YtVqHj5ZZ08JDArUwdbBiI0K82BkAoDFxSAv15toXVjXq8oZ0iaix5uywI0mHj5bp5lmfN1RbAAAfROCBz7lvcJy6R7fSfYPjqq37133V3z9nVXb+OWGn0uGjZTxOAgCaEQ5pwad8/OBg9ewQKkka9Me089ZNHt6jxnllfVdU7fiXew9zPg8ANBPs4UG98XPUXFOTbd+7rX/vd588b929Qy6tcV7ranhgaP+O4bVvDADQpBF4UC/eWbdXFfVwc53V/w0pNd3AsDY3OFy96/B5x8JDAtm7AwDNCIEH9eI/WfvrZT6DaniqeW1d/dz5D4dJUhDffABoVjiHB/Vi/Z7z702pixlLvtIHX3530fPJO3L+w2GSlF9S9cnMAAB74r9zcdFWZeerrLx+HhaRX1qmjF2FNdbVdMPBqNZB1Y63dznr1BcAoGkj8OCiLainw1m11Tm8RY01Xzz5f9WOr3kisb7aAQA0ARzSgnYVlGhP4VF1jmipuLYt6/z5jzYeaICuqlaXJ6PfPqCD3tlwbhi7fUCH+mwJANAEEHiasaKjJ/XQ/Cyln3EDvoSukZo5sp9CQwJrPZ9TDdHcefR/dpm+fCapxrpdBSUa1jtGD/ykq5LnZuh79wm1dznZswMAzRSBpxm7/40NWrfb82Tj9B0FGvPGBr37QHyt5lGby8PrU+Gx6uPV+ULcknF1C3EAAHvhHJ5matO+w+eEnUrrdhcq52BpI3dUO22Cq8/oD83P0uqdnjccXL3zoB6cv7Eh2wIA+DgCTzM19q3qA8DizY13Xk5dvHRn//OO7SooUfqOApUbzyvGyo1R+o4Cnw1xAICGxyGtZmhXQYn2HT5Wbc3BkhOSPA9ZBTqkHVP/d9Jw1yca93CWVP3zr/YUHq32s7sPlV7QSdkAgKbPp/fwTJ06VT/84Q/VunVrtWvXTiNGjFB2drZHzfHjx5WamqqIiAi1atVKt956q/Ly8jxq9u7dq+HDhyskJETt2rXTY489plOnPM8F+fTTT9W/f385nU516dJF8+bNa+jV85q1OYdqrJm3Zs855+eUmdMBaMTM9NPvKxqkvWpV9/yrTm1Cqv1s5wjCDgA0Vz4deFatWqXU1FR98cUXSktLU1lZmYYOHarS0v8dmnjkkUf00Ucf6b333tOqVat04MAB3XLLLdZ4eXm5hg8frpMnT2rNmjV6/fXXNW/ePE2ePNmqycnJ0fDhw3XNNdcoKytL48aN03333adly5Y16vo2nuqf8hkcUP141v4j9dlMrdX0/KtLI1spoWuk/B2e/fs7HEroGsneHQBoxhzGmPq5RW4jKCgoULt27bRq1SolJCSouLhYkZGReuutt/Tzn/9ckvT111+rR48eysjI0NVXX60lS5boxhtv1IEDBxQVFSVJmjNnjiZMmKCCggIFBQVpwoQJWrx4sbZu3Wot64477lBRUZGWLl1aq97cbrdCQ0NVXFwsl8tV/ytfT/YcKtXwl9JVcvLids8EOk7v8blYAX4OnarFU0fDQwK1MHWwYiOq34tTfLRMD87feNGX2gMAGk9j/Ib69B6esxUXF0uS2rRpI0nKzMxUWVmZEhP/d2+V7t27q2PHjsrIyJAkZWRkqHfv3lbYkaSkpCS53W5t27bNqjlzHpU1lfOoyokTJ+R2uz1eTcGIWaurDTvxl0bUaj71EXZaO/30n98MqlXtxslDaww7khQaEqg3Uq7Syt/+RK+N/qFW/vYneiPlKsIOADRzTSbwVFRUaNy4cRo0aJCuuOIKSVJubq6CgoIUFhbmURsVFaXc3Fyr5sywUzleOVZdjdvt1rFjVZ/cO3XqVIWGhlqv2NjYi17HhrYqO1+Hj1b/0MxR8Z0aqRtp4YMJGj1vba1q63q/n7i2LXVNt3YcxgIASGpCgSc1NVVbt27V22+/7e1WJEmTJk1ScXGx9dq3b5+3W6pR1ndFNdaszan5wZ315Ytdh3hqOQCgUTSJy9LHjh2rRYsWKT09XZdccok1PTo6WidPnlRRUZHHXp68vDxFR0dbNevWrfOYX+VVXGfWnH1lV15enlwul4KDg6vsyel0yulsWk/c/q6w5vvQvLZmd8M38l/VnxoNAED98ek9PMYYjR07Vh9++KFWrFihuLg4j/Err7xSgYGBWr58uTUtOztbe/fuVXz86UcjxMfHa8uWLcrPz7dq0tLS5HK51LNnT6vmzHlU1lTOwy7ey/SNmwlWXjV1VVybWn+mLg8NBQDgbD69hyc1NVVvvfWW/vOf/6h169bWOTehoaEKDg5WaGioUlJSNH78eLVp00Yul0sPPvig4uPjdfXVV0uShg4dqp49e+ruu+/W9OnTlZubq6eeekqpqanWHpoHHnhAr7zyih5//HHde++9WrFihd59910tXtz4N9ZrKH9a9lWNNR1CndpffKLBexnUpS1XTQEAGpVP7+GZPXu2iouL9ZOf/ETt27e3Xu+8845V8+KLL+rGG2/UrbfeqoSEBEVHR+uDDz6wxv39/bVo0SL5+/srPj5ed911l+655x797ne/s2ri4uK0ePFipaWlqU+fPnrhhRf097//XUlJNT+Vu6mYt3p3jTWz7x7QoD34OeRx1dT9r6+v1ec49AUAuFhN6j48vsyX78OzZMsB/frN6p+d1aZlgApLq38S+cXqGtlSaY/+xHrf99mlKjpWXuPnOJwFAPbGfXhQL1JreFCoJM375cAG72NHgedJ0yUnar754WURVZ80DgBAXRB4bO65xVtVixsZq3Vw455Psyo7v8Y7LIeHBGr5Y9c2UkcAADsj8Njc3z7bU6u63YdKteqxnzRsM2eozT2BDh8t02dnPCICAIALReCxsVeW76h1beeIlrrx5c8asJv/nYuz5bsivZRWu96+3Hu4IVsCADQTPn1ZOi7Ooi3f16qud4xLew+V6siJmk8gvlBnXml10yura/25/h3D678ZAECzwx4eG3PU8nruLQfcGvVa7S4Rv1A5/9278866vbX+THhIoIZ0jWyolgAAzQiBx8ZyCmp+lERjaO3839fsr6u+rdVnwkMCtTB1cEO1BABoZjikZVOLNx/Q8VM1X/bdGI6ccfn50bLqD5u1CvLT7LsHsGcHAFCv2MNjU1OXfO3tFixtgv+Xq2+4on21tXdc1YmwAwCodwQeG5r4/kZ9d/iYt9uwfPnM/x7R0S26dbW1NY0DAHAhCDw20+PJxXp7g288FV2SftjR8xbhGTmHqq1f/e3BhmwHANBMEXhsphaPpmpUX31f4vE+Pi6i2vpBl7VtyHYAAM0UgcdGOk9c7O0WzlFS5nni9O1XdVSAX9XXywf4OXTbgNjGaAsA0MwQeNCgWgWe+xVbmDronNAT4OfQwtRBjdUWAKCZ4bJ0m+jx1MfebqFKW39//TnTenYI1c4/3qD3NuzT6m8PatBlbdmzAwBoUAQemzh2qhaPRG9kP+hQ/RVXtw2IJegAABoFh7TQIEKC/LTwwQRvtwEAgCQCjy344snKocHsPAQA+A4CDxrEwSMnvd0CAAAWAk8T54t7dyQpJjTY2y0AAGAh8KBB3DLgEm+3AACAhcDThPV7dlmjLq8uX5b+HcMbrA8AAOqKwNOEHT52qlGX51/Lb0t4SCBPPAcA+BQCD2rtrKdEnNdTN/Ro2EYAAKgjAk8T5Y2TlTuF1+5E5O+KjzVwJwAA1A2BB7W2asK1emfM1TXWcf4OAMDXEHiaIG/s3ekb65IkDbwsQrunDVeLKh4KKnH+DgDANxF4UCvBgZ53Tk4b92OFhwR6TAsPCdTC1MGN2RYAALXC/f9RK2fvtYmNCNHGyUP12Y4Cfbn3sPp3DGfPDgDAZxF4mhhv3Vn5N9d0qXL6kK6RBB0AgM/jkBZqdHm7lt5uAQCAi0LgaUK8tXdn0vCeXlkuAAD1hcCDGnWOYA8PAKBpI/A0Ed7au5PQNVJxbQk8AICmjcCD80roGqmZI/t5uw0AAC4aV2k1AZd5Ye/OT/tE66WRVzb6cgEAaAjs4WkCyht4/runDVen8GD5OU4/L2v3tOGEHQCArbCHp5nbPW24pNPPyQIAwK7Yw+PjvHWyMgAAdkLgacYq9+4AAGB3BB4f1pB7d16+vW+DzRsAAF/DOTzNyCXhLRR/aVvNuK2Pt1sBAKBREXiaiVCnvz6fcJ232wAAwCs4pOWj6vtw1qZnh9Xr/AAAaEoIPM3A0B6R3m4BAACvIvCcZdasWercubNatGihgQMHat26dY3eQ33u3dk9bbjmjrqq3uYHAEBTROA5wzvvvKPx48frmWee0Zdffqk+ffooKSlJ+fn53m7tgvRq39rbLQAA4BMIPGf485//rDFjxmj06NHq2bOn5syZo5CQEP3zn/9stB7qc+/OXfGd621eAAA0ZQSe/zp58qQyMzOVmJhoTfPz81NiYqIyMjLOqT9x4oTcbrfHy9dcfWmEt1sAAMAnEHj+6+DBgyovL1dUVJTH9KioKOXm5p5TP3XqVIWGhlqv2NjYxmq1VgIcUlzblt5uAwAAn0DguUCTJk1ScXGx9dq3b5+3W/Jwww+ivd0CAAA+g8DzX23btpW/v7/y8vI8pufl5Sk6+tzw4HQ65XK5PF71ob6eb/XI/3Wvl/kAAGAHBJ7/CgoK0pVXXqnly5db0yoqKrR8+XLFx8d7sbO663NJKIezAAA4A4+WOMP48eM1atQoDRgwQFdddZX+8pe/qLS0VKNHj27UPir38lzIFVs/uixCs5OvrO+WAABo0gg8Z7j99ttVUFCgyZMnKzc3V3379tXSpUvPOZG5sVR3eCvnYKmmffyVtn9frE5tWurGPjEaeGkEe3YAAKiCwxhjvN2EHbjdboWGhqq4uLjezucBAKA5aIzfUM7hAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAthfg7Qbswhgj6fQj7gEAQO1V/nZW/pY2BAJPPTly5IgkKTY21sudAADQNB05ckShoaENMm+Hacg41YxUVFTowIEDat26tRwOR73M0+12KzY2Vvv27ZPL5aqXedoN26hmbKOasY2qx/apGduoZtVtI2OMjhw5opiYGPn5NczZNuzhqSd+fn665JJLGmTeLpeL/wHVgG1UM7ZRzdhG1WP71IxtVLPzbaOG2rNTiZOWAQCA7RF4AACA7RF4fJjT6dQzzzwjp9Pp7VZ8FtuoZmyjmrGNqsf2qRnbqGbe3kactAwAAGyPPTwAAMD2CDwAAMD2CDwAAMD2CDwAAMD2CDw+bNasWercubNatGihgQMHat26dd5uqV6kp6frpptuUkxMjBwOhxYsWOAxbozR5MmT1b59ewUHBysxMVE7duzwqCksLFRycrJcLpfCwsKUkpKikpISj5rNmzdryJAhatGihWJjYzV9+vRzennvvffUvXt3tWjRQr1799bHH39c7+tbV1OnTtUPf/hDtW7dWu3atdOIESOUnZ3tUXP8+HGlpqYqIiJCrVq10q233qq8vDyPmr1792r48OEKCQlRu3bt9Nhjj+nUqVMeNZ9++qn69+8vp9OpLl26aN68eef044vfw9mzZ+sHP/iBdQOz+Ph4LVmyxBpv7tvnbNOmTZPD4dC4ceOsac19G02ZMkUOh8Pj1b17d2u8uW+fSvv379ddd92liIgIBQcHq3fv3tqwYYM13qT+Xhv4pLffftsEBQWZf/7zn2bbtm1mzJgxJiwszOTl5Xm7tYv28ccfmyeffNJ88MEHRpL58MMPPcanTZtmQkNDzYIFC8ymTZvMzTffbOLi4syxY8esmmHDhpk+ffqYL774wnz22WemS5cuZuTIkdZ4cXGxiYqKMsnJyWbr1q1m/vz5Jjg42Pz1r3+1alavXm38/f3N9OnTzfbt281TTz1lAgMDzZYtWxp8G1QnKSnJvPbaa2br1q0mKyvL3HDDDaZjx46mpKTEqnnggQdMbGysWb58udmwYYO5+uqrzY9+9CNr/NSpU+aKK64wiYmJZuPGjebjjz82bdu2NZMmTbJqdu3aZUJCQsz48ePN9u3bzcyZM42/v79ZunSpVeOr38OFCxeaxYsXm2+++cZkZ2ebJ554wgQGBpqtW7caY9g+Z1q3bp3p3Lmz+cEPfmAefvhha3pz30bPPPOM6dWrl/n++++tV0FBgTXe3LePMcYUFhaaTp06mV/+8pdm7dq1ZteuXWbZsmVm586dVk1T+ntN4PFRV111lUlNTbXel5eXm5iYGDN16lQvdlX/zg48FRUVJjo62syYMcOaVlRUZJxOp5k/f74xxpjt27cbSWb9+vVWzZIlS4zD4TD79+83xhjz6quvmvDwcHPixAmrZsKECaZbt27W+1/84hdm+PDhHv0MHDjQ/OpXv6rXdbxY+fn5RpJZtWqVMeb09ggMDDTvvfeeVfPVV18ZSSYjI8MYczpU+vn5mdzcXKtm9uzZxuVyWdvk8ccfN7169fJY1u23326SkpKs903pexgeHm7+/ve/s33OcOTIEdO1a1eTlpZmfvzjH1uBh210OvD06dOnyjG2z2kTJkwwgwcPPu94U/t7zSEtH3Ty5EllZmYqMTHRmubn56fExERlZGR4sbOGl5OTo9zcXI91Dw0N1cCBA611z8jIUFhYmAYMGGDVJCYmys/PT2vXrrVqEhISFBQUZNUkJSUpOztbhw8ftmrOXE5lja9t4+LiYklSmzZtJEmZmZkqKyvz6L179+7q2LGjxzbq3bu3oqKirJqkpCS53W5t27bNqqlu/ZvK97C8vFxvv/22SktLFR8fz/Y5Q2pqqoYPH37OerCNTtuxY4diYmJ06aWXKjk5WXv37pXE9qm0cOFCDRgwQLfddpvatWunfv366W9/+5s13tT+XhN4fNDBgwdVXl7u8T8kSYqKilJubq6XumocletX3brn5uaqXbt2HuMBAQFq06aNR01V8zhzGeer8aVtXFFRoXHjxmnQoEG64oorJJ3uOygoSGFhYR61Z2+jC11/t9utY8eO+fz3cMuWLWrVqpWcTqceeOABffjhh+rZsyfb57/efvttffnll5o6deo5Y2wjaeDAgZo3b56WLl2q2bNnKycnR0OGDNGRI0fYPv+1a9cuzZ49W127dtWyZcv061//Wg899JBef/11SU3v7zVPSwd8WGpqqrZu3arPP//c2634nG7duikrK0vFxcV6//33NWrUKK1atcrbbfmEffv26eGHH1ZaWppatGjh7XZ80vXXX2/9+wc/+IEGDhyoTp066d1331VwcLAXO/MdFRUVGjBggP74xz9Kkvr166etW7dqzpw5GjVqlJe7qzv28Pigtm3byt/f/5wrAvLy8hQdHe2lrhpH5fpVt+7R0dHKz8/3GD916pQKCws9aqqax5nLOF+Nr2zjsWPHatGiRVq5cqUuueQSa3p0dLROnjypoqIij/qzt9GFrr/L5VJwcLDPfw+DgoLUpUsXXXnllZo6dar69Omjl156ie2j04dk8vPz1b9/fwUEBCggIECrVq3Syy+/rICAAEVFRTX7bXS2sLAwXX755dq5cyffof9q3769evbs6TGtR48e1qG/pvb3msDjg4KCgnTllVdq+fLl1rSKigotX75c8fHxXuys4cXFxSk6Otpj3d1ut9auXWute3x8vIqKipSZmWnVrFixQhUVFRo4cKBVk56errKyMqsmLS1N3bp1U3h4uFVz5nIqa7y9jY0xGjt2rD788EOtWLFCcXFxHuNXXnmlAgMDPXrPzs7W3r17PbbRli1bPP7QpKWlyeVyWX/Aalr/pvY9rKio0IkTJ9g+kq677jpt2bJFWVlZ1mvAgAFKTk62/t3ct9HZSkpK9O2336p9+/Z8h/5r0KBB59wS45tvvlGnTp0kNcG/17U+vRmN6u233zZOp9PMmzfPbN++3dx///0mLCzM44qApurIkSNm48aNZuPGjUaS+fOf/2w2btxo9uzZY4w5fZljWFiY+c9//mM2b95sfvrTn1Z5mWO/fv3M2rVrzeeff266du3qcZljUVGRiYqKMnfffbfZunWrefvtt01ISMg5lzkGBASYP/3pT+arr74yzzzzjE9clv7rX//ahIaGmk8//dTjktmjR49aNQ888IDp2LGjWbFihdmwYYOJj4838fHx1njlJbNDhw41WVlZZunSpSYyMrLKS2Yfe+wx89VXX5lZs2ZVecmsL34PJ06caFatWmVycnLM5s2bzcSJE43D4TCffPKJMYbtU5Uzr9Iyhm306KOPmk8//dTk5OSY1atXm8TERNO2bVuTn59vjGH7GHP6lgYBAQHmueeeMzt27DBvvvmmCQkJMf/+97+tmqb095rA48NmzpxpOnbsaIKCgsxVV11lvvjiC2+3VC9WrlxpJJ3zGjVqlDHm9KWOTz/9tImKijJOp9Ncd911Jjs722Mehw4dMiNHjjStWrUyLpfLjB492hw5csSjZtOmTWbw4MHG6XSaDh06mGnTpp3Ty7vvvmsuv/xyExQUZHr16mUWL17cYOtdW1VtG0nmtddes2qOHTtmfvOb35jw8HATEhJifvazn5nvv//eYz67d+82119/vQkODjZt27Y1jz76qCkrK/OoWblypenbt68JCgoyl156qccyKvni9/Dee+81nTp1MkFBQSYyMtJcd911Vtgxhu1TlbMDT3PfRrfffrtp3769CQoKMh06dDC33367x/1lmvv2qfTRRx+ZK664wjidTtO9e3czd+5cj/Gm9PfaYYwxtd8fBAAA0PRwDg8AALA9Ag8AALA9Ag8AALA9Ag8AALA9Ag8AALA9Ag8AALA9Ag8AALA9Ag8AALA9Ag8Ar/jlL38ph8Mhh8OhwMBAxcXF6fHHH9fx48e93RoAGwrwdgMAmq9hw4bptddeU1lZmTIzMzVq1Cg5HA49//zz3m4NgM2whweA1zidTkVHRys2NlYjRoxQYmKi0tLSJJ1+avTUqVMVFxen4OBg9enTR++//741dskll2j27Nke89u4caP8/Py0Z88eSVJRUZHuu+8+RUZGyuVy6dprr9WmTZus+ilTpqhv377617/+pc6dOys0NFR33HGHjhw5YtV07txZf/nLXzyW07dvX02ZMsV6X9NyAHgfgQeAT9i6davWrFmjoKAgSdLUqVP1xhtvaM6cOdq2bZseeeQR3XXXXVq1apX8/Pw0cuRIvfXWWx7zePPNNzVo0CB16tRJknTbbbcpPz9fS5YsUWZmpvr376/rrrtOhYWF1me+/fZbLViwQIsWLdKiRYu0atUqTZs2rU6912Y5ALysTo8aBYB6MmrUKOPv729atmxpnE6nkWT8/PzM+++/b44fP25CQkLMmjVrPD6TkpJiRo4caYwxZuPGjcbhcJg9e/YYY4wpLy83HTp0MLNnzzbGGPPZZ58Zl8tljh8/7jGPyy67zPz1r381xhjzzDPPmJCQEON2u63xxx57zAwcONB636lTJ/Piiy96zKNPnz7mmWeeqfVyAHgf5/AA8JprrrlGs2fPVmlpqV588UUFBATo1ltv1bZt23T06FH93//9n0f9yZMn1a9fP0mnDyv16NFDb731liZOnKhVq1YpPz9ft912myRp06ZNKikpUUREhMc8jh07pm+//dZ637lzZ7Vu3dp63759e+Xn59d6HWq7HADeReAB4DUtW7ZUly5dJEn//Oc/1adPH/3jH//QFVdcIUlavHixOnTo4PEZp9Np/Ts5OdkKPG+99ZaGDRtmBY+SkhK1b99en3766TnLDQsLs/4dGBjoMeZwOFRRUWG99/PzkzHGo6asrMz6d22XA8C7CDwAfIKfn5+eeOIJjR8/Xt98842cTqf27t2rH//4x+f9zJ133qmnnnpKmZmZev/99zVnzhxrrH///srNzVVAQIA6d+58wX1FRkbq+++/t9673W7l5OTU+3IANCxOWgbgM2677Tb5+/vrr3/9q37729/qkUce0euvv65vv/1WX375pWbOnKnXX3/dqu/cubN+9KMfKSUlReXl5br55putscTERMXHx2vEiBH65JNPtHv3bq1Zs0ZPPvmkNmzYUOuerr32Wv3rX//SZ599pi1btmjUqFHy9/ev9+UAaFjs4QHgMwICAjR27FhNnz5dOTk5ioyM1NSpU7Vr1y6FhYWpf//+euKJJzw+k5ycrN/85je65557FBwcbE13OBz6+OOP9eSTT2r06NEqKChQdHS0EhISFBUVVeueJk2apJycHN14440KDQ3V73//e489PPW1HAANy2HOPjgNAABgMxzSAgAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtkfgAQAAtvf/A/tzSvvaSB9OAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "sales.plot(kind='scatter', x='Revenue', y='Profit', figsize=(6,6))" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(8,8))\n", - "plt.matshow(corr, cmap='RdBu', fignum=fig.number)\n", - "plt.xticks(range(len(corr.columns)), corr.columns, rotation='vertical');\n", - "plt.yticks(range(len(corr.columns)), corr.columns);" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "TmJlqIAIqTy_", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 429 + }, + "outputId": "13040845-37c1-461c-c1a8-7333f835b0e8" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0, 0.5, 'Profit')" + ] + }, + "metadata": {}, + "execution_count": 9 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAIxCAYAAAD5Z9EaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOnElEQVR4nOzde3zP9f//8fvOJ4ZhszEshGwhJCmHHMaQ5VAkUUqK5NxHyamDchaVJNQndNDQRw5bTlNGTpNTQg6FjZyGzY6v3x9+79fX2zY2jffbe7fr5eJi7+fr8Xq9H6+938+93o/38/V6vpwMwzAEAAAAAHBIzrZOAAAAAABw+1D0AQAAAIADo+gDAAAAAAdG0QcAAAAADoyiDwAAAAAcGEUfAAAAADgwij4AAAAAcGAUfQAAAADgwCj6AAAAAMCBUfQBAPLMyclJo0ePtnUaDm/dunVycnLSunXrbhg3evRoOTk56Z9//rkziQEA7koUfQBgB+bNmycnJyerf/7+/mratKlWrFhh6/T+tb1792r06NE6cuSIrVPBv/Tggw/KyclJn3zyia1TyebUqVP6z3/+o7CwMBUpUkSenp6qXLmynnvuOf3888+2Tg8AbMbV1gkAAP7P2LFjFRISIsMwlJiYqHnz5ikiIkL/+9//1LZtW1und8v27t2rMWPGqEmTJqpYsaKt08EtOnDggLZs2aKKFStq/vz5evnll22dkunXX39VmzZtdPHiRXXp0kV9+vSRh4eHDh8+rCVLlmjevHlav369GjVqZOtUAeCOo+gDADvSunVr1a1b13zcq1cvBQQEaOHChXd10XcnZWRkKCsrS+7u7rZOxeF89dVX8vf316RJk9SpUycdOXLELor4c+fOKTIyUq6uroqPj1e1atWslr/zzjv6+uuv5eXldcPtXL58WT4+PrczVQCwCU7vBAA7Vrx4cXl5ecnV1fo7usuXL2vw4MEKDg6Wh4eHqlatqokTJ8owDElSSkqKqlWrpmrVqiklJcVc7+zZswoMDNTDDz+szMxMSVLPnj1VpEgR/fnnnwoPD5ePj4+CgoI0duxYc3s3smPHDrVu3Vq+vr4qUqSImjVrpk2bNpnL582bp86dO0uSmjZtap6+erPr1b777jvdd9998vT0VGhoqBYvXqyePXtaFRlHjhyRk5OTJk6cqKlTp6pSpUry8PDQ3r17JUlr1qzRo48+Kh8fHxUvXlzt27fXvn37rJ7n+m1aWK6Xu5aTk5P69eun+fPnq2rVqvL09FSdOnUUGxubbf3jx4/r+eefV0BAgDw8PFSjRg3NmTMnW9zff/+tyMhI+fj4yN/fXwMHDlRqauoNfzfX++eff/Tkk0/K19dXJUuW1GuvvaYrV66Yyxs3bqyaNWvmuG7VqlUVHh6ep+dZsGCBOnXqpLZt26pYsWJasGBBjnHr1q1T3bp15enpqUqVKunTTz/N8fcpXS0k69SpIy8vL/n5+alLly7666+/8pSPxcyZM3Xy5ElNnTo1W8EnXX3dunbtqnr16pltlnz27t2rp59+WiVKlNAjjzwi6eoXB2+//bb5fqpYsaLeeOONbK9Lbte4VqxYUT179jQfW07fjo2N1UsvvaSSJUvK19dXzz77rM6dO5evfQWAW8FIHwDYkQsXLuiff/6RYRg6deqUpk+frkuXLumZZ54xYwzD0OOPP661a9eqV69eqlWrllatWqWhQ4fq+PHjmjJliry8vPTFF1+oYcOGevPNNzV58mRJUt++fXXhwgXNmzdPLi4u5jYzMzPVqlUrPfTQQxo/frxWrlypUaNGKSMjQ2PHjs013z179ujRRx+Vr6+vhg0bJjc3N3366adq0qSJ1q9fr/r166tRo0bq37+/PvzwQ73xxhuqXr26JJn/5+THH3/UU089pbCwMI0bN07nzp1Tr169VLZs2Rzj586dqytXrqh3797y8PCQn5+ffvrpJ7Vu3Vr33HOPRo8erZSUFE2fPl0NGzbU9u3bb3mEav369frmm2/Uv39/eXh46OOPP1arVq3066+/KjQ0VJKUmJiohx56yCwSS5curRUrVqhXr15KSkrSgAEDJF0tzps1a6Zjx46pf//+CgoK0n//+1+tWbMmXzk9+eSTqlixosaNG6dNmzbpww8/1Llz5/Tll19Kkrp3764XX3xRu3fvNnOUpC1btuiPP/7QiBEjbvocmzdv1sGDBzV37ly5u7urQ4cOmj9/vt544w2ruB07dqhVq1YKDAzUmDFjlJmZqbFjx6p06dLZtvnuu+/qrbfe0pNPPqkXXnhBp0+f1vTp09WoUSPt2LFDxYsXz9P+/+9//5OXl5c6dOiQp/hrde7cWVWqVNF7771nfsnxwgsv6IsvvlCnTp00ePBgbd68WePGjdO+ffu0ePHifD+HRb9+/VS8eHGNHj1a+/fv1yeffKKjR4+aE/cAwG1jAABsbu7cuYakbP88PDyMefPmWcUuWbLEkGS88847Vu2dOnUynJycjIMHD5ptw4cPN5ydnY3Y2Fjju+++MyQZU6dOtVqvR48ehiTj1VdfNduysrKMNm3aGO7u7sbp06fNdknGqFGjzMeRkZGGu7u7cejQIbPtxIkTRtGiRY1GjRqZbZbnXrt2bZ5+H2FhYUa5cuWMixcvmm3r1q0zJBkVKlQw2w4fPmxIMnx9fY1Tp05ZbaNWrVqGv7+/cebMGbNt586dhrOzs/Hss89a7f+127QYNWqUcf1h0vK6bN261Ww7evSo4enpaTzxxBNmW69evYzAwEDjn3/+sVq/S5cuRrFixYzk5GTDMAxj6tSphiTj22+/NWMuX75sVK5cOU+/L0uOjz/+uFX7K6+8Ykgydu7caRiGYZw/f97w9PQ0Xn/9dau4/v37Gz4+PsalS5du+DyGYRj9+vUzgoODjaysLMMwDCM6OtqQZOzYscMqrl27doa3t7dx/Phxs+3AgQOGq6ur1e/zyJEjhouLi/Huu+9arb9r1y7D1dU1W/uNlChRwqhVq1a29qSkJOP06dPmv2v30/K769q1q9U68fHxhiTjhRdesGofMmSIIclYs2aN2XZ9f7CoUKGC0aNHD/OxpX/XqVPHSEtLM9vHjx9vSDKWLl2a530FgFvB6Z0AYEc++ugjxcTEKCYmRl999ZWaNm2qF154QVFRUWbM8uXL5eLiov79+1utO3jwYBmGYTXb5+jRo1WjRg316NFDr7zyiho3bpxtPYt+/fqZP1tGqNLS0vTTTz/lGJ+Zmano6GhFRkbqnnvuMdsDAwP19NNP6+eff1ZSUlK+fwcnTpzQrl279Oyzz6pIkSJme+PGjRUWFpbjOh07drQaSTp58qTi4+PVs2dP+fn5me3333+/WrRooeXLl+c7L4sGDRqoTp065uPy5curffv2WrVqlTIzM2UYhr7//nu1a9dOhmHon3/+Mf+Fh4frwoUL2r59u6Srr2VgYKA6depkbs/b21u9e/fOV059+/a1evzqq6+a25ekYsWKqX379lq4cKE5mpWZmalvvvnGPLX0RjIyMvTNN9/oqaeeMkekHnvsMfn7+2v+/PlmXGZmpn766SdFRkYqKCjIbK9cubJat25ttc2oqChlZWXpySeftPodlSlTRlWqVNHatWvzvP9JSUlW7xWL7t27q3Tp0ua/119/PVtMnz59rB5bfmeDBg2yah88eLCkq6PQt6p3795yc3MzH7/88stydXX9V+9HAMgLij4AsCMPPvigmjdvrubNm6tbt2768ccfdd9995kFmCQdPXpUQUFBKlq0qNW6ltMljx49ara5u7trzpw5Onz4sC5evKi5c+fmeBqZs7OzVeEmSffee68k5XqbhdOnTys5OVlVq1bNtqx69erKysrK97VZ1+ZfuXLlbMtyapOkkJCQHLeRW27//POPLl++nO/cJKlKlSrZ2u69914lJyfr9OnTOn36tM6fP69Zs2ZZFRylS5fWc889J+nqrQUseVauXDnba5JT3vnJqVKlSnJ2drZ67Z599lkdO3ZMGzZskCT99NNPSkxMVPfu3W+6/ejoaJ0+fVoPPvigDh48qIMHD+rw4cNq2rSpFi5cqKysLHO/UlJS8vTaHThwQIZhqEqVKtl+T/v27TN/R3lRtGhRXbp0KVv72LFjzS9RcpPTe8fZ2TlbvmXKlFHx4sWt+ld+Xf86FSlSRIGBgdzKBMBtxzV9AGDHnJ2d1bRpU02bNk0HDhxQjRo18r2NVatWSZKuXLmiAwcOZPuQ6whuNivjjeR2LZVlopv8shRAzzzzjHr06JFjzP33339L286rnPYpPDxcAQEB+uqrr9SoUSN99dVXKlOmjJo3b37T7VlG85588skcl69fv15NmzbNV45ZWVlycnLSihUrrK4vtchp5C431apV086dO5Wenm41kpaX33Nu751/c43drb53AOB2oegDADuXkZEhSeZIRoUKFfTTTz/p4sWLVqN9v//+u7nc4rffftPYsWP13HPPKT4+Xi+88IJ27dqlYsWKWT1HVlaW/vzzT3N0T5L++OMPScp1wpPSpUvL29tb+/fvz7bs999/l7Ozs4KDgyXl7wO0Jf+DBw9mW5ZT2422kVtupUqVMk9pLFGihM6fP58tLrcRnQMHDmRr++OPP+Tt7W2eYlq0aFFlZmbetKCqUKGCdu/eLcMwrH5HOeV9I9cX8wcPHlRWVpbVa+fi4qKnn35a8+bN0wcffKAlS5boxRdfzLHgutbly5e1dOlSPfXUU1anoVr0799f8+fPV9OmTeXv7y9PT888vXaVKlWSYRgKCQmxet/dirZt22rTpk1avHhxroVpXlWoUEFZWVk6cOCA1WRDiYmJOn/+vFX/yum9k5aWppMnT+a47QMHDlgVx5cuXdLJkycVERHxr3IGgJvh9E4AsGPp6emKjo6Wu7u7+QE0IiJCmZmZmjFjhlXslClT5OTkZF47lZ6erp49eyooKEjTpk3TvHnzlJiYqIEDB+b4XNduzzAMzZgxQ25ubmrWrFmO8S4uLmrZsqWWLl1qdXpaYmKiFixYoEceeUS+vr6SZBZYORVX1wsKClJoaKi+/PJLq1P21q9fr127dt10fenqdYW1atXSF198YfWcu3fvVnR0tNWH7EqVKunChQv67bffzLaTJ0/mOktjXFyceU2eJP31119aunSpWrZsKRcXF7m4uKhjx476/vvvtXv37mzrnz592vw5IiJCJ06c0KJFi8y25ORkzZo1K0/7afHRRx9ZPZ4+fbokZbuOrnv37jp37pxeeumlbLPC5mbx4sW6fPmy+vbtq06dOmX717ZtW33//fdKTU2Vi4uLmjdvriVLlujEiRPmNg4ePGh1rakkdejQQS4uLhozZky2W4MYhqEzZ87kef9ffvllBQQEaODAgeaXFddvL68s742pU6datVtmwG3Tpo3ZVqlSpWy365g1a1auI32zZs1Senq6+fiTTz5RRkZGttcJAAoaI30AYEdWrFhhjtidOnVKCxYs0IEDB/Sf//zHLKDatWunpk2b6s0339SRI0dUs2ZNRUdHa+nSpRowYIAqVaok6eoNqePj47V69WoVLVpU999/v0aOHKkRI0aoU6dOVoWPp6enVq5cqR49eqh+/fpasWKFfvzxR73xxhs5TrVv8c477ygmJkaPPPKIXnnlFbm6uurTTz9Vamqqxo8fb8bVqlVLLi4u+uCDD3ThwgV5eHiYE4Hk5L333lP79u3VsGFDPffcczp37pxmzJih0NDQHK/dysmECRPUunVrNWjQQL169TJv2VCsWDGre6t16dJFr7/+up544gn1799fycnJ+uSTT3TvvfdaFXcWoaGhCg8Pt7plgySNGTPGjHn//fe1du1a1a9fXy+++KLuu+8+nT17Vtu3b9dPP/2ks2fPSpJefPFFzZgxQ88++6y2bdumwMBA/fe//5W3t3ee9tHi8OHDevzxx9WqVSvFxcXpq6++0tNPP53t3ny1a9dWaGiovvvuO1WvXl0PPPDATbc9f/58lSxZUg8//HCOyx9//HF99tln+vHHH9WhQweNHj1a0dHRatiwoV5++WXzC4rQ0FDFx8eb61WqVEnvvPOOhg8friNHjigyMlJFixbV4cOHtXjxYvXu3VtDhgzJ0/77+flp8eLFateunWrWrKkuXbqoXr16cnNz019//aXvvvtO0tVJd26mZs2a6tGjh2bNmqXz58+rcePG+vXXX/XFF18oMjLSaqTuhRdeUJ8+fdSxY0e1aNFCO3fu1KpVq1SqVKkct52WlqZmzZrpySef1P79+/Xxxx/rkUce0eOPP56n/QSAW2ajWUMBANfI6ZYNnp6eRq1atYxPPvnEnCbf4uLFi8bAgQONoKAgw83NzahSpYoxYcIEM27btm2Gq6ur1W0YDMMwMjIyjHr16hlBQUHGuXPnDMO4essCHx8f49ChQ0bLli0Nb29vIyAgwBg1apSRmZlptb5ymKJ++/btRnh4uFGkSBHD29vbaNq0qbFx48Zs+/jZZ58Z99xzj+Hi4pKn2xF8/fXXRrVq1QwPDw8jNDTU+OGHH4yOHTsa1apVM2Mst2yYMGFCjtv46aefjIYNGxpeXl6Gr6+v0a5dO2Pv3r3Z4qKjo43Q0FDD3d3dqFq1qvHVV1/lesuGvn37Gl999ZVRpUoVw8PDw6hdu3aO+5KYmGj07dvXCA4ONtzc3IwyZcoYzZo1M2bNmmUVd/ToUePxxx83vL29jVKlShmvvfaasXLlynzdsmHv3r1Gp06djKJFixolSpQw+vXrZ6SkpOS4juU2Ae+9994Nt23ZB1dXV6N79+65xiQnJxve3t5Wt6xYvXq1Ubt2bcPd3d2oVKmSMXv2bGPw4MGGp6dntvW///5745FHHjF8fHwMHx8fo1q1akbfvn2N/fv33zS/6508edIYOnSocd999xleXl6Gh4eHcc899xjPPvusERsbaxVr+d1de0sSi/T0dGPMmDFGSEiI4ebmZgQHBxvDhw83rly5YhWXmZlpvP7660apUqUMb29vIzw83Dh48GCut2xYv3690bt3b6NEiRJGkSJFjG7dulndUgQAbhcnw8jHOQ8AAIfTs2dPLVq0KM8jaLZUq1YtlS5d+oazMd5OTk5O6tu3b7ZTa+8m06ZN08CBA3XkyJE8jXwVlMjISO3ZsyfHayId3bx58/Tcc89py5Ytqlu3rq3TAVAIcU0fAMDupKenmxPYWKxbt047d+5UkyZNbJOUAzAMQ59//rkaN258Wwu+lJQUq8cHDhzQ8uXLee0AwEa4pg8AYHeOHz+u5s2b65lnnlFQUJB+//13zZw5U2XKlMl2M23c3OXLl/XDDz9o7dq12rVrl5YuXXpbn++ee+5Rz549dc899+jo0aP65JNP5O7urmHDhuVrOykpKbpw4cINY/z8/OTu7v5v0gUAh0fRBwCwOyVKlFCdOnU0e/ZsnT59Wj4+PmrTpo3ef/99lSxZ0tbp3XVOnz6tp59+WsWLF9cbb7xx2ycOadWqlRYuXKiEhAR5eHioQYMGeu+993K8sf2NfPPNN+YN7XOzdu1aRhAB4Ca4pg8AANilkydPas+ePTeMqVOnjkqUKHGHMgKAuxNFHwAAAAA4MCZyAQAAAAAHRtEHAAAAAA6Mog8AAAAAHBhFHwAAAAA4MIo+AAAAAHBgFH0AAAAA4MAo+gAAsFMZGRkaNmyYgoOD5ezsrMjISEmSk5OTRo8ebdPcAAB3D4o+AADyad68eXJycjL/eXp66t5771W/fv2UmJhYYM8zZ84cTZgwQZ06ddIXX3yhgQMH5hi3ceNGjR49WufPny+w5wYAOA5XWycAAMDdauzYsQoJCdGVK1f0888/65NPPtHy5cu1e/dueXt7/+vtr1mzRmXLltWUKVOs2lNSUuTq+n+H8I0bN2rMmDHq2bOnihcv/q+fFwDgWCj6AAC4Ra1bt1bdunUlSS+88IJKliypyZMna+nSperatWu2+MuXL8vHxyfP2z916lSORZynp+ct5wwAKHw4vRMAgALy2GOPSZIOHz6snj17qkiRIjp06JAiIiJUtGhRdevWTdLV4m/w4MEKDg6Wh4eHqlatqokTJ8owDEnSkSNH5OTkpLVr12rPnj3maaTr1q2TZH1N3+jRozV06FBJUkhIiBl75MiRO7rvAAD7xUgfAAAF5NChQ5KkkiVLSro6EUt4eLgeeeQRTZw4Ud7e3jIMQ48//rjWrl2rXr16qVatWlq1apWGDh2q48ePa8qUKSpdurT++9//6t1339WlS5c0btw4SVL16tWzPWeHDh30xx9/aOHChZoyZYpKlSolSSpduvQd2msAgL2j6AMA4BZduHBB//zzj65cuaJffvlFY8eOlZeXl9q2bau4uDilpqaqc+fOZtEmSUuXLtWaNWv0zjvv6M0335Qk9e3bV507d9a0adPUr18/VapUSc8884xmz54tFxcXPfPMM7nmcP/99+uBBx7QwoULFRkZqYoVK97u3QYA3GU4vRMAgFvUvHlzlS5dWsHBwerSpYuKFCmixYsXq2zZsmbMyy+/bLXO8uXL5eLiov79+1u1Dx48WIZhaMWKFXckdwBA4cFIHwAAt+ijjz7SvffeK1dXVwUEBKhq1apydv6/71NdXV1Vrlw5q3WOHj2qoKAgFS1a1Krdcurm0aNHb3/iAIBChaIPAIBb9OCDD5qzd+bEw8PDqggEAMAWOBIBAHAHVahQQSdOnNDFixet2n///XdzeX45OTkVSG4AAMdE0QcAwB0UERGhzMxMzZgxw6p9ypQpcnJyUuvWrfO9Tcu9/86fP18QKQIAHAyndwIAcAe1a9dOTZs21ZtvvqkjR46oZs2aio6O1tKlSzVgwABVqlQp39usU6eOJOnNN99Uly5d5Obmpnbt2uXrRvAAAMdF0QcAwB3k7OysH374QSNHjtQ333yjuXPnqmLFipowYYIGDx58S9usV6+e3n77bc2cOVMrV65UVlaWDh8+TNEHAJAkORmGYdg6CQAAAADA7cE1fQAAAADgwCj6AAAAAMCBUfQBAAAAgAOj6AMAAAAAB0bRBwAAAAAOjKIPAAAAABwY9+krIFlZWTpx4oSKFi0qJycnW6cDAAAAwIEZhqGLFy8qKChIzs43Hsuj6CsgJ06cUHBwsK3TAAAAAFCI/PXXXypXrtwNYyj6CkjRokUlXf2l+/r62jgbpKenKzo6Wi1btpSbm5ut0wHsCv0DyB39A8gd/cO+JCUlKTg42KxDboSir4BYTun09fWl6LMD6enp8vb2lq+vL3+UgOvQP4Dc0T+A3NE/7FNeLi1jIhcAAAAAcGAUfQAAAADgwCj6AAAAAMCBUfQBAAAAgAOj6AMAAAAAB0bRBwAAAAAOjKIPAAAAABwYRR8AAAAAODCKPgAAAABwYBR9AAAAAODAKPoAAAAAwIFR9AEAAACAA6Pog8PJzMzU+vXrFRsbq/Xr1yszM9PWKQEAAAA2Q9EHhxIVFaXKlSurRYsWmjx5slq0aKHKlSsrKirK1qkBAAAANkHRB4cRFRWlTp06KSwsTBs2bNDChQu1YcMGhYWFqVOnThR+AAAAKJQo+uAQMjMzNXjwYLVt21ZLlixR/fr15eXlpfr162vJkiVq27athgwZwqmeAAAAKHQo+uAQNmzYoCNHjuiNN96Qs7P129rZ2VnDhw/X4cOHtWHDBhtlCAAAANgGRR8cwsmTJyVJoaGhOS63tFviAAAAgMKCog8OITAwUJK0e/fuHJdb2i1xAAAAQGFB0QeH8Oijj6pixYp67733lJWVZbUsKytL48aNU0hIiB599FEbZQgAAADYBkUfHIKLi4smTZqkZcuWKTIyUps2bVJKSoo2bdqkyMhILVu2TBMnTpSLi4utUwUAAADuKFdbJwAUlA4dOmjRokUaPHiwGjVqZLaHhIRo0aJF6tChgw2zAwAAAGyDog8OpUOHDmrfvr3Wrl2rFStWqHXr1mratCkjfAAAACi0KPrgcFxcXNS4cWNdvnxZjRs3puADAABAocY1fQAAAADgwCj6AAAAAMCBUfQBAAAAgAOj6AMAAAAAB0bRBwAAAAAOjKIPAAAAABwYRR8AAAAAODCKPgAAAABwYBR9AAAAAODAKPoAAAAAwIFR9AEAAACAA6PoAwAAAAAHRtEHAAAAAA6Mog8AAAAAHBhFHwAAAAA4MIo+AAAAAHBgFH1wOJmZmVq/fr1iY2O1fv16ZWZm2jolAAAAwGYo+uBQoqKiVLlyZbVo0UKTJ09WixYtVLlyZUVFRdk6NQAAAMAmKPrgMKKiotSpUyeFhYVpw4YNWrhwoTZs2KCwsDB16tSJwg8AAACFkk2LvtjYWLVr105BQUFycnLSkiVLco3t06ePnJycNHXqVKv2s2fPqlu3bvL19VXx4sXVq1cvXbp0ySrmt99+06OPPipPT08FBwdr/Pjx2bb/3XffqVq1avL09FRYWJiWL19eELuIOyQzM1ODBw9W27ZttWTJEtWvX19eXl6qX7++lixZorZt22rIkCGc6gkAAIBCx6ZF3+XLl1WzZk199NFHN4xbvHixNm3apKCgoGzLunXrpj179igmJkbLli1TbGysevfubS5PSkpSy5YtVaFCBW3btk0TJkzQ6NGjNWvWLDNm48aN6tq1q3r16qUdO3YoMjJSkZGR2r17d8HtLG6rDRs26MiRI3rjjTfk7Gz9tnZ2dtbw4cN1+PBhbdiwwUYZAgAAALbhassnb926tVq3bn3DmOPHj+vVV1/VqlWr1KZNG6tl+/bt08qVK7VlyxbVrVtXkjR9+nRFRERo4sSJCgoK0vz585WWlqY5c+bI3d1dNWrUUHx8vCZPnmwWh9OmTVOrVq00dOhQSdLbb7+tmJgYzZgxQzNnzrwNe46CdvLkSUlSaGhojsst7ZY4AAAAoLCwadF3M1lZWerevbuGDh2qGjVqZFseFxen4sWLmwWfJDVv3lzOzs7avHmznnjiCcXFxalRo0Zyd3c3Y8LDw/XBBx/o3LlzKlGihOLi4jRo0CCrbYeHh9/wdNPU1FSlpqaaj5OSkiRJ6enpSk9Pv9Vdxi0qXbq0JCk+Pl7169c3XwPL//Hx8WYcrw8Ku+v7B4D/Q/8Ackf/sC/5eR3suuj74IMP5Orqqv79++e4PCEhQf7+/lZtrq6u8vPzU0JCghkTEhJiFRMQEGAuK1GihBISEsy2a2Ms28jJuHHjNGbMmGzt0dHR8vb2vvnOoUBlZmbK399fgwYN0vDhw81TPGNiYpSVlaVx48YpICBASUlJXK8J/H8xMTG2TgGwW/QPIHf0D/uQnJyc51i7Lfq2bdumadOmafv27XJycrJ1OtkMHz7canQwKSlJwcHBatmypXx9fW2YWeGVkZGhLl266PPPP9fgwYOVmJiogIAATZo0SVu3btXXX3+tdu3a2TpNwObS09MVExOjFi1ayM3NzdbpAHaF/gHkjv5hXyxnGuaF3RZ9GzZs0KlTp1S+fHmzzTJD49SpU3XkyBGVKVNGp06dslovIyNDZ8+eVZkyZSRJZcqUUWJiolWM5fHNYizLc+Lh4SEPD49s7W5ubnQCG3nyySfl6uqqwYMH67HHHjPbQ0JCtGjRInXo0MGG2QH2h79XQO7oH0Du6B/2IT+vgd3ep6979+767bffFB8fb/4LCgrS0KFDtWrVKklSgwYNdP78eW3bts1cb82aNcrKylL9+vXNmNjYWKtzXmNiYlS1alWVKFHCjFm9erXV88fExKhBgwa3ezdRwDp06KCDBw8qJiZGgwYNUkxMjA4cOEDBBwAAgELLpiN9ly5d0sGDB83Hhw8fVnx8vPz8/FS+fHmVLFnSKt7NzU1lypRR1apVJUnVq1dXq1at9OKLL2rmzJlKT09Xv3791KVLF/P2Dk8//bTGjBmjXr166fXXX9fu3bs1bdo0TZkyxdzua6+9psaNG2vSpElq06aNvv76a23dutXqtg64e7i4uKhx48a6fPmyGjduLBcXF1unBAAAANiMTUf6tm7dqtq1a6t27dqSpEGDBql27doaOXJknrcxf/58VatWTc2aNVNERIQeeeQRq2KtWLFiio6O1uHDh1WnTh0NHjxYI0eOtLqX38MPP6wFCxZo1qxZqlmzphYtWqQlS5bkOv0/AAAAANwtbDrS16RJExmGkef4I0eOZGvz8/PTggULbrje/ffff9Obcnfu3FmdO3fOcy4AAAAAcDew22v6AAAAAAD/HkUfAAAAADgwij4AAAAAcGAUfQAAAADgwCj6AAAAAMCBUfQBAAAAgAOj6AMAAAAAB0bRBwAAAAAOjKIPAAAAABwYRR8AAAAAODCKPgAAAABwYBR9AAAAAODAKPoAAAAAwIFR9AEAAACAA6PoAwAAAAAHRtEHAAAAAA6Mog8AAAAAHBhFHwAAAAA4MIo+AAAAAHBgFH0AAAAA4MAo+gAAAADAgVH0AQAAAIADo+gDAAAAAAdG0QcAAAAADoyiDwAAAAAcGEUfAAAAADgwij4AAAAAcGAUfQAAAADgwCj6AAAAAMCBUfQBAAAAgAOj6AMAAAAAB0bRBwAAAAAOjKIPAAAAABwYRR8AAAAAODCKPgAAAABwYBR9AAAAAODAKPoAAAAAwIFR9AEAAACAA6PoAwAAAAAHRtEHAAAAAA6Mog8AAAAAHBhFHwAAAAA4MIo+AAAAAHBgNi36YmNj1a5dOwUFBcnJyUlLliwxl6Wnp+v1119XWFiYfHx8FBQUpGeffVYnTpyw2sbZs2fVrVs3+fr6qnjx4urVq5cuXbpkFfPbb7/p0Ucflaenp4KDgzV+/PhsuXz33XeqVq2aPD09FRYWpuXLl9+WfQYAAACAO8mmRd/ly5dVs2ZNffTRR9mWJScna/v27Xrrrbe0fft2RUVFaf/+/Xr88cet4rp166Y9e/YoJiZGy5YtU2xsrHr37m0uT0pKUsuWLVWhQgVt27ZNEyZM0OjRozVr1iwzZuPGjeratat69eqlHTt2KDIyUpGRkdq9e/ft23kAAAAAuANcbfnkrVu3VuvWrXNcVqxYMcXExFi1zZgxQw8++KCOHTum8uXLa9++fVq5cqW2bNmiunXrSpKmT5+uiIgITZw4UUFBQZo/f77S0tI0Z84cubu7q0aNGoqPj9fkyZPN4nDatGlq1aqVhg4dKkl6++23FRMToxkzZmjmzJm38TcAAAAAALeXTYu+/Lpw4YKcnJxUvHhxSVJcXJyKFy9uFnyS1Lx5czk7O2vz5s164oknFBcXp0aNGsnd3d2MCQ8P1wcffKBz586pRIkSiouL06BBg6yeKzw83Op00+ulpqYqNTXVfJyUlCTp6mmp6enpBbC3+DcsrwGvBZAd/QPIHf0DyB39w77k53W4a4q+K1eu6PXXX1fXrl3l6+srSUpISJC/v79VnKurq/z8/JSQkGDGhISEWMUEBASYy0qUKKGEhASz7doYyzZyMm7cOI0ZMyZbe3R0tLy9vfO/g7gtrh8tBvB/6B9A7ugfQO7oH/YhOTk5z7F3RdGXnp6uJ598UoZh6JNPPrF1OpKk4cOHW40OJiUlKTg4WC1btjSLUthOenq6YmJi1KJFC7m5udk6HcCu0D+A3NE/gNzRP+yL5UzDvLD7os9S8B09elRr1qyxKqjKlCmjU6dOWcVnZGTo7NmzKlOmjBmTmJhoFWN5fLMYy/KceHh4yMPDI1u7m5sbncCO8HoAuaN/ALmjfwC5o3/Yh/y8BnZ9nz5LwXfgwAH99NNPKlmypNXyBg0a6Pz589q2bZvZtmbNGmVlZal+/fpmTGxsrNU5rzExMapatapKlChhxqxevdpq2zExMWrQoMHt2jUAAAAAuCNsWvRdunRJ8fHxio+PlyQdPnxY8fHxOnbsmNLT09WpUydt3bpV8+fPV2ZmphISEpSQkKC0tDRJUvXq1dWqVSu9+OKL+vXXX/XLL7+oX79+6tKli4KCgiRJTz/9tNzd3dWrVy/t2bNH33zzjaZNm2Z1auZrr72mlStXatKkSfr99981evRobd26Vf369bvjvxMAAAAAKEg2Lfq2bt2q2rVrq3bt2pKkQYMGqXbt2ho5cqSOHz+uH374QX///bdq1aqlwMBA89/GjRvNbcyfP1/VqlVTs2bNFBERoUceecTqHnzFihVTdHS0Dh8+rDp16mjw4MEaOXKk1b38Hn74YS1YsECzZs1SzZo1tWjRIi1ZskShoaF37pcBAAAAALeBTa/pa9KkiQzDyHX5jZZZ+Pn5acGCBTeMuf/++7Vhw4YbxnTu3FmdO3e+6fMBAAAAwN3Erq/pAwAAAAD8OxR9AAAAAODAKPoAAAAAwIFR9AEAAACAA6PoAwAAAAAHRtEHAAAAAA6Mog8AAAAAHBhFHwAAAAA4MIo+AAAAAHBgFH0AAAAA4MAo+gAAAADAgVH0AQAAAIADo+gDAAAAAAdG0QcAAAAADoyiDwAAAAAcGEUfAAAAADgwij4AAAAAcGAUfQAAAADgwCj6AAAAAMCBUfQBAAAAgAOj6AMAAAAAB0bRBwAAAAAOjKIPAAAAABwYRR8AAAAAODCKPgAAAABwYBR9AAAAAODAKPoAAAAAwIFR9AEAAACAA6PoAwAAAAAHRtEHAAAAAA6Mog8AAAAAHBhFHwAAAAA4MIo+AAAAAHBgFH0AAAAA4MAo+gAAAADAgVH0AQAAAIADo+gDAAAAAAdG0QcAAAAADoyiDwAAAAAcGEUfAAAAADgwij4AAAAAcGAUfQAAAADgwCj6AAAAAMCB2bToi42NVbt27RQUFCQnJyctWbLEarlhGBo5cqQCAwPl5eWl5s2b68CBA1YxZ8+eVbdu3eTr66vixYurV69eunTpklXMb7/9pkcffVSenp4KDg7W+PHjs+Xy3XffqVq1avL09FRYWJiWL19e4PsLAAAAAHeaTYu+y5cvq2bNmvroo49yXD5+/Hh9+OGHmjlzpjZv3iwfHx+Fh4frypUrZky3bt20Z88excTEaNmyZYqNjVXv3r3N5UlJSWrZsqUqVKigbdu2acKECRo9erRmzZplxmzcuFFdu3ZVr169tGPHDkVGRioyMlK7d+++fTsPAAAAAHeAqy2fvHXr1mrdunWOywzD0NSpUzVixAi1b99ekvTll18qICBAS5YsUZcuXbRv3z6tXLlSW7ZsUd26dSVJ06dPV0REhCZOnKigoCDNnz9faWlpmjNnjtzd3VWjRg3Fx8dr8uTJZnE4bdo0tWrVSkOHDpUkvf3224qJidGMGTM0c+bMO/CbAAAAAIDbw6ZF340cPnxYCQkJat68udlWrFgx1a9fX3FxcerSpYvi4uJUvHhxs+CTpObNm8vZ2VmbN2/WE088obi4ODVq1Eju7u5mTHh4uD744AOdO3dOJUqUUFxcnAYNGmT1/OHh4dlON71WamqqUlNTzcdJSUmSpPT0dKWnp//b3ce/ZHkNeC2A7OgfQO7oH0Du6B/2JT+vg90WfQkJCZKkgIAAq/aAgABzWUJCgvz9/a2Wu7q6ys/PzyomJCQk2zYsy0qUKKGEhIQbPk9Oxo0bpzFjxmRrj46Olre3d152EXdATEyMrVMA7Bb9A8gd/QPIHf3DPiQnJ+c51m6LPns3fPhwq9HBpKQkBQcHq2XLlvL19bVhZpCufvMRExOjFi1ayM3NzdbpAHaF/gHkjv4B5I7+YV8sZxrmhd0WfWXKlJEkJSYmKjAw0GxPTExUrVq1zJhTp05ZrZeRkaGzZ8+a65cpU0aJiYlWMZbHN4uxLM+Jh4eHPDw8srW7ubnRCewIrweQO/oHkDv6B5A7+od9yM9rYLf36QsJCVGZMmW0evVqsy0pKUmbN29WgwYNJEkNGjTQ+fPntW3bNjNmzZo1ysrKUv369c2Y2NhYq3NeY2JiVLVqVZUoUcKMufZ5LDGW5wEAAACAu5VNi75Lly4pPj5e8fHxkq5O3hIfH69jx47JyclJAwYM0DvvvKMffvhBu3bt0rPPPqugoCBFRkZKkqpXr65WrVrpxRdf1K+//qpffvlF/fr1U5cuXRQUFCRJevrpp+Xu7q5evXppz549+uabbzRt2jSrUzNfe+01rVy5UpMmTdLvv/+u0aNHa+vWrerXr9+d/pUAAAAAQIGy6emdW7duVdOmTc3HlkKsR48emjdvnoYNG6bLly+rd+/eOn/+vB555BGtXLlSnp6e5jrz589Xv3791KxZMzk7O6tjx4768MMPzeXFihVTdHS0+vbtqzp16qhUqVIaOXKk1b38Hn74YS1YsEAjRozQG2+8oSpVqmjJkiUKDQ29A78FAAAAALh9bFr0NWnSRIZh5LrcyclJY8eO1dixY3ON8fPz04IFC274PPfff782bNhww5jOnTurc+fON04YAAAAAO4ydntNHwAAAADg36PoAwAAAAAHRtEHAAAAAA6Mog8AAAAAHBhFHwAAAAA4MIo+AAAAAHBgFH0AAAAA4MAo+gAAAADAgVH0AQAAAIADo+gDAAAAAAdG0QcAAAAADoyiDwAAAAAcGEUfAAAAADgwij4AAAAAcGAUfQAAAADgwCj6AAAAAMCBUfQBAAAAgAOj6AMAAAAAB0bRBwAAAAAOjKIPAAAAABwYRR8AAAAAODCKPgAAAABwYBR9AAAAAODAKPoAAAAAwIFR9AEAAACAA6PoAwAAAAAHRtEHAAAAAA6Mog8AAAAAHBhFHwAAAAA4MIo+AAAAAHBgFH0AAAAA4MAo+gAAAADAgVH0AQAAAIADo+gDAAAAAAdG0QcAAAAADoyiDwAAAAAcGEUfAAAAADgwij4AAAAAcGAUfQAAAADgwCj6AAAAAMCBUfQBAAAAgAOj6AMAAAAAB0bRBwAAAAAOzK6LvszMTL311lsKCQmRl5eXKlWqpLfffluGYZgxhmFo5MiRCgwMlJeXl5o3b64DBw5Ybefs2bPq1q2bfH19Vbx4cfXq1UuXLl2yivntt9/06KOPytPTU8HBwRo/fvwd2UcAAAAAuJ1uqeg7duyYVeFlYRiGjh079q+Tsvjggw/0ySefaMaMGdq3b58++OADjR8/XtOnTzdjxo8frw8//FAzZ87U5s2b5ePjo/DwcF25csWM6datm/bs2aOYmBgtW7ZMsbGx6t27t7k8KSlJLVu2VIUKFbRt2zZNmDBBo0eP1qxZswpsXwAAAADAFlxvZaWQkBCdPHlS/v7+Vu1nz55VSEiIMjMzCyS5jRs3qn379mrTpo0kqWLFilq4cKF+/fVXSVeLzKlTp2rEiBFq3769JOnLL79UQECAlixZoi5dumjfvn1auXKltmzZorp160qSpk+froiICE2cOFFBQUGaP3++0tLSNGfOHLm7u6tGjRqKj4/X5MmTrYpDAAAAALjb3FLRZxiGnJycsrVfunRJnp6e/zopi4cfflizZs3SH3/8oXvvvVc7d+7Uzz//rMmTJ0uSDh8+rISEBDVv3txcp1ixYqpfv77i4uLUpUsXxcXFqXjx4mbBJ0nNmzeXs7OzNm/erCeeeEJxcXFq1KiR3N3dzZjw8HB98MEHOnfunEqUKJEtt9TUVKWmppqPk5KSJEnp6elKT08vsN8Bbo3lNeC1ALKjfwC5o38AuaN/2Jf8vA75KvoGDRokSXJyctJbb70lb29vc1lmZqY2b96sWrVq5WeTN/Sf//xHSUlJqlatmlxcXJSZmal3331X3bp1kyQlJCRIkgICAqzWCwgIMJclJCRkG5F0dXWVn5+fVUxISEi2bViW5VT0jRs3TmPGjMnWHh0dbfV7gW3FxMTYOgXAbtE/gNzRP4Dc0T/sQ3Jycp5j81X07dixQ9LVkb5du3ZZjYy5u7urZs2aGjJkSH42eUPffvut5s+frwULFpinXA4YMEBBQUHq0aNHgT3PrRg+fLhZBEtXR/qCg4PVsmVL+fr62jAzSFe/+YiJiVGLFi3k5uZm63QAu0L/AHJH/wByR/+wL5YzDfMiX0Xf2rVrJUnPPfecpk2bdtuLm6FDh+o///mPunTpIkkKCwvT0aNHNW7cOPXo0UNlypSRJCUmJiowMNBcLzEx0RxxLFOmjE6dOmW13YyMDJ09e9Zcv0yZMkpMTLSKsTy2xFzPw8NDHh4e2drd3NzoBHaE1wPIHf0DyB39A8gd/cM+5Oc1uKXZO+fOnXtHRrOSk5Pl7GydoouLi7KysiRdnVCmTJkyWr16tbk8KSlJmzdvVoMGDSRJDRo00Pnz57Vt2zYzZs2aNcrKylL9+vXNmNjYWKvzYmNiYlS1atUcT+0EAAAAgLtFnkf6OnTooHnz5snX11cdOnS4YWxUVNS/TkyS2rVrp3fffVfly5dXjRo1tGPHDk2ePFnPP/+8pKvXFg4YMEDvvPOOqlSpopCQEL311lsKCgpSZGSkJKl69epq1aqVXnzxRc2cOVPp6enq16+funTpoqCgIEnS008/rTFjxqhXr156/fXXtXv3bk2bNk1TpkwpkP0AAAAAAFvJc9FXrFgxc8ZOX1/fHGfvLGjTp0/XW2+9pVdeeUWnTp1SUFCQXnrpJY0cOdKMGTZsmC5fvqzevXvr/PnzeuSRR7Ry5UqrWUTnz5+vfv36qVmzZnJ2dlbHjh314YcfWu1bdHS0+vbtqzp16qhUqVIaOXIkt2sAAAAAcNfLc9H3xBNPmIXUvHnzblc+VooWLaqpU6dq6tSpucY4OTlp7NixGjt2bK4xfn5+WrBgwQ2f6/7779eGDRtuNVUAAAAAsEt5vqbviSee0Pnz5yVdva7u+slRAAAAAAD2J89FX+nSpbVp0yZJud+cHQAAAABgX/J8emefPn3Uvn17OTk5ycnJKddbGUhXb9QOAAAAALC9PBd9o0ePVpcuXXTw4EE9/vjjmjt3rooXL34bUwMAAAAA/Fv5ujl7tWrVVK1aNY0aNUqdO3eWt7f37coLAAAAAFAA8lX0WYwaNUqSdPr0ae3fv1+SVLVqVZUuXbrgMgMAAAAA/Gt5nsjlWsnJyXr++ecVFBSkRo0aqVGjRgoKClKvXr2UnJxc0DkCAAAAAG7RLRV9AwcO1Pr16/XDDz/o/PnzOn/+vJYuXar169dr8ODBBZ0jAAAAAOAW3dLpnd9//70WLVqkJk2amG0RERHy8vLSk08+qU8++aSg8gMAAAAA/Au3fHpnQEBAtnZ/f39O7wQAAAAAO3JLRV+DBg00atQoXblyxWxLSUnRmDFj1KBBgwJLDgAAAADw79zS6Z1Tp05Vq1atVK5cOdWsWVOStHPnTnl6emrVqlUFmiAAAAAA4NbdUtEXFhamAwcOaP78+fr9998lSV27dlW3bt3k5eVVoAkCAAAAAG5dvou+9PR0VatWTcuWLdOLL754O3ICAAAAABSQfF/T5+bmZnUtHwAAAADAft3SRC59+/bVBx98oIyMjILOBwAAAABQgG7pmr4tW7Zo9erVio6OVlhYmHx8fKyWR0VFFUhyAAAAAIB/55aKvuLFi6tjx44FnQsAAAAAoIDlq+jLysrShAkT9McffygtLU2PPfaYRo8ezYydAAAAAGCn8nVN37vvvqs33nhDRYoUUdmyZfXhhx+qb9++tys3AAAAAMC/lK+i78svv9THH3+sVatWacmSJfrf//6n+fPnKysr63blBwAAAAD4F/JV9B07dkwRERHm4+bNm8vJyUknTpwo8MQAAAAAAP9evoq+jIwMeXp6WrW5ubkpPT29QJMCAAAAABSMfE3kYhiGevbsKQ8PD7PtypUr6tOnj9VtG7hlAwAAAADYh3wVfT169MjW9swzzxRYMgAAAACAgpWvom/u3Lm3Kw8AAAAAwG2Qr2v6AAAAAAB3F4o+AAAAAHBgFH0AAAAA4MAo+gAAAADAgVH0AQAAAIADo+gDAAAAAAdG0QcAAAAADoyiDwAAAAAcGEUfAAAAADgwij4AAAAAcGAUfQAAAADgwCj6AAAAAMCBUfQBAAAAgAOj6AMAAAAAB0bRBwAAAAAOjKIPAAAAABwYRR8AAAAAODC7L/qOHz+uZ555RiVLlpSXl5fCwsK0detWc7lhGBo5cqQCAwPl5eWl5s2b68CBA1bbOHv2rLp16yZfX18VL15cvXr10qVLl6xifvvtNz366KPy9PRUcHCwxo8ff0f2DwAAAABuJ7su+s6dO6eGDRvKzc1NK1as0N69ezVp0iSVKFHCjBk/frw+/PBDzZw5U5s3b5aPj4/Cw8N15coVM6Zbt27as2ePYmJitGzZMsXGxqp3797m8qSkJLVs2VIVKlTQtm3bNGHCBI0ePVqzZs26o/sLAAAAAAXN1dYJ3MgHH3yg4OBgzZ0712wLCQkxfzYMQ1OnTtWIESPUvn17SdKXX36pgIAALVmyRF26dNG+ffu0cuVKbdmyRXXr1pUkTZ8+XREREZo4caKCgoI0f/58paWlac6cOXJ3d1eNGjUUHx+vyZMnWxWHAAAAAHC3seui74cfflB4eLg6d+6s9evXq2zZsnrllVf04osvSpIOHz6shIQENW/e3FynWLFiql+/vuLi4tSlSxfFxcWpePHiZsEnSc2bN5ezs7M2b96sJ554QnFxcWrUqJHc3d3NmPDwcH3wwQc6d+6c1ciiRWpqqlJTU83HSUlJkqT09HSlp6cX+O8C+WN5DXgtgOzoH0Du6B9A7ugf9iU/r4NdF31//vmnPvnkEw0aNEhvvPGGtmzZov79+8vd3V09evRQQkKCJCkgIMBqvYCAAHNZQkKC/P39rZa7urrKz8/PKubaEcRrt5mQkJBj0Tdu3DiNGTMmW3t0dLS8vb1vcY9R0GJiYmydAmC36B9A7ugfQO7oH/YhOTk5z7F2XfRlZWWpbt26eu+99yRJtWvX1u7duzVz5kz16NHDprkNHz5cgwYNMh8nJSUpODhYLVu2lK+vrw0zg3T1m4+YmBi1aNFCbm5utk4HsCv0DyB39A8gd/QP+2I50zAv7LroCwwM1H333WfVVr16dX3//feSpDJlykiSEhMTFRgYaMYkJiaqVq1aZsypU6estpGRkaGzZ8+a65cpU0aJiYlWMZbHlpjreXh4yMPDI1u7m5sbncCO8HoAuaN/ALmjfwC5o3/Yh/y8BnY9e2fDhg21f/9+q7Y//vhDFSpUkHR1UpcyZcpo9erV5vKkpCRt3rxZDRo0kCQ1aNBA58+f17Zt28yYNWvWKCsrS/Xr1zdjYmNjrc6LjYmJUdWqVXM8tRMAAAAA7hZ2XfQNHDhQmzZt0nvvvaeDBw9qwYIFmjVrlvr27StJcnJy0oABA/TOO+/ohx9+0K5du/Tss88qKChIkZGRkq6ODLZq1Uovvviifv31V/3yyy/q16+funTpoqCgIEnS008/LXd3d/Xq1Ut79uzRN998o2nTplmdvgkAAAAAdyO7Pr2zXr16Wrx4sYYPH66xY8cqJCREU6dOVbdu3cyYYcOG6fLly+rdu7fOnz+vRx55RCtXrpSnp6cZM3/+fPXr10/NmjWTs7OzOnbsqA8//NBcXqxYMUVHR6tv376qU6eOSpUqpZEjR3K7BgAOJzMzU+vXr1dsbKx8fHzUtGlTubi42DotAICd4/hxd3MyDMOwdRKOICkpScWKFdOFCxeYyMUOpKena/ny5YqIiOCcc+D/i4qK0uDBg3XkyBGzrWLFipo0aZI6dOhgu8QAO8LxA8iO44d9yk/9YdendwIACkZUVJQ6deqksLAwbdiwQQsXLtSGDRsUFhamTp06KSoqytYpAgDsEMcPx0DRBwAOLjMzU4MHD1bbtm21ZMkS1a9fX15eXqpfv76WLFmitm3basiQIcrMzLR1qgAAO8Lxw3FQ9MHhpKWl6cMPP9SsWbP04YcfKi0tzdYpATa1YcMGHTlyRG+88Yacna3/7Ds7O2v48OE6fPiwNmzYYKMMAfuQkpKi/v37a/To0erfv79SUlJsnRJgU9cePzIyMqw+X2VkZHD8uItQ9MGhDBs2TD4+PhoyZIiWL1+uIUOGyMfHR8OGDbN1aoDNnDx5UpIUGhqa43JLuyUOKIwiIyPl7e2tmTNnKj4+XjNnzpS3t7c5GzhQGFmOC19//XWOn6+++eYbqzjYL7uevRPIj2HDhmnChAkKCAjQmDFj5OHhodTUVI0aNUoTJkyQJI0fP97GWQJ3XmBgoCRp9+7deuihh7It3717t1UcUNhERkZq6dKlcnd314ABAxQSEqLDhw9r6tSpWrp0qSIjI7VkyRJbpwnccZbjwrRp03L8fDVt2jSrONgvZu8sIMzeaVtpaWny8fFRyZIl9ffff8swDHP2NScnJ5UrV05nzpzR5cuX5e7ubut0gTsqMzNTlStXVlhYmJYsWaLMzEyzf7i4uCgyMlK7d+/WgQMHmH4bhU5KSoq8vb3l7u6uixcvysnJyewfhmGoaNGiSktLU3Jysry8vGydLnBH0T/sG7N3otD5+OOPlZGRoXfeeUcnTpyQn5+fnnjiCfn5+enEiRMaO3asMjIy9PHHH9s6VeCOc3Fx0aRJk7Rs2TJFRkZq06ZNSklJ0aZNmxQZGally5Zp4sSJFHwolIYOHSpJGjRokC5duqRatWqpe/fuqlWrli5duqQBAwZYxQGFyaeffirp6q1MOnTooEGDBunjjz/WoEGD1KFDB6Wnp1vFwX5xeiccwqFDhyRJffr0sZpB6tKlS6pQoYL5YdYSBxQ2HTp00KJFizR48GA1atTIbA8JCdGiRYu4zxIKrQMHDkiSZs+erffff99s37t3r0qWLKlSpUpZxQGFieVzU8uWLfXjjz+a7dHR0ZKk8PBwrVq1is9XdwGKPjiESpUqSZJZ8Pn5+enJJ5/Ut99+q7Nnz5rtljigMOrQoYPat2+vtWvXasWKFWrdurWaNm3KCB8KtSpVqig6Olr//POPJKl+/fqKiIjQ8uXLtXnzZrO9SpUqtkwTsAnL56ZVq1bJ399f3bp1U3Jysry9vTV//nytWrXKKg72i2v6CgjX9NnWwYMHzQPyyZMnVbJkSfOc8zNnzpgXGB84cECVK1e2ZaqAzaWnp5v9w83NzdbpADZ1/PhxlStXTpJ05swZFS1a1OwfFy9eVMmSJSVJf//9t8qWLWvLVIE77tKlSypatKicnJyUnJwsFxcXs39kZmbK29tbhmHo4sWLKlKkiK3TLXS4pg+FTu3atc2fa9WqpdmzZ+vs2bOaPXu2atWqlWMcAACtWrUyfw4MDNQbb7yh48eP64033rCakfDaOKCwmD17tiTJMAxVrFjR6vNVxYoVZRk7ssTBfnF6JxxCcnKyJKlFixZau3atXnnlFXOZq6urHnvsMa1Zs8aMAwBAkk6cOCFJatCggeLi4jRx4kSr5fXr19fmzZvNOKAwsVyr9/LLL+uzzz7L9vnq5Zdf1ieffMI1fXcBRvrgELy9vSVJ27dv1+XLlzVx4kRFRERo4sSJunz5suLj463iAACQpKCgIElXRzKSk5PVp08f1apVS3369FFycrI5kmGJAwoTy7V6DzzwQI6fryxnU3FNn/3jmr4CwjV9tnXs2DFVqFBBknT69GkVK1bMPOf8woULKl26tCTp6NGjKl++vC1TBWyOa/qA/3P27Fnzur2LFy/Kw8PD7B+pqakqWrSopKvX+/n5+dkyVeCO4z7I9o1r+lDolC9fXq6uV89WLl26tEqWLKmpU6eqZMmSZsHn6upKwQcAsOLn56eAgABJUtGiRVWpUiW98847qlSpklnwBQQEUPChUHJ3d9fAgQOVmJiooKAgde3aVR9++KG6du2qoKAgJSYmauDAgRR8dwFG+goII332wcXFRVlZWdnanZ2dre7fBxRmjPQB2fn4+OR43be3t7cuX75sg4wA+/Hggw9qy5Yt2drr1aunX3/91QYZQWKkD4VUVFSUDMOQs7P129rZ2VmGYSgqKspGmQEA7NmwYcOUnJwsPz8/BQUFycfHR0FBQfLz81NycrKGDRtm6xQBmxk2bJi2bNkif39/de7cWY899pg6d+4sf39/bdmyhf5xl2Ckr4Aw0mdbmZmZCgoK0qlTp9S2bVu9/vrr+vvvv1WuXDl98MEHWrZsmfz9/XXixAluRI1Cj5E+4P9wzRKQO/qHfWOkD4XOunXrdOrUKT3yyCNaunSp6tevLy8vL9WvX19Lly5Vw4YNderUKa1bt87WqQIA7MjHH3+sjIwMvfPOO+a14Raurq4aO3asMjIy9PHHH9soQ8B26B+Og6IPDsFSzI0ZMybH0ztHjx5tFQcAgPR/9yFr27Ztjsst7dyHDIUR/cNxUPQBAIBCy3J/sWXLluW43NLOfchQGNE/HAdFHxxCkyZNJEmjRo3KNntnVlaWxowZYxUHAIAkvfLKK3J1ddWIESOUkZFhtSwjI0MjR46Uq6urXnnlFRtlCNgO/cNxUPTBITRp0kSlS5fWzz//rPbt22vTpk1KSUnRpk2b1L59e/3888/y9/en6AMAWLn2PmTlypXT7NmzdfbsWc2ePVvlypXjPmQo1OgfjoPZOwsIs3faXlRUlDp27CgvLy+lpKSY7d7e3kpOTtb333+vDh062DBDwD4weyeQ3bBhwzRlyhSr0QxXV1cNHDhQ48ePt2FmgO3RP+xTfuoPir4CQtFnH6KiojRo0CAdPXrUbKtYsaImTZpEwQf8fxR9QM7S0tI0ffp0rVmzRo899pheffVVRjCA/4/+YX/yU3+43nApcJfp0KGD2rZtyx8lAEC+ubi4qGbNmjpx4oRq1qzJfV2Ba7i7u6t///6qXLkyXxrehbimDw4lKipKVatW1ZAhQ7R8+XINGTJEVatWVVRUlK1TAwDYsaioKFWuXFktWrTQ5MmT1aJFC1WuXJnjBwCHQNEHhxEVFaVOnTopLCxMGzZs0MKFC7VhwwaFhYWpU6dOHLgBADni+AHA0VH0wSFkZmZq8ODBatu2rZYsWaL69evLy8tL9evX15IlS9S2bVsNGTJEmZmZtk4VAGBHOH4AKAwo+uAQNmzYoCNHjuiNN96Qs7P129rZ2VnDhw/X4cOHtWHDBhtlCACwRxw/ABQGFH1wCCdPnpQkhYaG5rjc0m6JAwBA4vgBoHCg6INDCAwMlCTt3r07x+WWdkscAAASxw8AhQNFHxzCo48+qooVK+q9995TVlaW1bKsrCyNGzdOISEhevTRR22UIQDAHnH8AFAYUPTBIbi4uGjSpElatmyZIiMjtWnTJqWkpGjTpk2KjIzUsmXLNHHiRO65BACwwvEDQGHAzdnhMDp06KBFixZp8ODBatSokdkeEhKiRYsWqUOHDjbMDgBgrzh+AHB0FH1wKB06dFD79u21du1arVixQq1bt1bTpk35hhYAcEMcPwA4Moo+AAAAXT3Vs3Hjxrp8+bIaN25MwQfAYXBNHxxKVFSUKleurBYtWmjy5Mlq0aKFKleurKioKFunBgAAANgERR8cRlRUlDp16qSwsDBt2LBBCxcu1IYNGxQWFqZOnTpR+AEAAKBQ4vROOITMzEwNHjxYbdu21ZQpUxQaGqorV67I09PTvMfSkCFD1L59e07XAQDk6Pjx4woLC1NSUpJ8fX21a9culS1b1tZpAXYhJSVFgwYN0qZNm7Ry5UpNnjxZXl5etk4LeeRkGIZh6yQcQVJSkooVK6YLFy7I19fX1ukUOuvWrVPTpk3l7Oyc7T5Lksz2tWvXqkmTJnc+QcCOpKena/ny5YqIiJCbm5ut0wHsgoeHh9LS0rK1u7u7KzU11QYZAfYjMjJSS5cuzdbevn17LVmy5M4nBEn5qz84vRMO4eTJk5KUY8F3bbslDgAAi9wKPklKS0uTh4fHHc4IsB+Wgs/d3V3Dhg3TJ598omHDhsnd3V1Lly5VZGSkrVNEHlD0wSFkZGQUaBwAoHA4fvx4rgWfRVpamo4fP36HMgLsR0pKilnwnTlzRv7+/vrf//4nf39/nTlzxiz8UlJSbJ0qbuKuKvref/99OTk5acCAAWbblStX1LdvX5UsWVJFihRRx44dlZiYaLXesWPH1KZNG3l7e8vf319Dhw7N9uF/3bp1euCBB+Th4aHKlStr3rx5d2CPUFB69+5doHEAgMIhLCysQOMARzJ06FBJUu3atVWiRAkNGTJEy5cv15AhQ1SiRAnVqlXLKg72664p+rZs2aJPP/1U999/v1X7wIED9b///U/fffed1q9frxMnTqhDhw7m8szMTLVp00ZpaWnauHGjvvjiC82bN08jR440Yw4fPqw2bdqoadOmio+P14ABA/TCCy9o1apVd2z/8O9cuXIlW1tQUFCe4gAAhdf58+ezteVU4OUUBzi6AwcOSJI2b96skiVLaubMmZo7d65mzpypkiVL6tdff7WKg/26K4q+S5cuqVu3bvrss89UokQJs/3ChQv6/PPPNXnyZD322GOqU6eO5s6dq40bN2rTpk2SpOjoaO3du1dfffWVatWqpdatW+vtt9/WRx99ZJ7OMXPmTIWEhGjSpEmqXr26+vXrp06dOmnKlCk22V/8O5bZOU+cOCFJcnVlkloAQM6unc9u27ZtSktL09tvv620tDRt27YtxzigsAgJCZEkeXt76++//9bzzz+vEiVK6Pnnn9fff/8tb29vqzjYr7vi03Dfvn3Vpk0bNW/eXO+8847Zvm3bNqWnp6t58+ZmW7Vq1VS+fHnFxcXpoYceUlxcnMLCwhQQEGDGhIeH6+WXX9aePXtUu3ZtxcXFWW3DEnPtaaTXS01NtZrNKykpSdLVWfHS09P/7S7jX/jzzz+1d+9excTEqEWLFrrvvvtUoUIFczmvDwo7Sx+gLwDWSpcurSlTpmj9+vXav3+/unbtarWcPoPCpnz58pKufu5NTk7Wxo0bFRsbKw8PDz388MPmZ+Hy5cvTP2wgP79zuy/6vv76a23fvl1btmzJtiwhIUHu7u4qXry4VXtAQIASEhLMmGsLPstyy7IbxSQlJSklJSXHe5CMGzdOY8aMydYeHR1tfusB26hQoYJcXV0VEhKiDz/8MNv1m8uXL7dRZoB9iYmJsXUKgF2xfMCVrh4rXn/9davlHD9Q2Pzyyy+Srl4uVaxYMbN98uTJ2eJq1KhxR3ODlJycnOdYuy76/vrrL7322muKiYmRp6enrdOxMnz4cA0aNMh8nJSUpODgYLVs2ZL79NmBjIyMXM8vj4iIuMPZAPYlPT3dHAnnPn1A3nH8QGFz8ODBPH3Z8dhjj9E/bMBypmFe2HXRt23bNp06dUoPPPCA2ZaZmanY2FjNmDFDq1atUlpams6fP2812peYmKgyZcpIksqUKWNeZHrtcssyy//Xz/iZmJgoX1/fHEf5pKv39Mnpvj1ubm58iLKBefPmqWfPnnmK4/UBruLvFSBFRUVZTQB3ozj6CwqbV155RUOGDMlTHP3jzsvP79yuJ3Jp1qyZdu3apfj4ePNf3bp11a1bN/NnNzc3rV692lxn//79OnbsmBo0aCBJatCggXbt2qVTp06ZMTExMfL19dV9991nxly7DUuMZRuwf9dfd/Fv4wAAhcOff/5ZoHGAI9m8ebPVYw8PD3Xt2jXbwMf1cbA/dl30FS1aVKGhoVb/fHx8VLJkSYWGhqpYsWLq1auXBg0apLVr12rbtm167rnn1KBBAz300EOSpJYtW+q+++5T9+7dtXPnTq1atUojRoxQ3759zTdsnz599Oeff2rYsGH6/fff9fHHH+vbb7/VwIEDbbn7yIf333+/QOMAAIVDdHR0gcYBjmTnzp3mz87OzkpNTdXChQuVmpoqZ2fnHONgn+y66MuLKVOmqG3bturYsaMaNWqkMmXKKCoqylzu4uKiZcuWycXFRQ0aNNAzzzyjZ599VmPHjjVjQkJC9OOPPyomJkY1a9bUpEmTNHv2bIWHh9til3ALJkyYIEmqWrWq5syZY7Vszpw5qlKlilUcAACSrM70qVOnjtWyax9ff0YQUBhYbrru7e2tS5cuqU+fPqpVq5b69OmjS5cumZMXcnN2++dkcOOZApGUlKRixYrpwoULTORiAx4eHkpLS1Pr1q21Z88eHTt2zFxWvnx5VatWTdHR0XJ3d7e61QZQGKWnp2v58uWKiIjgGgwUes7OzuY9+IKDg/XXX3+Zy6597OTkpKysLJvkCNiKpX8EBQXJ3d1dR44cMZdVrFhRqampOnnyJP3DRvJTf9j1RC5AXgUGBuro0aNasWKFnJycrJb99ddfZhEYGBhoi/QAAHbKw8NDV65ckSSrgu/6xzlN3gY4Okv/OHHihAICAjRw4EBdvnxZPj4+WrBggTkRIv3D/lH0wSFs2rTJLOiuH7y+9vGmTZvuaF4AAPv2/vvva8CAAXmKAwqbXbt2mZfIJCYmasqUKbnGwb7d9df0AZL022+/FWgcAKBwSE9PL9A4wJH8/fffVo/d3NxUqVKlbJcGXB8H+0PRB4cwb968Ao0DABQOO3bsKNA4wJEcP37c6nF6eroOHTqU7UuQ6+Ngfyj64BDyetomp3cCAK517cRfksxp6K+djj6nOKAwOH36dIHGwXYo+uAQrj04+/v7a+bMmZo7d65mzpwpf3//HOMAAAgKCjJ/Llu2rDkDYVZWlsqVK5djHFBYlCxZ0vzZyclJzzzzjKZMmaJnnnnGauK8a+Ngn5jIBQ7h1KlT5s81a9bUf//7Xx07dkzly5dXzZo1FRMTky0OAIBrZ+gMCwtTvXr1dOjQIVWqVElXrlwxr1W6fmZPoDC49lq98PBw1atXTwcOHFC9evX0zz//aOXKldniYJ8o+uAQMjIyzJ8tBZ6U/SB9bRwAABcvXjR/tnyAlbLPRnhtHFBYLFq0SNLVm7P/9NNPVn3E1dVV3t7eSk5O1qJFizR8+HBbpYk8oOiDQ/Dy8lJKSkqe4gAAsKhcubJ2796dpzigsDl37pwkKTk5WQEBAXr66adzvE+fJQ72iwuc4BD69u1boHEAgMLh888/N3++/rq9smXL5hgHFBahoaGSrt6qwcPDQ1OmTNGsWbM0ZcoUeXp6ytXV1SoO9ouiDw5h+/btVo9Lly6tkJAQlS5d+oZxAIDC7csvvzR/PnnypB577DE988wzeuyxx3TixIkc44DC4qWXXpJ09VYNNWrU0LRp09SvXz9NmzZN9913n3nZjCUO9ovTO+EQtm3bZvX49OnTOU4ffH0cAKBwO3TokKSrk4Dt3LlTa9assVpuabfEAYVJUlKS+fOKFSu0YsWKm8bBPjHSB4dguVbP29s7x+WWdq7pAwBcq1KlSpKk/fv357jc0m6JAwqTwMBASdanOl/L0m6Jg/2i6IND6N27t6SrFxrnxNJuiQMAQJJeeeUVSdKVK1dyXG5pt8QBhcmjjz4qf39/HT9+PMflx48fl7+/vx599NE7nBnyi6IPDuHll18u0DgAQOFw4cKFAo0DHM3NblfC7UzuDhR9cAhDhw4t0DgAQOFQr169Ao0DHMnq1atvekuslJQUrV69+g5lhFtF0QeHsHTp0gKNAwAUDtfO0FkQcYAjmTt3boHGwXYo+uAQTp06VaBxAIDCIT09vUDjAEcSFxdXoHGwHW7ZAAAAACCba69lLVasmGrWrKl//vlHpUqV0s6dO83lXPNq/yj6AAAAAGRz/vx58+cLFy4oNjb2pnGwTxR9AFCIpKWlafr06VqzZo0OHjyoV199Ve7u7rZOCwAA3EZc0wcAhcSwYcPk4+OjIUOGaPny5RoyZIh8fHw0bNgwW6cGALBDLi4uBRoH22GkDwAKgWHDhmnChAkKCAjQmDFj5OHhodTUVI0aNUoTJkyQJI0fP97GWQIA7Mn999+vHTt25CkO9s3JMAzD1kk4gqSkJBUrVkwXLlyQr6+vrdMpdJycnPIcy1sehU1aWpp8fHxUsmRJ/f333zIMQ8uXL1dERIScnJxUrlw5nTlzRpcvX+ZUTxQ6HD+A3N177706cODATeOqVKmiP/744w5khGvlp/7g9E4AcHAff/yxMjIy9M4778jV1foED1dXV40dO1YZGRn6+OOPbZQhAMAe5aXgy08cbIeiDwAc3KFDhyRJbdu2zXG5pd0SBwAAHAtFHwA4uEqVKkmSli1bluNyS7slDgAAOBau6SsgXNNnW1yTAeSOa/qA3HH8AHJH/7BvXNMHADC5u7tr4MCBSkxMVLly5TR79mydPXtWs2fPVrly5ZSYmKiBAwdS8AEA4KC4ZQMAFAKW2zFMmTJFr7zyitnu6uqqoUOHcrsGAAAcGKd3FhBO77QtTj8A8iYtLU3Tp0/XmjVr9Nhjj+nVV19lhA+FGscPIHf0D/uWn/qDkT4AKETc3d3Vv39/Va5cWREREXJzc7N1SgAA4Dbjmj4AAAAAcGAUfQAAAADgwCj6AAAAAMCBUfQBAAAAyCav131zfbj9o+gDAAAAkE379u0LNA62Q9EHAAAAIJvt27cXaBxsh6IPAAAAQDZ//vlngcbBdij6AAAAAMCBcXN2AAAAADdVt25d3XPPPfrzzz+1detWW6eDfKDoAwAAAHBTW7dupdi7S3F6JwAUIpmZmVq/fr1iY2O1fv16ZWZm2jolAABwm9l10Tdu3DjVq1dPRYsWlb+/vyIjI7V//36rmCtXrqhv374qWbKkihQpoo4dOyoxMdEq5tixY2rTpo28vb3l7++voUOHKiMjwypm3bp1euCBB+Th4aHKlStr3rx5t3v3AOCOioqKUuXKldWiRQtNnjxZLVq0UOXKlRUVFWXr1AAAduiBBx4o0DjYjl0XfevXr1ffvn21adMmxcTEKD09XS1bttTly5fNmIEDB+p///ufvvvuO61fv14nTpxQhw4dzOWZmZlq06aN0tLStHHjRn3xxReaN2+eRo4cacYcPnxYbdq0UdOmTRUfH68BAwbohRde0KpVq+7o/gLA7RIVFaVOnTopLCxMGzZs0MKFC7VhwwaFhYWpU6dOFH4AgGzuueeeAo2D7TgZhmHYOom8On36tPz9/bV+/Xo1atRIFy5cUOnSpbVgwQJ16tRJkvT777+revXqiouL00MPPaQVK1aobdu2OnHihAICAiRJM2fO1Ouvv67Tp0/L3d1dr7/+un788Uft3r3bfK4uXbro/PnzWrlyZZ5yS0pKUrFixXThwgX5+voW/M7jhpycnPIcexe95YECkZmZqcqVKyssLExLlixRZmamli9froiICLm4uCgyMlK7d+/WgQMH5OLiYut0gTuK4weQO/qHfctP/XFXTeRy4cIFSZKfn58kadu2bUpPT1fz5s3NmGrVqql8+fJm0RcXF6ewsDCz4JOk8PBwvfzyy9qzZ49q166tuLg4q21YYgYMGJBrLqmpqUpNTTUfJyUlSZLS09OVnp7+r/cVtw+vDwqb9evX68iRI/rvf/+rzMxMsw9Y/h86dKgaNWqktWvXqnHjxrZMFbBrHD+A3NE/7rz8/M7vmqIvKytLAwYMUMOGDRUaGipJSkhIkLu7u4oXL24VGxAQoISEBDPm2oLPstyy7EYxSUlJSklJkZeXV7Z8xo0bpzFjxmRrj46Olre3963tJO6I5cuX2zoF4I6KjY2VJP399986c+aM2R4TEyNJSklJkSStWLHC6vR5ANY4fgC5o3/cecnJyXmOvWuKvr59+2r37t36+eefbZ2KJGn48OEaNGiQ+TgpKUnBwcFq2bIlp3fauYiICFunANxRPj4+mjx5ssqVK6f69esrPT1dMTExatGihdzc3LRp0yZJUuvWrRnpA26A4weQO/rHnWc50zAv7oqir1+/flq2bJliY2NVrlw5s71MmTJKS0vT+fPnrUb7EhMTVaZMGTPm119/tdqeZXbPa2Oun/EzMTFRvr6+OY7ySZKHh4c8PDyytbu5ucnNzS3/O4k7htcHhU3Tpk1VsWJFjR8/XkuWLDHb3dzc5OLiogkTJigkJERNmzblmj7gBjh+ALmjf9x5+fmd2/XsnYZhqF+/flq8eLHWrFmjkJAQq+V16tSRm5ubVq9ebbbt379fx44dU4MGDSRJDRo00K5du3Tq1CkzJiYmRr6+vrrvvvvMmGu3YYmxbAMA7mYuLi6aNGmSli1bpsjISG3atEkpKSnatGmTIiMjtWzZMk2cOJGCDwAAB2XXs3e+8sorWrBggZYuXaqqVaua7cWKFTNH4F5++WUtX75c8+bNk6+vr1599VVJ0saNGyVdnbWuVq1aCgoK0vjx45WQkKDu3bvrhRde0HvvvSfp6i0bQkND1bdvXz3//PNas2aN+vfvrx9//FHh4eF5ypXZO22L2aWAm4uKitLgwYN15MgRsy0kJEQTJ060utUNUJhw/AByR/+wb/mpP+y66MvtjTZ37lz17NlT0tWbsw8ePFgLFy5UamqqwsPD9fHHH5unbkrS0aNH9fLLL2vdunXy8fFRjx499P7778vV9f/Obl23bp0GDhyovXv3qly5cnrrrbfM58gLij7b4o8SkDdpaWmaPn261qxZo8cee0yvvvqq3N3dbZ0WYDMcP4Dc0T/sm8MUfXcTij7b4o8ScHM5jfRVrFhRkyZNYqQPhRbHDyB39A/75rD36QMA3JqoqCh16tRJERERateunfbv36+qVavqzz//VKdOnbRo0SIKPwAAHBQjfQWEkT7b4psoIHeZmZmqXLmyXFxcdPToUWVkZJjLXF1dVaFCBWVlZenAgQNM5oJCh+MHkDv6h31jpA8AYNqwYYN5SmdAQIDGjBkjDw8PpaamatSoUTp06JAZ16RJE9slCgAAbgu7vmUDAODf++uvvyRJ/v7++vvvv/X888+rRIkSev755/X333/L39/fKg4AADgWij4AcHCbN2+WJD3//PNWsxZLV0/vtMxUbIkDAACOhaIPAByc5TqLbdu2KSsry2pZVlaWduzYYRUHAAAcC0UfADi4KlWqSJJiYmIUGRmpTZs2KSUlRZs2bVJkZKRiYmKs4gAAgGNh9s4CwuydtsXsUkDu0tLS5OPjIx8fH/n6+lpdu1e+fHlduHBBly9f1uXLl7lROwodjh9A7ugf9i0/9QcjfQDg4Nzd3TVw4EBduHBBx48ft1r2999/68KFCxo4cCAFHwAADoqiDwAKgYceekhS9m9iLY8tywEAgOOh6AMAB5eZmanBgwerXbt2Sk5O1sSJExUREaGJEycqOTlZ7dq105AhQ5SZmWnrVAEAwG3AzdkBwMFZbs6+cOFCeXp6qn///qpcubIiIiLk5uam4cOH6+GHH+bm7AAAOChG+gDAwZ08eVKSFBoaqszMTK1fv16xsbFav369MjMzFRoaahUHAAAcCyN9AODgAgMDJUkzZszQp59+qiNHjkiSJk+erIoVK6p3795WcQAAwLFwy4YCwi0bbIsphYHcZWZmKjAwUKdPn5aXl5dSUlLMZZbH/v7+OnHihFxcXGyYKXDncfwAckf/sG/csgEAYCUtLU2S5O3tLVfXqyd5uLq6ytvbW5KUmppqs9wAAMDtRdEHAA5u3bp1unDhgiTpzJkzysjIkCRlZGTozJkzkqQLFy5o3bp1tkoRAADcRhR9AODg8lrMUfQBAOCYKPoAwMGdO3euQOMAAMDdhYlcCggTudgWFxoDuXNzczNP6bwRV1dXpaen34GMAPvB8QPIHf3DvjGRCwDAlJeCLz9xAADg7kLRBwAOztk5b3/q8xoHAADuLtycHTaVnJys33///Y4+5/bt2wtkO9WqVTOnuwfsWVhYmHbu3JmnOAAA4Hgo+mBTv//+u+rUqXNHn7Ognm/btm164IEHCmRbwO10/Q3XnZycVKpUKf3zzz9W12BwY3bcTfjSEADyjqIPNlWtWjVt27btX28nP4VcQTyfdDV34G7g5uZm9dgwDJ0+ffqmcYA940tDAMg7ij7YlLe39x0/8HGgRWFz9uzZAo0D7AFfGgJA3lH0wSEYhpGnaYWZThiFUZEiRQo0DrAHBfWl4dSpUzVgwIA8xfGlIYC7FUUfHMbNCj8KPhRWXl5eBRoHOJLXXnstT0Xfa6+9dvuTAQoI17ziehR9cCi5FX4UfCjM/Pz8CjQOcDR8aQhHwzWvuB5FHxyOYRiKP3pGkZ9s0pKXH1KtCiVtnRJgUxcvXizQOMARGYahadOmWY36TZ06lRE+3JW45hXXo+gDAAe3e/fuAo0DHNVrr72mxpHP8KUh7noFdc1r7969NWvWrDzFMTpn3yj6AMBOFdQ1GcnJyebPJUqUUIUKFXT6XJJKl/DV0aNHde7cOTOOazIAABaffvppnoq+Tz/99A5kg3+Dog8A7NTtuCbj3LlzZpF3/Kj1spSUFK7JAABY4ZpXx0DRBwB2qqCuyTh79qxatGgh6eoN2NPT081l1z6OiYkpsMlcuCYDAByHYRh66aWXrEb9evfuzQjfXYSiDwDsVEFdkyFJAQEBSkxMtCr4JJmPAwIC1Lx58wJ5LgCA4/n000/18hvvcc3rXcrZ1gkAAG6/hIQEBQQE5LgsICBACQkJdzgjAABwpzDShzw5/M9lXU7NsHUaeXbo9GXzf1fXu+dt7uPhqpBSPrZOAw4qISFBZ8+e1YMNGurPY8d1T/my+jXuF+7Ph9uK48edwfEDwI3cPX/NYDOH/7msphPX2TqNWzJ40S5bp5Bva4c04cCN28bPz0+Lon9W5CebtOjlhyj4cFtx/LizOH4AyA1FH27K8g3t1KdqqbJ/ERtnkzeXU1K1bF2c2jZpIB8vD1unkycHT13SgG/i76pvxAHgRjh+3BkcP+5ejITfGYyEU/QhHyr7F1Fo2WK2TiNP0tPTlVBaeqBCCbm5udk6HQAo1Dh+ANkxEn5nFfaRcIo+APiX+Kb2zuCbWgCOhJHwO4OR8KvunqM9ANghvqm9swr7N7UAHA8j4bgTKPoA4F/gm9o7g29qAQC4dRR91/noo480YcIEJSQkqGbNmpo+fboefPBBW6dlc06uSTqctF/OnnfHh9qMjAydyDihfWf33TWnrx1OuiQn1yRbp4FbxDe1QM44ftx+HD8A3Mzd8dfsDvnmm280aNAgzZw5U/Xr19fUqVMVHh6u/fv3y9/f39bp2ZRb8c1649f3bJ1Gvn288mNbp5AvbsWbSYqwdRrIJz7U3n58qL17cfy4Mzh+3J04ftx+HD+uujterTtk8uTJevHFF/Xcc89JkmbOnKkff/xRc+bM0X/+8x8bZ2db6efra1Kbp1XpLjl9LSMjQ7/8/IsaPtLwrvmjdOjUJfWff8jWaeAW8KH2zuBD7d0nJT1T6efr6+V6j981pz+npKZpw9ZderRumLw83G2dTp78dTZZEw6ctHUauAUcP+4Mjh8Ufaa0tDRt27ZNw4cPN9ucnZ3VvHlzxcXFZYtPTU1Vamqq+Tgp6eo3COnp6UpPT7/9Cd9BF1NSZWT4Kul8aaV5+9o6nTy5fCVVJ84F6eL5UvLxvDuuWUq9XERGxmllZGQ43HvIkV1MSVX6+fp6qU5bVSpdsBOMXEm9opN/HyvQbUpSZkaWDh48oMqVq8jF1bnAty9JgeXKy9PDs8C299e5FE0+kEj/uMv8cfKCjAxfTVuRIinF1unkQ3n97+AFWyeRT77ycDHoH3eR23n8uF1S0tK0cftePfzAffJyv0u+FHHg40d+9oei7//7559/lJmZqYCAAKv2gIAA/f7779nix40bpzFjxmRrj46Olre3923L0xbiEp0kuejNpXsLfNtZ6VeUfubvAt+uxeyfj9y2bbuVLCdnt4L7UGuxJe5nHfUq8M3iNolLdJKR4avpq1Ilpd40Pj9SEw4q4YsBBbrNO6VMj6nyKFO5gLfqS/+426RLXe5xkr+XIfcC/n4hLTVViScK/vhxJlX68S8XtQnOVMnb9J1hQFA5uXsU7MY9XKS9m9er4I/UuF1u5/Hjdn++WvRz/G3b9u35fOWYx4/k5OQ8x1L03aLhw4dr0KBB5uOkpCQFBwerZcuW8vW9O0bD8uqhy2kK23dK95T2kZebS4Fue9/unXq6bacC3eadsmDZalUPrVmg2/TxcFHFknfHt3246nb2j5SU+3Wkc1iBblOSMjMytWvXLoWFhcnFtWBztqhYqYq8vAr2CzD6x93pydu03R07dqh+r6du09alz2/blqXNmzerdu3at/EZcDfg81XO+HyVd5YzDfOCou//K1WqlFxcXJSYmGjVnpiYqDJlymSL9/DwkEcO39K5ubk53Gx4AcXd1K1ByG3Z9r2lH9K2bdsKfLuXUlL149o4tWnaQEVu05T01apVc7hRXeTf7ewfUkk1qBZc4FtNT09XUSUrIqKJw/29QuERGhp6Vx8/6Hvg81XO+HyVd/n5O0LR9/+5u7urTp06Wr16tSIjIyVJWVlZWr16tfr162fb5ByYt7e3HnjggQLfbnp6us79c0oNHqzLgRUAHBDHDyB39A9cj6LvGoMGDVKPHj1Ut25dPfjgg5o6daouX75szuYJAAAAAHcbir5rPPXUUzp9+rRGjhyphIQE1apVSytXrsw2uQsAAAAA3C0o+q7Tr18/TucEAAAA4DBuzw2aAAAAAAB2gaIPAAAAABwYRR8AAAAAODCKPgAAAABwYBR9AAAAAODAKPoAAAAAwIFR9AEAAACAA6PoAwAAAAAHRtEHAAAAAA6Mog8AAAAAHBhFHwAAAAA4MIo+AAAAAHBgFH0AAAAA4MAo+gAAAADAgbnaOgFHYRiGJCkpKcnGmUCS0tPTlZycrKSkJLm5udk6HcCu0D+A3NE/gNzRP+yLpe6w1CE3QtFXQC5evChJCg4OtnEmAAAAAAqLixcvqlixYjeMcTLyUhriprKysnTixAkVLVpUTk5Otk6n0EtKSlJwcLD++usv+fr62jodwK7QP4Dc0T+A3NE/7IthGLp48aKCgoLk7Hzjq/YY6Ssgzs7OKleunK3TwHV8fX35owTkgv4B5I7+AeSO/mE/bjbCZ8FELgAAAADgwCj6AAAAAMCBUfTBIXl4eGjUqFHy8PCwdSqA3aF/ALmjfwC5o3/cvZjIBQAAAAAcGCN9AAAAAODAKPoAAAAAwIFR9AEAAACAA6PoQ4EbPXq0atWqla91KlasqKlTpxZ4LqtXr1b16tWVmZlZ4Nu+HWbOnKl27drZOg3YmSZNmmjAgAE2ee7PP/9cLVu2tMlzW6xcuVK1atVSVlaWTfPA3S2//ejIkSNycnJSfHx8gefy1ltvqXfv3gW+3dvloYce0vfff2/rNHAb3cpnN4vu3bvrvffeK9iE8qlLly6aNGmSTXOwdxR9uKm4uDi5uLioTZs2d+w5nZyctGTJkn+9nWHDhmnEiBFycXGRJP38889q2LChSpYsKS8vL1WrVk1TpkyxWmf06NFycnKy+letWrU8Pd+PP/6o+vXry8vLSyVKlFBkZGSOcWfOnFG5cuXk5OSk8+fPm+3PP/+8tm/frg0bNtzS/uLOOn36tF5++WWVL19eHh4eKlOmjMLDw/XLL78U6PNERUXp7bffLtBt5sWVK1f01ltvadSoUVbt58+fV9++fRUYGCgPDw/de++9Wr58eY7beP/99+Xk5PSvitZWrVrJzc1N8+fPv+VtwJphGGrevLnCw8OzLfv4449VvHhx/f333zbILO/GjRsnFxcXTZgw4Y4837p167L9zb4VCQkJmjZtmt58802zbdy4capXr56KFi0qf39/RUZGav/+/VbrNWnSJNuxqU+fPjd8rv3796tp06YKCAiQp6en7rnnHo0YMULp6ek5xn/99ddycnLKduwaMWKE/vOf//DFyx1wJ/pmQX3GkqSdO3dq+fLl6t+//y2v37VrVwUHB8vLy0vVq1fXtGnTrGIsfe/6fwkJCWbMiBEj9O677+rChQv/an8cGUUfburzzz/Xq6++qtjYWJ04ccLW6eTZzz//rEOHDqljx45mm4+Pj/r166fY2Fjt27dPI0aM0IgRIzRr1iyrdWvUqKGTJ0+a/37++eebPt/333+v7t2767nnntPOnTv1yy+/6Omnn84xtlevXrr//vuztbu7u+vpp5/Whx9+mM+9hS107NhRO3bs0BdffKE//vhDP/zwg5o0aaIzZ84U6PP4+fmpaNGit7x+ZmbmLX1YW7RokXx9fdWwYUOzLS0tTS1atNCRI0e0aNEi7d+/X5999pnKli2bbf0tW7bo008/zfG9fj0nJycdOXIk1+U9e/akXxQgJycnzZ07V5s3b9ann35qth8+fFjDhg3T9OnTVa5cORtmeHNz5szRsGHDNGfOHFunki+zZ8/Www8/rAoVKpht69evV9++fbVp0ybFxMQoPT1dLVu21OXLl63WffHFF62OTePHj7/hc7m5uenZZ59VdHS09u/fr6lTp+qzzz7L9kWOdHVkc8iQIXr00UezLWvdurUuXryoFStW3OJeI6/utr45ffp0de7cWUWKFMnzOidPnlRGRoYkadu2bfL399dXX32lPXv26M0339Tw4cM1Y8aMbOvt37/f6v3v7+9vLgsNDVWlSpX01Vdf/fudclQGcAMXL140ihQpYvz+++/GU089Zbz77rvZYsaNG2f4+/sbRYoUMZ5//nnj9ddfN2rWrGkub9y4sfHaa69ZrdO+fXujR48e5uMKFSoYU6ZMMX+WZP6rUKGCYRiGER8fbzRp0sQoUqSIUbRoUeOBBx4wtmzZkmvuffv2NTp16nTTfXziiSeMZ555xnw8atQoq/zzIj093Shbtqwxe/bsm8Z+/PHHRuPGjY3Vq1cbkoxz585ZLV+/fr3h7u5uJCcn5ysH3Fnnzp0zJBnr1q27aVyvXr2MUqVKGUWLFjWaNm1qxMfHm8st77cvv/zSqFChguHr62s89dRTRlJSkhlzfR86e/as0b17d6N48eKGl5eX0apVK+OPP/4wl8+dO9coVqyYsXTpUqN69eqGi4uLcfjwYWPt2rVGvXr1DG9vb6NYsWLGww8/bBw5ciTX3Nu0aWMMGTLEqu2TTz4x7rnnHiMtLe2G+33x4kWjSpUqRkxMTI5/A64nyTh8+HCuy48ePWpIMg4ePHjD7SB/5s2bZxQpUsT4888/jaysLKNp06bGE088Yaxbt86oV6+e4e7ubpQpU8Z4/fXXjfT0dHO9a/9mW9SsWdMYNWqU+ViS8dlnnxmRkZGGl5eXUblyZWPp0qVW6yxdutSoXLmy4eHhYTRp0sSYN29ejn8Xr7du3TqjbNmyRlpamhEUFGT88ssvVssvXbpkdO/e3fDx8THKlCljTJw4Mdv7UJKxePFiq/WKFStmzJ071zAMwzh8+LAhydixY4f587X/LMew7777zggNDTU8PT0NPz8/o1mzZsalS5dyzb1GjRrGjBkzbrh/p06dMiQZ69evN9vy0o/yYuDAgcYjjzxi1ZaRkWE8/PDDxuzZs40ePXoY7du3z7bec889Z3WsxO11u/pmbp+x8nIsul5GRoZRrFgxY9myZTfdn5SUFOPrr782WrVqZbi4uBjnz5/PNfaVV14xmjZtaj5eu3Ztnv4ujBkzJtt7G/+HkT7c0Lfffqtq1aqpatWqeuaZZzRnzhwZ19za8dtvv9Xo0aP13nvvaevWrQoMDNTHH3/8r55zy5YtkqS5c+fq5MmT5uNu3bqpXLly2rJli7Zt26b//Oc/cnNzy3U7GzZsUN26dW/4XDt27NDGjRvVuHFjq/YDBw4oKChI99xzj7p166Zjx47dcDvbt2/X8ePH5ezsrNq1ayswMFCtW7fW7t27reL27t2rsWPH6ssvv5Szc87dr27dusrIyNDmzZtv+JywrSJFiqhIkSJasmSJUlNTc43r3LmzTp06pRUrVmjbtm164IEH1KxZM509e9aMOXTokJYsWaJly5Zp2bJlWr9+vd5///1ct9mzZ09t3bpVP/zwg+Li4mQYhiIiIqxO2UpOTtYHH3yg2bNna8+ePfLz81NkZKQaN26s3377TXFxcerdu7ecnJxyfZ6ff/45Wx/64Ycf1KBBA/Xt21cBAQEKDQ3Ve++9l+262b59+6pNmzZq3rx5rtvPj/LlyysgIIBTnwtYjx491KxZMz3//POaMWOGdu/erSlTpigiIkL16tXTzp079cknn+jzzz/XO++8k+/tjxkzRk8++aR+++03RUREqFu3buZ7//Dhw+rUqZMiIyO1c+dOvfTSS1anPN7I559/rq5du8rNzU1du3bV559/brV86NChWr9+vZYuXaro6GitW7dO27dvz3f+FsHBweY1bZbRhmnTpunkyZPq2rWrnn/+ee3bt0/r1q1Thw4drI6T1zp79qz27t1702OT5RQ1Pz8/q/b58+erVKlSCg0N1fDhw5WcnJyv/Th48KBWrlyZ7Zg3duxY+fv7q1evXrmu++CDD9L/7qDb1Tdz+4wl5f9Y9Ntvv+nChQs3fD/HxcWpT58+CgwM1KBBgxQaGqr4+HgVK1Ys13UuXLiQ7b0vSbVq1VJgYKBatGiR42UUDz74oH799dcbHpMLNRsXnbBzDz/8sDF16lTDMK6OZpUqVcpYu3atubxBgwbGK6+8YrVO/fr1/9VIn2Hk/A1s0aJFjXnz5uU592LFihlffvlljsvKli1ruLu7G87OzsbYsWOtli1fvtz49ttvjZ07dxorV640GjRoYJQvX/6G33YtXLjQkGSUL1/eWLRokbF161aja9euRsmSJY0zZ84YhmEYV65cMe6//37jv//9r2EYN/7mqkSJEvnaV9jGokWLjBIlShienp7Gww8/bAwfPtzYuXOnuXzDhg2Gr6+vceXKFav1KlWqZHz66aeGYVz9dtXb29vq/TV06FCjfv365uNr+9Aff/xhSLIa2fjnn38MLy8v49tvvzUM4+pInySrEcUzZ87kaWTSwjKSGRsba9VetWpVw8PDw3j++eeNrVu3Gl9//bXh5+dnjB492oxZuHChERoaaqSkpGTLPze6yUifYRhG7dq1rZ4HBSMxMdEoVaqU4ezsbCxevNh44403jKpVqxpZWVlmzEcffWQUKVLEyMzMNAwj7yN9I0aMMB9funTJkGSsWLHCMAzDeP31143Q0FCrbbz55ps3/Ub/woULhpeXl/n+3rFjh1GkSBHj4sWLhmFcHWV2d3c3+4NhXH3/e3l53fJIn2Hk/Dd727ZthqQbjphfa8eOHYYk49ixY7nGZGZmGm3atDEaNmxo1f7pp58aK1euNH777Tfjq6++MsqWLWs88cQTeXreBg0aGB4eHoYko3fv3ubraBhX/06VLVvWOH36tGEYRq4jfUuXLjWcnZ2t1sXtdTv75vXv/bwci663ePFiw8XFxSofwzCMv/76y3jnnXeMKlWqGN7e3ka3bt2MVatW5em988svvxiurq7GqlWrzLbff//dmDlzprF161bjl19+MZ577jnD1dXV2LZtm9W6O3fuzFd/LGwY6UOu9u/fr19//VVdu3aVJLm6uuqpp56y+kZ13759ql+/vtV6DRo0uC35DBo0SC+88IKaN2+u999/X4cOHbphfEpKijw9PXNctmHDBm3dulUzZ87U1KlTtXDhQnNZ69at1blzZ91///0KDw/X8uXLdf78eX377beSpD59+pijPJZz2C3XS7355pvq2LGj6tSpo7lz58rJyUnfffedJGn48OGqXr26nnnmmZvuq5eXV76/wcWd17FjR504cUI//PCDWrVqpXXr1umBBx7QvHnzJF29QP3SpUsqWbKk1Xvm8OHDVu/fihUrWl2zFxgYqFOnTuX4nPv27ZOrq6tVvytZsqSqVq2qffv2mW3u7u5W19L5+fmpZ8+eCg8PV7t27cxRitykpKRIUrY+lJWVJX9/f82aNUt16tTRU089pTfffFMzZ86UJP3111967bXXNH/+/Fz7n3S1n13fj2rUqGE+rlGjRrZ16Be3h7+/v1566SVVr15dkZGR2rdvnxo0aGA1CtywYUNdunQp3xNIXPse9PHxka+vr/ne3r9/v+rVq2cV/+CDD950mwsXLlSlSpVUs2ZNSVe//a9QoYK++eYbSVdHK9LS0qz6iJ+fn6pWrZqv3POiZs2aatasmcLCwtS5c2d99tlnOnfuXK7xufWra/Xt21e7d+/W119/bdXeu3dvhYeHKywsTN26ddOXX36pxYsXm39Lru0/rVu3tlr3m2++0fbt27VgwQL9+OOPmjhxoiTp4sWL6t69uz777DOVKlXqhvvq5eWlrKwsRlHuoNvZN3OSn2ORdPX97OHhke2MEct8CWFhYfrrr7/01VdfqWXLlrme4WSxe/dutW/fXqNGjbKaNbpq1ap66aWXVKdOHT388MOaM2eOHn744WwT8Xl5eUkSx4lcuNo6Adivzz//XBkZGQoKCjLbDMOQh4eHZsyYccOh+Ws5OztnO9Ult5nDbmT06NF6+umn9eOPP2rFihUaNWqUvv76az3xxBM5xpcqVSrXg29ISIgkKSwsTImJiRo9erRZ3F6vePHiuvfee3Xw4EFJV0+DGTJkiFVMYGCgJOm+++4z2zw8PHTPPfeYp4auWbNGu3bt0qJFiyTJ/J2UKlVKb775psaMGWOue/bsWZUuXfrGvxDYBU9PT7Vo0UItWrTQW2+9pRdeeEGjRo1Sz549denSJQUGBmrdunXZ1itevLj58/WnKTs5Of3rWfK8vLyyHYjnzp2r/v37a+XKlfrmm280YsQIxcTE6KGHHsq2fsmSJeXk5JStDwUGBsrNzc2cEVeSqlevroSEBKWlpWnbtm06deqUHnjgAXN5ZmamYmNjNWPGDKWmpsrFxUWzZ882PwBLUpUqVbR8+XJzQpicTt2mX9w+rq6ucnXN+0eCvP5dvx3v7c8//1x79uyxyjcrK0tz5sy54emJ13NycvrXxyYXFxfFxMRo48aNio6O1vTp0/Xmm29q8+bN5nHmWpbC6ty5czm+l/v166dly5YpNjb2ppN1WIragwcPqlKlSlq+fLmZv+XDr0VwcLCkq8eozMxM9e7dW4MHD9ahQ4d05MgRq1sFWV4fV1dX7d+/X5UqVZJ0tf/5+Phk2zZur9vVN3OS3/5aqlQpJScnKy0tTe7u7mb7iBEjFBgYqP/+97+699571aVLF3Xv3j3bIMG19u7dq2bNmql3794aMWLETXN98MEHs02yZzl1nONEzhjpQ44yMjL05ZdfatKkSYqPjzf/7dy5U0FBQebIWPXq1bNde7Zp0yarx6VLl7YaUcjMzMx2rdv13Nzccry33r333quBAwcqOjpaHTp00Ny5c3PdRu3atbV3796b7uvNvrm8dOmSDh06ZBZ2/v7+qly5svlPkurUqSMPDw+rKbbT09N15MgRc4a277//Xjt37jR/l7Nnz5Z0ddSxb9++5nqHDh3SlStXVLt27ZvmDvtz3333mTPuPfDAA0pISJCrq6vVe6Zy5co3/VY9N9WrV892zeeZM2e0f/9+qy8dclO7dm0NHz5cGzduVGhoqBYsWJBjnLu7u+67775sfahhw4Y6ePCg1QeBP/74Q4GBgXJ3d1ezZs20a9cuq78bdevWVbdu3RQfH28Wi2XLls3WjypUqGA+vnZmQ+nq7SMOHTpEv7gDqlevbl4ravHLL7+oaNGiZiFy/d/1pKQkHT58OF/PU7VqVW3dutWq7drri3Kya9cubd26VevWrbN6j61bt05xcXH6/fffValSJbm5uVn1kXPnzumPP/6w2tb1+3DgwIEbjhBYPtRef2xycnJSw4YNNWbMGO3YsUPu7u5avHhxjtuoVKmSfH19s/UrwzDUr18/LV68WGvWrMmxYLye5f6BlmPTtf0np9l0LbKyspSenq6srCxVq1YtW399/PHH1bRpU8XHx5vFonR1FIb+Z1sF1Tdz+4yVX5b7+l3/fq5cubLGjRunY8eOacGCBTp37pyaNm2qe++9V2+//Xa2fPbs2aOmTZuqR48eevfdd/P03PHx8eZ732L37t0qV67cLR9fHR0jfcjRsmXLdO7cOfXq1SvbiF7Hjh31+eefq0+fPnrttdfUs2dP1a1bVw0bNtT8+fO1Z88e3XPPPWb8Y489pkGDBunHH39UpUqVNHny5Jve56hixYpavXq1GjZsKA8PD3l6emro0KHq1KmTQkJC9Pfff2vLli1Wt2O4Xnh4uL744gurto8++kjly5c377sXGxuriRMnWt1fZsiQIWrXrp0qVKigEydOaNSoUXJxccl1JFCSfH191adPH40aNUrBwcGqUKGCee+ozp07S5L5banFP//8I+nqH/FrR302bNige+65J1s87MuZM2fUuXNnPf/887r//vtVtGhRbd26VePHj1f79u0lSc2bN1eDBg0UGRmp8ePH695779WJEyf0448/6oknnrjpZA45qVKlitq3b68XX3xRn376qYoWLar//Oc/Klu2rPm8OTl8+LBmzZqlxx9/XEFBQdq/f78OHDigZ599Ntd1wsPD9fPPP1vdY+/ll1/WjBkz9Nprr+nVV1/VgQMH9N5775l9qGjR/9fevcZEcbVxAP8vdLntAgqyIohYRSgFY6VRIbQUFwOV0JakGKSoGEk1tFAQpIq02KiUAAqkIjZWLmJAqW2NRkjr3QAqxQsIqFC1RmvsxWJFLQJuz/up87qAXKy6uPx/yXyYOTNnnp3MsjyZM88xh7u7u1Y/CoUC1tbWPbYPxokTJ2BsbPzUho/T/33wwQfIyclBTEwMoqOj0dzcjFWrViE+Pl4anqVWq1FUVIS33noLI0aMQEpKitbT34FYsmQJsrKysHz5ckRGRqKurk4aGv2oAkP5+fmYPn06fHx8erRNmzYN+fn5yMzMRGRkJBITE2FtbQ2VSoXk5OQeQ8vUajVyc3Ph5eUFjUaD5cuX91kczNHRETKZDHv37kVgYCBMTU3R1NSEgwcPwt/fHyqVCjU1Nfjjjz/g6uraax8GBgaYNWsWqqqqtObC+/DDD1FaWordu3fD3Nxcmn/M0tISpqamuHTpEkpLSxEYGAhra2ucPXsWS5cuhY+PT59TopSUlEAul2Py5MkwNjbGyZMnkZSUhNDQUMjlcsjl8h7fy39/j7pvr6ys1BpyR8/ek/pudv8fa+TIkY8Vj42NDTw8PFBVVdXrxO4GBgbw9/eHv78/2tra8PXXX2Pr1q347LPPcOvWLVhYWKCxsRFqtRoBAQGIj4+X7n1DQ0PpiV1OTg5efPFFuLm54f79+9iyZQsOHTqEffv2aZ2P92g/dPY2IQ1pQUFBIjAwsNe2mpoaAUAqWJGamipGjRollEqliIiIEB9//LFWIZfOzk4RFRUlrKyshEqlEmlpaf0WctmzZ49wcnISL7zwgnB0dBQdHR1i7ty5wsHBQRgZGQk7OzsRHR0tFYrozZ9//ilMTEzEhQsXpG1ffPGFcHNzE2ZmZsLCwkJMnTpV5OXlab1cHBoaKsaMGSOMjIyEvb29CA0NHVCZ+M7OTpGQkCBUKpUwNzcXs2bNEo2NjY/c/1GFXPz9/UVaWlq/5yPdun//vlixYoXw8PAQlpaWwszMTLi4uIhPPvlEa7qNtrY2ERMTI+zs7IRcLhcODg4iPDxcKuTQ2xQh2dnZUhltIR49ZYOlpaUwNTUVAQEBvU7Z8LBff/1VBAcHS/e2o6OjSElJ6fPF+qamJmFqatqjtPaxY8fEjBkzhLGxsZgwYYJITU0VDx48eGQ/T6KQy+LFi8WSJUv67IMeX/f7sL+y8Ldv3xahoaHCwsJCODg4iKKiogEVi3i4UIoQPads2LRpkwDQ69/2jo4OYW1tLTIyMnr9DOnp6UKlUonOzk5x584dMW/ePGFmZiZGjx4tMjIyetyH169fF/7+/kKhUIhJkyaJioqKPgu5CCHE6tWrha2trZDJZCIiIkKcO3dOBAQECBsbG2FsbCycnZ3Fhg0b+rzWFRUVwt7eXuu7h27TQfy7/BvL1atXhY+Pj7CyshLGxsbCyclJJCYmitu3b/d5rh07dggPDw+hVCqFQqEQL7/8svj888/7/O3srZDLL7/8IuRyubh27Vqf56Mn72l8N7v/j9XbeYTo+VvUm7y8POHp6Tmoz3Tx4kVp2p9Vq1b1eu8/fN709HQxceJEaVoUX19fcejQIa0+29vbhaWlpTh+/PigYhlOZEI8oq4wkR5ITExEW1ub1gSnQ1lTUxPUajVaWloG/M4k0dM0Z84ceHh4ICkpSWcx3Lx5UxoKOJBhb/T8Sk1NxZdffolr167pOpSnRgiBGTNmYOnSpX2OIBlKli9fjlu3bmHz5s26DoWGmPb2dri4uKCsrEynIzE2bdqEXbt29Xj6R//Hd/pIryUnJ8PR0fE/Fw54Vm7cuIHi4mImfDRkZGZmStU1deXKlSvIy8tjwqeH8vLyUFtbi8uXL2Pbtm3IzMxERESErsN6qmQyGTZv3owHDx7oOpQBU6lUWLNmja7DoCHI1NQUxcXF0isruiKXy7FhwwadxjDU8UkfERER6cTSpUtRVlaG1tZWjBs3DvPnz0dSUtKgqhUSEVH/mPQRERERERHpMQ7vJCIiIiIi0mNM+oiIiIiIiPQYkz4iIiIiIiI9xqSPiIiIiIhIjzHpIyIiveXr6wuZTAaZTIa6ujpdh/NcGj9+vHQN//rrL12HQ0REj4FJHxER6bX3338fN27cgLu7u9b2gIAAGBoaora2VidxCSHw1VdfwcvLCxYWFlAqlXBzc0NsbCwuXryok5h6U1tbi2+//VbXYRAR0X/ApI+IiPSamZkZbG1tteZ+u3r1Ko4dO4bo6GgUFBQ885iEEHjvvffw0UcfITAwEPv27cO5c+eQn58PExMTrF279pHHdnZ2PsNIARsbG1hZWT3TcxIR0ZPFpI+IiIadwsJCBAUFISoqCtu3b0d7e7tW+507dxAeHg6FQoExY8YgOzsbvr6+iIuLk/bp6OjAsmXLYG9vD4VCgRkzZuDIkSMDOn9ZWRl27NiBsrIyfPrpp/D09MS4cePg6emJ9PR0FBYWSvsuXLgQwcHBSE1NhZ2dHVxcXAAADQ0NUKvVMDU1hbW1NRYvXoy7d+9Kx3WPFwCCg4OxcOFCaX38+PFYs2YNwsLCoFAoYG9vj40bNw7sIhIR0XODSR8REQ0rQggUFhZi3rx5eOmll+Dk5IRvvvlGa5/4+HhUV1djz5492L9/PyorK3H69GmtfaKjo3H8+HHs2LEDZ8+exZw5c/Dmm2/ip59+6jeG7du3w8XFBW+//Xav7TKZTGv94MGDaG5uxv79+7F3717cu3cPAQEBGDlyJGpra7Fz504cOHAA0dHRg7waQGZmJqZMmYIzZ85gxYoViI2Nxf79+wfdDxERDV1M+oiIaFg5cOAA/v77bwQEBAAA5s2bh/z8fKn9zp072Lp1K9atWwc/Pz+4u7ujsLAQGo1G2ufq1asoLCzEzp078frrr2PixIlYtmwZXnvtNa2ndI/S0tIiPbH7V1xcHJRKJZRKJcaOHavVplAosGXLFri5ucHNzQ2lpaW4f/8+iouL4e7uDrVajdzcXGzbtg2//fbboK6Ht7c3VqxYAWdnZ8TExCAkJATZ2dmD6oOIiIY2Jn1ERDSsFBQUIDQ0VHrHLywsDNXV1bh06RIA4PLly+jq6sL06dOlYywtLbWStIaGBmg0Gjg7O0uJmlKpxNGjR6V+Bis5ORl1dXVISUnRGqYJAJMnT4aRkZG0fv78eUyZMgUKhULa5u3tjX/++QfNzc2DOq+Xl1eP9fPnzz/GJyAioqHqhf53ISIi0g+tra3YtWsXurq6sGnTJmm7RqNBQUEBUlNTB9TP3bt3YWhoiFOnTsHQ0FCrTalU9nv8pEmTeiRnNjY2sLGxgUql6rH/w8ndQBkYGEAIobWtq6tr0P0QEdHzj0/6iIho2CgpKcHYsWNRX1+Puro6aVm/fj2Kioqg0WgwYcIEyOVyrakcbt++jZaWFml96tSp0Gg0+P333+Hk5KS12Nra9htHWFgYmpubsXv37sf6HK6urqivr8e9e/ekbdXV1TAwMJCeSNrY2ODGjRtSu0ajQWNjY4++Tpw40WPd1dX1seIiIqKhiUkfERENG/n5+QgJCYG7u7vWEhkZiZs3b+L777+Hubk5IiIikJiYiMOHD6OpqQmRkZEwMDCQCqw4OzsjPDwcCxYswHfffYeff/4ZP/74I9LS0lBeXt5vHHPnzkVISAjmzp2L1atXo6amBleuXMHRo0dRVlbW4+lhd+Hh4TAxMUFERAQaGxtx+PBhxMTEYP78+Rg9ejQAQK1Wo7y8HOXl5bhw4QKioqJ6nVy9uroaGRkZaGlpwcaNG7Fz507ExsYO/uISEdGQxaSPiIiGhVOnTqG+vh7vvvtujzZLS0v4+flJBV2ysrLg5eWFoKAgzJo1C97e3nB1dYWJiYl0TGFhIRYsWICEhAS4uLggODgYtbW1GDduXL+xyGQylJWVIScnBxUVFfDz84OLiwsWLVoEBwcHVFVV9Xm8mZkZfvjhB7S2tmLatGkICQmBn58fcnNzpX0WLVqEiIgILFiwAG+88QYmTJiAmTNn9ugrISEBJ0+exNSpU7F27VpkZWVJRW6IiEg/yET3Af9ERER6wtfXF6+88gpycnL+Uz/37t2Dvb091q9fj8jIyCcT3BAwfvx4xMXF9ZjPr7sjR45g5syZuHXrFkaMGPFMYiMioieHT/qIiEiv5eXlQalUoqGhYcDHnDlzBtu3b8elS5dw+vRphIeHAwDeeeedpxXmkOXm5obZs2frOgwiIvoPWL2TiIj0VklJCdrb2wFgQMMuH7Zu3To0NzfDyMgIr776KiorKzFq1KgBHTt79mxUVlb22rZy5UqsXLlyULHoUkVFhVT108LCQsfREBHR4+DwTiIioifs+vXrUrLZnZWVFaysrJ5xRERENJwx6SMiIiIiItJjfKePiIiIiIhIjzHpIyIiIiIi0mNM+oiIiIiIiPQYkz4iIiIiIiI9xqSPiIiIiIhIjzHpIyIiIiIi0mNM+oiIiIiIiPQYkz4iIiIiIiI99j8ijS5O439EbAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "ax = sales[['Profit', 'Age_Group']].boxplot(by='Age_Group', figsize=(10,6))\n", + "ax.set_ylabel('Profit')" ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAF0CAYAAADrQ6QcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZxcdZ3v/9enqpeEJGQnBDohwQ4wEUKAFoIBriwiCAJziYijE8YrMPcqI6IzIo4jio4COrL8cBgRVKKOEEEkMiiEhH0JaSAJJCxpSCAdSAjZCJD0+vn9cU51qqqrupac6qpKv5+PRz+66lvnnPrU6er61Pmu5u6IiIhEIVbuAEREZPehpCIiIpFRUhERkcgoqYiISGSUVEREJDJKKiIiEpmacgfQ38aMGeOTJk0qdxgiIlXjmWeeecfdx+azbUmTipmNAG4GDgYc+D/Ay8DtwCRgNXCOu282MwOuAz4JfAD8g7s/Gx7nPODb4WF/4O63huVHAL8GBgP3Ahd7joE3kyZNorm5OboXKSKymzOz1/PdttTVX9cBf3X3g4BDgReBbwIL3H0KsCC8D3AqMCX8uRC4EcDMRgGXA0cBRwKXm9nIcJ8bgQuS9julxK9HRET6ULKkYmbDgeOAWwDcvd3dtwBnAreGm90KnBXePhOY44GngBFmNh74BDDf3Te5+2ZgPnBK+Nie7v5UeHUyJ+lYIiJSBqW8UpkMbAB+ZWbPmdnNZjYEGOfub4XbrAPGhbf3BdYk7d8alvVV3pqhXEREyqSUSaUGOBy40d0PA95nZ1UXAOEVRsknHzOzC82s2cyaN2zYUOqnExEZsEqZVFqBVndfFN6/gyDJrA+rrgh/vx0+vhaYkLR/Q1jWV3lDhvJe3P0md29y96axY/PqwCAiIkUoWVJx93XAGjM7MCw6EVgBzAPOC8vOA+4Ob88DZltgBrA1rCa7DzjZzEaGDfQnA/eFj71rZjPCnmOzk44lIiJlUOpxKv8E/M7M6oDXgC8QJLK5ZvZF4HXgnHDbewm6E7cQdCn+AoC7bzKz7wOLw+2ucPdN4e0vsbNL8V/CHxERKRMbaOupNDU1ucapiIjkz8yecfemfLbVNC0iIhIZJRUREYmMkopIBdj4XhtL12xh43tt5Q5FZJcMuAklRSrN3UvWcumdy6iNxejo7ubqs6dxxnSN45XqpCsVkTLa+F4bl965jB0d3Wxr62RHRzffuHOZrlikaimpiJRR6+bt1MZS/w1rYzFaN28vU0Qiu0ZJRaSMGkYOpqO7O6Wso7ubhpGDyxSRyK5RUhEpo9FD67n67GkMqo0xrL6GQbUxrj57GqOH1pc7NJGiqKFepMzOmL4vMxvH0Lp5Ow0jByuhSFVTUhGpAKOH1iuZyG5B1V8iIhIZJRUREYmMkoqIiERGSUVERCKjpCIiIpFRUhERkcgoqYiISGSUVEREJDJKKiIiEhklFRERiYySioiIREZJRUREIqOkIlIBtEa97C40S7FImWmNetmd6EpFpIy0Rr3sbpRURMpIa9TL7kZJRaSMtEa97G6UVETKSGvUy+5GDfUiZaY16mV3oqQiUgG0Rr3sLlT9JSIikVFSERGRyCipiIhIZJRUREQkMkoqIiISGSUVERGJjJKKiIhERklFREQio6QiIiKRUVIREZHIKKmIiEhklFRERCQyJU0qZrbazJ43syVm1hyWjTKz+Wa2Mvw9Miw3M7vezFrMbJmZHZ50nPPC7Vea2XlJ5UeEx28J97VSvh4REelbf1ypHO/u0929Kbz/TWCBu08BFoT3AU4FpoQ/FwI3QpCEgMuBo4AjgcsTiSjc5oKk/U4p/csREZFsylH9dSZwa3j7VuCspPI5HngKGGFm44FPAPPdfZO7bwbmA6eEj+3p7k+5uwNzko4lIiJlUOqk4sD9ZvaMmV0Ylo1z97fC2+uAceHtfYE1Sfu2hmV9lbdmKBcRkTIp9SJdx7j7WjPbC5hvZi8lP+jubmZe4hgIE9qFABMnTiz104mIDFglvVJx97Xh77eBuwjaRNaHVVeEv98ON18LTEjavSEs66u8IUN5pjhucvcmd28aO3bsrr4sERHJomRJxcyGmNmwxG3gZOAFYB6Q6MF1HnB3eHseMDvsBTYD2BpWk90HnGxmI8MG+pOB+8LH3jWzGWGvr9lJxxIRkTIoZfXXOOCusJdvDfDf7v5XM1sMzDWzLwKvA+eE298LfBJoAT4AvgDg7pvM7PvA4nC7K9x9U3j7S8CvgcHAX8IfEREpEws6Tg0cTU1N3tzcXO4wRESqhpk9kzQspE8aUS8iIpFRUhERkcgoqYiISGSUVEREJDJKKiIiEhklFRERiYySioiIREZJRUREIqOkIiIikVFSERGRyCipiIhIZJRUREQkMkoqIiISGSUVERGJjJKKiIhERklFREQio6QiIiKRUVIREZHIKKmIiEhklFRERCQySioiIhIZJRUREYmMkoqIiERGSUVERCKjpCIiIpFRUhERkcgoqYiISGSUVEREJDJKKiIiEhklFRERiYySioiIREZJRUREIqOkIiIikVFSERGRyCipiIhIZJRUREQkMkoqIiISGSUVERGJjJKKiIhERklFREQio6QiIiKRUVIREZHIlDypmFnczJ4zs3vC+5PNbJGZtZjZ7WZWF5bXh/dbwscnJR3jsrD8ZTP7RFL5KWFZi5l9s9SvRURE+tYfVyoXAy8m3b8KuMbdG4HNwBfD8i8Cm8Pya8LtMLOpwLnAh4FTgP8ME1Uc+BlwKjAV+Gy4rYiIlElJk4qZNQCnATeH9w04Abgj3ORW4Kzw9pnhfcLHTwy3PxO4zd3b3H0V0AIcGf60uPtr7t4O3BZuKyIiZVLqK5VrgW8A3eH90cAWd+8M77cC+4a39wXWAISPbw237ylP2ydbuYiIlEnJkoqZnQ687e7PlOo5CojlQjNrNrPmDRs2lDscEZHdVimvVGYCZ5jZaoKqqROA64ARZlYTbtMArA1vrwUmAISPDwc2Jpen7ZOtvBd3v8ndm9y9aezYsbv+ykREJKOSJRV3v8zdG9x9EkFD+0J3/xzwIDAr3Ow84O7w9rzwPuHjC93dw/Jzw95hk4EpwNPAYmBK2JusLnyOeaV6PSIikltN7k0idylwm5n9AHgOuCUsvwX4jZm1AJsIkgTuvtzM5gIrgE7gy+7eBWBmFwH3AXHgl+6+vF9fiYiIpLDgYmDgaGpq8ubm5nKHISJSNczsGXdvymdbjagXEZHIKKmIiEhklFRERCQySioiIhIZJRUREYmMkoqIiERGSUVERCKjpCIiIpFRUhERkcgoqYiISGSUVEREJDJKKiIiEhklFRERiYySioiIREZJRUREIqOkIiIikVFSERGRyCipiIhIZJRUREQkMkoqIiISGSUVERGJjJKKiIhERklFREQio6QiIiKRUVIREZHIKKmIiEhklFRERCQySioiIhIZJRUREYmMkoqIiERGSUVERCKTd1Ixs/3M7KTw9mAzG1a6sEREpBrllVTM7ALgDuDnYVED8KdSBSUiItUp3yuVLwMzgXcB3H0lsFepghIRkeqUb1Jpc/f2xB0zqwG8NCGJiEi1yjepPGxm3wIGm9nHgT8Afy5dWCIiUo3yTSrfBDYAzwP/CNwLfLtUQYmISHWqyWcjd+8GfhH+iIiIZJRXUjGzVWRoQ3H3/SOPSEREqlZeSQVoSro9CPg0MCr6cEREpJrl1abi7huTfta6+7XAaSWOTUREqky+1V+HJ92NEVy55HuVIyIiA0S+vb/+I+nnR8ARwDl97WBmg8zsaTNbambLzex7YflkM1tkZi1mdruZ1YXl9eH9lvDxSUnHuiwsf9nMPpFUfkpY1mJm3yzkhYuISPTy7f11fBHHbgNOcPf3zKwWeMzM/gJ8DbjG3W8zs/8CvgjcGP7e7O6NZnYucBXwGTObCpwLfBjYB3jAzA4In+NnwMeBVmCxmc1z9xVFxCoiIhHIt/qrHjgbmJS8j7tfkW0fd3fgvfBubfjjwAnA34XltwLfJUgqZ4a3IZhn7AYzs7D8NndvA1aZWQtwZLhdi7u/FsZ4W7itkoqISJnkW/11N8EHdifwftJPn8wsbmZLgLeB+cCrwBZ37ww3aQX2DW/vC6wBCB/fCoxOLk/bJ1u5iIiUSb6N7Q3ufkqhB3f3LmC6mY0A7gIOKvQYUTCzC4ELASZOnFiOEEREBoR8r1SeMLNDin0Sd98CPAgcDYwIJ6SEYAr9teHttcAE6JmwcjiwMbk8bZ9s5Zme/yZ3b3L3prFjxxb7MkREJId8k8oxwDNhT6tlZva8mS3rawczGxteoWBmgwka1F8kSC6zws3OI6haA5gX3id8fGHYLjMPODfsHTYZmAI8DSwGpoS9yeoIGvPn5fl6RESkBPKt/jq1iGOPB241szhB8prr7veY2QrgNjP7AfAccEu4/S3Ab8KG+E0ESQJ3X25mcwka4DuBL4fVapjZRcB9QBz4pbsvLyJOERGJiAUXA3lsaHYMMMXdf2VmY4Gh7r6qpNGVQFNTkzc3N5c7DBGRqmFmz7h7U+4t819O+HLgUuCysKgW+G1x4YmIyO4q3zaVvwXOIOxG7O5vAsNKFZSIiFSnfJNKe9ho7gBmNqR0IYmISLXKN6nMNbOfE3QHvgB4AC3YJSIiafKd++sn4dr07wIHAt9x9/kljUxERKpOvnN/fQ24XYlERET6km/11zDgfjN71MwuMrNxpQxKRESqU74rP37P3T8MfJlgUOPDZvZASSMTEZGqk++VSsLbwDqCObn2ij4cERGpZvkOfvySmT0ELCCYjv4Cd59WysBERKT65Dv31wTgq+6+pJTBiIhIdcu3TeUyYKiZfQF6ZiCeXNLIRESk6mjuLxERiYzm/hIRkcho7i8REYnMrsz9dXPpwhIRkWqkub9ERCQy+XYpJkwi8wHMLGZmn3P335UsMhERqTp9Vn+Z2Z5mdpmZ3WBmJ1vgIuA14Jz+CVFERKpFriuV3wCbgSeB84FvAQacpYGQIiKSLldS2d/dDwEws5uBt4CJ7r6j5JGJiEjVydX7qyNxw927gFYlFBERySbXlcqhZvZueNuAweF9A9zd9yxpdCIiUlX6TCruHu+vQEREpPoVup6KiIhIVkoqIiISGSUVERGJjJKKiIhERklFREQio6QiIiKRUVIREZHIKKmIiEhklFRERCQySioiIhIZJRUREYmMkoqIiERGSUVERCKjpCIiIpFRUhERkcgoqYiISGSUVEREJDJKKiIiEpmSJRUzm2BmD5rZCjNbbmYXh+WjzGy+ma0Mf48My83MrjezFjNbZmaHJx3rvHD7lWZ2XlL5EWb2fLjP9WZmpXo9IiKSWymvVDqBr7v7VGAG8GUzmwp8E1jg7lOABeF9gFOBKeHPhcCNECQh4HLgKOBI4PJEIgq3uSBpv1NK+HpERCSHkiUVd3/L3Z8Nb28DXgT2Bc4Ebg03uxU4K7x9JjDHA08BI8xsPPAJYL67b3L3zcB84JTwsT3d/Sl3d2BO0rFERKQM+qVNxcwmAYcBi4Bx7v5W+NA6YFx4e19gTdJurWFZX+WtGcpFRKRMSp5UzGwocCfwVXd/N/mx8ArD+yGGC82s2cyaN2zYUOqnExEZsEqaVMysliCh/M7d/xgWrw+rrgh/vx2WrwUmJO3eEJb1Vd6QobwXd7/J3ZvcvWns2LG79qJERCSrUvb+MuAW4EV3/2nSQ/OARA+u84C7k8pnh73AZgBbw2qy+4CTzWxk2EB/MnBf+Ni7ZjYjfK7ZSccSEZEyqCnhsWcCfw88b2ZLwrJvAVcCc83si8DrwDnhY/cCnwRagA+ALwC4+yYz+z6wONzuCnffFN7+EvBrYDDwl/BHRETKxIJmjYGjqanJm5ubyx2GiEjVMLNn3L0pn201ol5ERCKjpCIiIpFRUhERkcgoqYiISGSUVEREJDJKKiIiEhklFRERiYySioiIREZJRUREIqOkIiIikVFSERGRyCipiIhIZJRUREQkMkoqIiISGSUVERGJjJKKiIhERklFREQio6QiIiKRUVIREZHIKKmIiEhklFRERCQySipltvG9Npau2cLG99rKHYqIyC5TUolQy/pt3NG8hpb12/La/u4la5l51UI+f/MiZl61kHlL1hZ1zHwSU/px0vdpXrWRn97/Ms2rNhZ03GJiKVSh5zWb9NiiOm6u5ylmn6jOYzHHLVUsMjDUlDuA3cV3/vQ8c556o+f+7KMncsWZh2TdfuN7bVx65zJ2dHSzg24AvnHnMmY2jmH00Pq8j3n3krVceucyamMxOrq7ufrsaZwxfd8+YzumcTTNr2/u2WfiqMG8sv59AK5f2MKxjaOZ1TQh53HT5RNLoQo9r/nG1rTfSB5r2ZlAiz1urucp5rydc0QDc59p3eXz2Ou4TQ3Mbe77uKWKRQYOc/dyx9CvmpqavLm5OdJjtqzfxknXPNKr/IFLjqNx3LCM+yxds4XP37yIbW2dPWXD6mv42ecOY/jgOjo6u5j186f6PObG99qYedVCdnR09zw+qDbG45ee0JOYssWWS20Mkg7b67jp8omlUIWc143vtdG6eTsNIwf3er5MsWXS198rH8Wcg3xiK+Y8FnPcUsUi1c/MnnH3pny21ZVKBJas2ZK1PNuHVMPIwXR0p/7z7ujs4oI5zdTF4+zo7Mp5zNbN26mNxXqudABqYzFaN2/v+afPFltuBuz8wpF+3HT5xFKofM9rrquDTLHlc9xCFXMO8omtmPNYzHFLFYsMLGpTicD0CSMKKgcYPbSeq8+exqDaGMPqa6ivieHutHU629o66ejKfAU5afQePbczJaaO7m4aRg7OuH0h0q9g048LqXXt+cRSqHzOa3I14ra2TnZ0dPONO5el1P9niq2Q58tXMecgn9iKOY/FHLdUscjAoqQSgcZxw5h99MSUstlHT8z5rfeM6fvy+KUn8Nvzj+IXs5sYXNv3hWNt3KitiffcT09Mg2pjXH32tJRvkbU1cWrjlnKcmEFdTbBPXdpjEFyjXHzSAX0eN72TweMt7+SMpVCN44ZxbOPolLJjG0ennNfEt+tkiW/TCZnOU/px8/l75ZLP3yOffWYfPXGXz2Mxxy1VLOWmjgb9S20qEWpZv40la7YwfcKIgj+gdqU+u9D2hEG1Me656Bjeb+9iSF2c0294LGM7AJDxuH21HWTbpxj5tFEU0o6Rfp525e+VK+5Cz0H6PsUcI6rjliqWcihF55GBSG0qZdI4bljRH06Jb4nfyNFbJ9M/9eih9Vn/2TMd9+qzp6XEmenxxPEyHbevtoNDJ4yIJJm0bt7O1u3tOdsosr2+fM7Trvy9+tLX3yPffYo5RlTHLVUs/S2fHpYSPSWVCnLG9H2Z2Tgm5VvhxScesMvfEjMdt5DH05Wi/SQh+Ztle1cX3WkX0pmep9D4ZWAoRecRyU1tKiVUzECzdKOH1hf87T/TMaM6TuJYxbafZDpmoqxl/baURve2Tsfdqa+Jpk5/INatD8TXnFDKLz+Sna5USiSfutxiBqdF8bz57OPQ53GKuTrI9TxtXd1YWhvf4Noafva5wxk+uDbr8xRzrgdC3fpAfM3JCqkaleioob5IxTSOl3qgWVSD7+prDDDaOqMbyJj5eWJA0I06mygGXZZiYGalG4ivOZtq7mhQKdRQX2LFDLbrj4FmUQ2+i1ss6FecFsuTr25kR0dXT2+pQnoSZWp0j8cM3ICdAz0H1cbo7nbqa+J5fbMs9lzv7nXrA/E1Z1OtHQ2qlZJKgfLpUZJPXW4pBpoVO/guffR+e1cX8bSxHx90dHHR75/ruZ8+f1i2Kqdv3LEMA7rdSb8e6ep26FUK937lWN5v74qs08BArFsfiK9ZKoMa6gtU7GC7Ug40SzTGAkU1oGeqAv3Op6amjPbvSuuG9VjLxj5HsW98r42vzV1KW2c3Ozq7ae9yOrtSG91/PGsaP551aK94G8cNy7tTQbHn+uqzpwHsto3Yu9KZQmRX6EqlQPl+A8ynITvTNrNnTEoZkJeriim4GlhK3GJ0eTc/nnUo91x0TK9BfdmO07p5O4Nra1ImthxcW8PB+wzn8UtPoHXzdp57YzPf/fOKPs9LetXKk69u7JWIHPjup6YydZ/hKXHsanfgYs71Yy3vMPOqhb2utCql/j2KOM6Yvi9Tx+9ZkgGeItkoqRRoVwbbZTteYptCpx3f+F4bX5+7hKA9PajC+urtS6iNG3XxeF49ufpKkonYhtTFySU9sb6T5dt/W2c3h6bNsRVFnXch5zpbFea2HZ18/39WlL23VFS9tgZ67y8pDyWVIpRisF2mD7rEOiLZ2m6Wv/kunWnNMt0ObZ1OW2dw5fEvdywl0ZMr+ThTx+/Z026RK0km5jab8+TOdU2ObRzN4rQ2leR92tp3Xvkky1benzJ2TogZ3/vzctq7vKyjr6MaBa7R5FIuSip5Sq+OyPTNeFfmkiqkN9jm99tZsmYLnV25Z97N1JPLu52TrnmEoOMwXHvudH722cO4f8V6Tp46jhOn7g3Azx9cyZ+WvcVZ08ZzxZmHcMa0fXhk5TscN2UMTZNHZ3y9iX22t2VOHk+s2sg/Hj+lz5gXrFiXEkvzqo0pzwvFVQ9dc9+L3L1sHR8/aGzvq7MupzYejOJPiKq3VD6xJs7loNp4JL22dqX3V654K6WKUCqTkkoeilldsdCVBPPpDfZBRxe/e2o1c5/Zuexw6qonvXV5N20dqVu0hdPqJ/pefeW2JT2P3d7cyrGNo2levYnt4fiRF9/axk/uf4V4TYzaWIybHn2Nc5oauH3xmpS2nEvvWNqzTzaHTRjZ5+MnX/NQzyqUtze3MrjGeo65K6tSTrnsf0ichl88/nqvx0cOjrN1R2ovuCh6SxXz3km3ra2zqKnvt3ekJvbtHbmPkyteValJLiXr/WVmvzSzt83shaSyUWY238xWhr9HhuVmZtebWYuZLTOzw5P2OS/cfqWZnZdUfoSZPR/uc72Z9Z7DPQL5rNfRsn5brw+FOU++UdDa56OH1vcaTZ6uq9tTEgr0TigxCwYvJnr8fPqICXnHkPBoy8ZeyaHDSTkHc558g7ZO54OOLto6na/ctiRnQgEYM6Qu62MLVqzrSSgJ6cd8tGUj/zx3SZ9/j3TX3PciHTlCW7+tg6Mnj0opO6epYZdnCC7mvZPJo6+8XfDzp/9L5PoXyRVvPq9HpJRdin8NnJJW9k1ggbtPARaE9wFOBaaEPxcCN0KQhIDLgaOAI4HLE4ko3OaCpP3SnysS+XQhfqxlQ8Z9s5Vn8tsnVuX1oZzLkLoafjG7id+efxSPX3oCL721dZePGaWHVr6T9bH7V6zP6xjpZyn975Hu7mXr8jruw6+kxja3uZWW9duK7nbc13sn0Q38sZbs5yPZPc/n9xqSn3tQTWoHi0E18T7PU673ej7/CyIlq/5y90fMbFJa8ZnAx8LbtwIPAZeG5XM8GDDxlJmNMLPx4bbz3X0TgJnNB04xs4eAPd39qbB8DnAW8JeoX0c+XYjHDB2Ucd9s5Zncveyt4gJM09HdzYf3Gd7zDXvUkMqq8z79kL2zPnby1HHc3tya8xjptYS5qqnOnLY31z34Ws7j1sUhrQaMT17/aMro/kKqerK9d15Yu5XP3PRkMN9ZlmWj0/V13gp57kJXoezo7mZIXZyla7YwpC6uAZWSU38Pfhzn7olPz3XAuPD2vsCapO1aw7K+ylszlEcun0FkR39odHpbOBaW55L4xnrSgWPziidTBUZfs/heeNz+eR03XW36NC1GymDIWNrjNXm8k8bvWcdZh2evjttv9JC8YvvKiY3U18TYoy5OfU32QX2Jczt75v69Xk8mbqkvYkdHMGiz2KqeTO+dfzt9Kt//nxU9VUjtXd7rXA6uSS3Idt7SZyBOvl/M4MdM+5zT1MDpNzzG529exOk3PMY5TQ0ZjzmQZ0OWVGVrqHd3N7N+mc3SzC4kqFZj4sSJObbuLVMX4vQeStedO52v3rYEZ2ePqkwTTSYfI33gYi4TRw1i8/udKQMVh9X3nsU3Pbbhg3o3QufyTycdwE/nv9Jz/z8+Mz3lHDze8g7/cseynscvOr6Rax94ha6kv6gl/Tbgsk9O7fM5l4SzAvQlZhCLxejq6qaza+dzpL/mu5esTfl7XHfudJ5fs5l7XljHRyaO5MFX3ul1Hi88bn9ueHAlcQsaobu7PeX1eLcX3Asr/b2TqVfWkLoafvS/D2ZHRzfTJ4xg+Vvv8vXbd8aeOG/J75/HWt5Jee985iMTMs5wnavre/p7Mnmf5FVBE/HObW7tWTU0+X1cTOO9epHtnvo7qaw3s/Hu/lZYvZVofVwLJH8VawjL1rKzuixR/lBY3pBh+4zc/SbgJghmKS4m8OQuxOk9lA4cNwSHno8JB3724Mo+e8382+lTufzuF1IGLubyxqYdvS4tt3d08uF99swa28SRgwpOKHEjJaFA0EPsmW+f1DNwMdF/LPGh1tnVnfIBvHObnb+zjZNIfLiM3KM2Z2zdnjm2hNubW2kcuwctGz5IieMrty2hLg41sTh/XbGe9rRgt7V1MmpIHe5Gp3eDe6/X09bleQ0ETZfe/TxTFdLRHxqTMjAzuXktfWBme1c37Z3d4XkN/raJMUSZxqRk+8DOlgwS+yxdsyVjt+T327t63gfFjodRL7LdV38nlXnAecCV4e+7k8ovMrPbCBrlt4aJ5z7gh0mN8ycDl7n7JjN718xmAIuA2cD/1x8vIFMPpZfT7ifKFqxYx4lT9874j/e9eSt6DVzMS1ofYjNj8/vttG7ezqoN23rF9sbmHQU/RfqHacJND79KfW2cQxuGc+mdy8Ip64MPtRseasl53NpYjOVvbmX44LqMV2v5ti/kkpxQkrV3kTIOJd2//umFrI8B1MaN99t771/IN+5cMzJknjXa+N49K2hPGsCaS64xKVFNjFrMeBgNzNy9lSypmNnvCa4yxphZK0EvriuBuWb2ReB14Jxw83uBTwItwAfAFwDC5PF9YHG43RWJRnvgSwQ9zAYTNNBH3kifLPHB8edlb+a9z/0r1nPi1L1p3by910DFrhxjUrIZVGN8kNQ/NshF/NAAABmKSURBVB6znsbk97IMOIzKzx9d1XM7vR0gn4rMHZ1dnH9rMzXxYILK75w+lcvnFXa1Vk4dGa5U8vnGnamKKducXJnGl+zo6GJwXZxCJiPI1YCeTzLIZ0qiYjoEaFr+3Vspe399NstDJ2bY1oEvZznOL4FfZihvBg7elRjzlfzBsa2AD+6Tpwb9EDo6u3pdlXR57oGL6QzYkdbtOLEIU3tX/05/kr52fD69oTvCS6DE1cK/3f1Cr+NUsvq0K5V8vnEXs6qmp70zHFIWTMskHjNqYqTM+dbXB3RUE6MWs7qipuXfvWlEfQ6ZPjgyqYtBe9LD4/esY/rEkSxds4VFqzZl3a8QDlTqQp0xyLNiZqdSJpT6OLRFfPFjMSuo6ifTeyfbXGyJRLT8za29ZnfudnqdLAPqamLEY0ZXt/PjWdMKmo8uyolRC50Lr5hEJNVDSSWHfObkgtSEAvDWu+189MqF1MVjvaozEgr9TC30yqZYiQ+qQhRXmVc6s4+ezK+eWE23O2aFv56EmpgxuDbzt/9cU6FkW1Uz/Vt6aq+yzH2f6+MxtiddrQzN0OsP2KWeabvyoV7oTNOlmJRVKoOSSg75zMmVTVtnd85qi0KUMqHEDGrjQd+y06eN585ns3amqwq/eGxn+08+l3fZEvZPZh3C5LHDsn7wBVOfeNr9QKb3Tmd3Fx1pV1DJvcr2GZ55wGx6l/NgkOueKTEV00W3nEvtlvO5pXS08mMOo4fW07Rf35MgVrsYQc+mePgBOay+/75rHL1/ec7toNoYtTHYozZOfY3xd0dmHr/U2U3WVShzTYWSaTDhP51wAINqU//tBtXGetpqMvUuA3r2yzaQ8e4la5l51UI+f/MiZl61kHlLqvtLgVQvXank0LJ+G4+1bCx3GJE7Zv9RtG7dwccPGstvnl4TNvgHH2i/X7ym750jNHZY/lPZRO33F8xg9cYPmD5hBFs+aOd3T/ee2HHS6D2y7p9Pg3N6NQ/AtQtWpu7T5T2PvbMtcxfwqeOHZVzRE/ruMAD0SxWTBjJKgpJKDvmM8p599ERWbXifR5OST65R7P3VPpLNuUftx+mH7sPSNVu4rXltSr1/TczoihmdJe6aVRuHeUsLm/Nsj9rULtWFPZ8xKJzH65wjGvjcLU/3/B0uOr6RuKWO0Ykb1NZkH+yYb4NzcjVPy/ptvdp3urqdze+3BwMOWzNPADq3uZWHV27I2GMsW4eB3y16g/98qKXkAww1kFGSKankMD1t6duEa8+ZxmvvfMBxU8YweexQZl61MOXxXKPY62pigIcDCPOTLRGdccjeDK6voTYGv30694SMAOu2BlU0DSMHsyNt0OGOzi4G18Z5L+ruU2nSu87mo6ObXh/++fr9+UdRWxNnSF2cT1z3aMqH+7UPrKQmbnQl/T1qa2I9kylm+wZeaINzti8pS9ZsoXHcMI6bMobrF/YeSLrwpfV0dGceMZ/piqm9q5ufPbiSts7SrmSpgYySTkklh0xL6R7TOJqvzV2GAzcsbOGSjx+QVw+xmphRVxPr6QI6t3lN3lVrBpz30Yn8+oneVTTzCpwWHeCO5jXc+PCrHH/AGDq70r85w/b07mw51MaN8cPreWNT/iP4Tztkb+5eUtiVSkeXM3KPOJs/6DvhjRtWx/pt7T33j20czYVznmbT9m72qAleY7Iud6aMHsJLSTMS7DdqMCdd80jP/evPnZ7xG/iSNzanzDv2739+gXteWMfpB+/Nv37q4JSVK7N9Sfn1Y69y6Z3LOHzCnhzbODrlqnd6w3Be3fA+HUljpGpjMe5fvo63tu7guCljOKepIeU9etJBe/HIynd6lpVO7PPzh1/luTVbOHPaeD7/0ckZY/nTs2u45/l1nH7I3px1+IReryf58cljh9GR1hmlo7NbAxkHMPNKHfhQIk1NTd7c3FzQPrlW5stXXdyoiQVzZX394wfyw7+8tMvHrHYfGrsHr2aZVmVXFDNuJh+3zD6Cpa1be5Y2Tp5rLR/HNo5m/bYdBe0DQWN+YqBrPoygR19fV3TDB8W58//NTGmnmfHD+ax7tz37TmlG71HDxg96d5m/4x9n9Cz9LNXPzJ5x96a8tlVS6VvL+m0p31ajUhOjuLm/pGJM3XsIK9YVlhyKNXnUYFZtKmwxrEIrF2d+aBSPvxrNQN2fzJrGrKbCVx0tBXUi2HWFJBVVf+WQT0N9MdLHN0j16a+EAhScUCCokkyfjbkvUSUUyN4W2d/UiaD/aZxKDqX65+gopqVZpADd/TSx2gF7pXa7nn30xJQuz+WS3Img2IXWpHC6Usmhcdww9t6zrqB6ZpFKMG7PetZuLf0H6N8dtR/HNI7NOIamnDQbcnnoSiWH5lUblVCkKhWaUGYfPZHrz51OnOCDIU7Q4+2Cmfsxfng9sw4bn3G/YxrH0jhuGLOaJlRMQgHNhlwuulLJ4ZGV75Q7BJGSmH30RGbPmNTrCiN93M3MxjGcPr2BhpGD2WNQbUrX5Uqp6spEsyGXh5JKDvuPyT5Nh0i1+fYnD2LEHnUpSSQ9KSTPAJCxoXvaPj3jbhLdhpPH4mTqSlyuHliaDbn/KanksHZL4cvxilSqjx24F++3dzFySF3ObTONlv/6H5ZiODWxOD9/5FV+POvQlEG81y9s4djG0fzm/Bk9xyl3DyzNhty/lFREBpBTrn2EwXU1eX24Z2roTl+986u3Lek1yPTRlo00r9pI0+TRmsZlAFJDfQ6f+PDe5Q5BJDKdTt7da/NZSyjbo39dvp6la7aw/M13qY2lfswkemDJ7klJJYfGccM4tlHTTUjlM4J/6BqDvz8q92j22liM3zy5mvNvXcyfnu293EGiobsuHqw8Gc+8KGVGc558nc/fvIgL5jT3Wh2zGnpgtazfxh3Na2hZv63coVQdVX/lsPG9Nha/vrncYUgFOnzicJ59I/NU9VE76W/G8sCLG/rcxsOfboenV+ceHb+trZNrFwQzIj/w4ttc9deXePJbH09pVG9evYlg3bDM1yS1caOzy3vNDdHe1U17OGtnbdyor4G6eOqyzJU6fUr6XH+zj57IFWceUsaIqouSSg75rlEvA89zRSSUYifnWbu5sEk3Xy5wwkqAt95t59t3Pc/c5jcwYnR1d5NpZYbaWLDOTFe3c8a0vfnDs2/2edzubueWL3yE4YPrehJIuRvvs2lZv63X5LFznnyD2TMmVWzX6UqjpJJDw8jBvS7fRaC45FDsxCkv9tM8Y79dlPhAzf4l6l9P+xsOmziKhpGDOX/O4pzH7PJgOvxDwymPdqXxvmX9tpKO3M+13o3kpqSSh36aQkmkKhy8z/CeBPGR/UbldcW2tHUrJ04NOr0UO31Kf1RLZZvrr1ImyKwGaqjP4clXNyqpiITiBuve3dHTiP2P/+tDee133JQxPbeLmT4lW7VU1A3piUX5klXyrAGVSFcqOfzpufyW5xWpNpb024BLTz0o58Jx3Q4X/X5Jz/1zmhpyrg10bOPolFH2xUyfsivVUoV2CLjizEMyTl8j+VFSyWH5m+pSKLsnJ1ihsbYm3vOB+8vHX+tzAtX0i/a5za0MqYvRmbT8dH3c6CaRtIxPZ1isq9DpU4qtliq2Q0DjuGFKJkVS9VcOQ+oK6JwvUmWeePUdDp0wgtFD64uekfuD9tTLlLYup6PLae9y2ruiWcOkmGopradSHrpSyaGrW0lFdl/Nr++sVvrr8vVFHWPUHrW839FFbSxGW2cXsZixo6PvRvi7l6zlG3csIx4zurqdH8/KfAWR3Nur0GopradSHkoqOexRr4s52X1NHDmIO5rXBB/SY4cUdYwu7+bxS0+gdfN2htTFOf2Gx1IeT2+E3/heG//8h6Upq59+/Q9Le3UpztbbK99qKa2nUh76xMyhVmdIdmO/fbqVf75jGSdd8wjPrtlMrIgL85MO2qvn9sghdVx99jQG1cYYVl/DoNoYV589DYCla7aw8b02lr+5tddy2h1dzvI3d3ZNjqK3V6JDQHosukopLV2p5LByQ2EjmUWq1dzmtXwrjx5g6XZ0Okf84IGe+9efO53DG/bk6de3cOR+I3Bgxg8X0OVO3Izzj52c5Ug7M1pUgxC1nkr/U1LJ4SMTR/BQS+55lER2B4UmFIB7nl+Xcv8rt+3scvzEqi08sWrn/W53bnz4NWKWOqg4ZvDhffbsuR/lIEStp9K/VLmTg6OGepGopQ8o9rT7jeOGccC41DaeA8P7mj24sulKJYeHwxXtRKR0HPjjs62MDJc6BnglbVLMl9e/z0nXPNJzX7MHVyYlFRGpCP9+786qt4/uPyrn9sXOHpxphH2lTsNfrFJPvNkXJRURqThPvJZfO2ahDffB+JilxC1Gl3fz41mH4pDXmJlqUe71YJRURKTfDa4xtmdarCXJRz80iide7Tu55NNw37xqI4+sfIdDG4bz9blLwnnKugC45PYlmKXOXZZpzEwmlXh1UwnrwSipiEi/y5VQAK4442C2fNDOIyvf4bgpY5i37E3mPJn6DXzLB+389P6XOW7KmJRJKxM+f/NTPNZHu2hXYrnMJIkxM8cdsFfGfSD/GQH6WyWsB6OkIiIVaeFLb3P1X1/Cgf98sIUxw+pSHv/D4jU9Seb6hS0c2zia35w/o+fx5lUb+0wofXl53TaaV2/OmKzynRGgVBasWMf9K9Zz8tRxPWvUJFTCejBKKiJSkdLHzKRPdpl+tfNoy0aaV21k8tihtG7ezn0rUsfPFCLRaSBTsso2I8D85euoicd2qXE8VwP7ydc81NMr7vbmVg4cN4T7LvlYz+OJiTfTr+j6s7FeSUVEdhs/nb+Sxas3AkG1VBQSyWrnFUvmsWvfvOuFntuzj56Y1+SXyUlkzpOr+2xgX7BiXcZu1gtWrEu5Yjliv1H8ftEbYZxO0365e9JFSUlFRHYbT7yWqO6KdrnWmx55jdUbP2D6hBHsM3xQzu3nPPlGr6uF9B5Y6b20Mh0juYH9/hWZZ5H+1eOreqrDpk8cmdQZITgHX5u7hH2GD+qJv9RXLVWfVMzsFOA6IA7c7O5XljkkEdnN3P/i29z/4tsAHDV5ZMH7JxLEU6++w93L3uKjk0f2mVASkhvYs01u+9irm4BN3N7cSsPw+l6rcHZ2w6yfP9Vzv9RdjKs6qZhZHPgZ8HGgFVhsZvPcfUV5IxOR3dWiVZuL2u/U6x4hsczM4tX5HWPkHrU9t19++/0+tgy0bs29AFmpuxhX+9xfRwIt7v6au7cDtwFnljkmEZFeOrpzb5Nu8wcdPbeH1EQ3D+F/L3o9smOlq/aksi+wJul+a1iWwswuNLNmM2vesGFDvwUnIrIrkrsCr968I7Ljvrk1umOlq/akkhd3v8ndm9y9aezYseUOR0Qkp/SuwGdO27uPrQvz6SMaIjtWumpPKmuBCUn3G8KyyKy+8rQoDyciFaTWgkXF6uJGbdyoi+euYjpw3JCeafjzdeC4IQwfFM8ZywOXHMdPZk3jgUuO69WYfskn/obaPGrA0mNL3+fAcUN6DZqMUrUnlcXAFDObbGZ1wLnAvKifJD2xZLqfzzbap//2qaRYtE9+++w1JOg3tNeQmp5tRgwKPhFHDDJWX3kaH2scRV0cPtY4itVXnsbEEcEI9okj6nv2SS/7wRlT+cikkfzgjKmsvvI0Lj5+fyaN3oOLj9+flT86jTOm78uTl53IHf/3ozx52YkZn+eW2UfwmaYGbpl9BPdd8jHuu+RjKWWrrzyNWYeNZ/igOLMOG59xn6XfPSVnLI3jhjGraULWRvSVP0rdZ/WVp/Gpg/diSF2MTx28F6uvPK1XbCt/1DuWUjJPXx2nypjZJ4FrCboU/9Ld/72v7Zuamry5ublfYhMR2R2Y2TPu3pTPtlXdpRjA3e8F7i13HCIiUv3VXyIiUkGUVEREJDJKKiIiEhklFRERiYySioiIREZJRUREIqOkIiIikVFSERGRyCipiIhIZKp+mpZCmdkGoHSLCfQ2BninH59vV1RTrFBd8VZTrFBd8VZTrFBd8SZi3c/d85rifcAllf5mZs35zplTbtUUK1RXvNUUK1RXvNUUK1RXvMXEquovERGJjJKKiIhERkml9G4qdwAFqKZYobriraZYobriraZYobriLThWtamIiEhkdKUiIiKRUVKJiJlNMLMHzWyFmS03s4vD8lFmNt/MVoa/R5Y7VgAzG2RmT5vZ0jDe74Xlk81skZm1mNnt4TLNFcHM4mb2nJndE96v5FhXm9nzZrbEzJrDskp9L4wwszvM7CUze9HMjq7gWA8Mz2ni510z+2oFx3tJ+P/1gpn9Pvy/q8j3rZldHMa53My+GpYVfF6VVKLTCXzd3acCM4Avm9lU4JvAAnefAiwI71eCNuAEdz8UmA6cYmYzgKuAa9y9EdgMfLGMMaa7GHgx6X4lxwpwvLtPT+qSWanvheuAv7r7QcChBOe4ImN195fDczodOAL4ALiLCozXzPYFvgI0ufvBBEuen0sFvm/N7GDgAuBIgvfA6WbWSDHn1d31U4If4G7g48DLwPiwbDzwcrljyxDrHsCzwFEEA51qwvKjgfvKHV8YS0P4pj4BuAewSo01jGc1MCatrOLeC8BwYBVh+2olx5oh9pOBxys1XmBfYA0wimDp9nuAT1Ti+xb4NHBL0v1/A75RzHnVlUoJmNkk4DBgETDO3d8KH1oHjCtTWL2E1UlLgLeB+cCrwBZ37ww3aSX4x6gE1xK8ybvD+6Op3FgBHLjfzJ4xswvDskp8L0wGNgC/CqsWbzazIVRmrOnOBX4f3q64eN19LfAT4A3gLWAr8AyV+b59ATjWzEab2R7AJ4EJFHFelVQiZmZDgTuBr7r7u8mPeZDuK6a7nbt3eVCN0EBw2XtQmUPKyMxOB95292fKHUsBjnH3w4FTCapCj0t+sILeCzXA4cCN7n4Y8D5pVRwVFGuPsB3iDOAP6Y9VSrxh+8OZBIl7H2AIcEpZg8rC3V8kqJa7H/grsAToStsmr/OqpBIhM6slSCi/c/c/hsXrzWx8+Ph4gquCiuLuW4AHCS7FR5hZTfhQA7C2bIHtNBM4w8xWA7cRVIFdR2XGCvR8S8Xd3yao8z+SynwvtAKt7r4ovH8HQZKpxFiTnQo86+7rw/uVGO9JwCp33+DuHcAfCd7LFfm+dfdb3P0Idz+OoK3nFYo4r0oqETEzA24BXnT3nyY9NA84L7x9HkFbS9mZ2VgzGxHeHkzQ/vMiQXKZFW5WEfG6+2Xu3uDukwiqPBa6++eowFgBzGyImQ1L3Cao+3+BCnwvuPs6YI2ZHRgWnQisoAJjTfNZdlZ9QWXG+wYww8z2CD8fEue2Ut+3e4W/JwL/G/hvijmv5W4g2l1+gGMILg2XEVw6LiGolxxN0MC8EngAGFXuWMN4pwHPhfG+AHwnLN8feBpoIahaqC93rGlxfwy4p5JjDeNaGv4sB/41LK/U98J0oDl8L/wJGFmpsYbxDgE2AsOTyioyXuB7wEvh/9hvgPoKft8+SpD0lgInFnteNaJeREQio+ovERGJjJKKiIhERklFREQio6QiIiKRUVIREZHIKKmIiEhklFRkQDOzvc3sNjN7NZyn614zO6DAY5wVzkhdEcxsjJl1mNn/LXcsMvAoqciAFY5yvgt4yN0/5O5HAJdR+GSEZwH9mlTMLN7Hw58GniIYdS7Sr5RUZCA7Huhw9/9KFLj7UiCeWAgMwMxuMLN/CG9facFCbMvM7Cdm9lGCiQ1/HC4a9SEzm25mT4Xb3JVY2MjMHjKza8ysOVwM6yNm9sdwAaQfJD3f5y1YQG2Jmf08kUDM7D0z+w8zW0owT1s2nwW+DuxrZg1Jx/2imb0SHvsXZnZDWD7WzO40s8Xhz8xdPrMyYCmpyEB2MMFU5Hkxs9HA3wIfdvdpwA/c/QmC+ZH+xYPFo14F5gCXhts8D1yedJh2Dxbt+i+CeZS+HMbxD+G0438DfAaY6cEM0l3A58J9hwCL3P1Qd38sS4wTCNa/eBqYGx4LM9uHYI2MGQSTGibPSH0dwaJRHwHOBm7O95yIpKvJvYmIhLYCO4BbwiuZe9I3MLPhwAh3fzgsupXU6dnnhb+fB5Z7uFaFmb1GsH7FMQQrGi4OaucYzM6ZYbsIZsHuy2cIkgkEMzr/EvgPglmSH3b3TeHz/QFItB2dBEwNnw9gTzMb6u7v5XgukV6UVGQgW87O2WKTdZJ6FT8IwN07zexIgtlmZwEXEUzDX4i28Hd30u3E/RqCFS1vdffLMuy7w927MpQn+yywt5klrm72MbMpOfaJATPcfUeO7URyUvWXDGQLgfqklRkxs2kEH+xTzaw+XB7gxPCxoQQz494LXEKwljfANmAYgLtvBTab2bHhY38PJK5a8rEAmJU0DfkoM9svnx3DXmtD3X1fd5/kwVIBPyJINIuB/2VmI8O1PM5O2vV+4J+SjjO9gHhFUiipyIDlwRTdfwucFHYpXk7wIbyOoArphfD3c+Euw4B7zGwZ8BjwtbD8NuBfwuV4P0Sw7sSPw+2mA1cUENMK4NsESxEvI1jmeXyeu3+WoDdbsjuBz3qwaNgPCaZcfxxYTVCdB/AVoCnsWLACUFdkKZqmvhcZIBLtJOGVyl3AL909PQmJ7BJdqYgMHN81syUEV2CrCBbkEomUrlREqpCZ3QVMTiu+1N3vK0c8IglKKiIiEhlVf4mISGSUVEREJDJKKiIiEhklFRERiYySioiIROb/Bxb9QwHZM9YcAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "lCNQz6ufqTy_", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 635 + }, + "outputId": "b8acf676-f1da-4b02-be8d-3a4bd9d02781" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Year Axes(0.125,0.53;0.227941x0.35)\n", + "Customer_Age Axes(0.398529,0.53;0.227941x0.35)\n", + "Order_Quantity Axes(0.672059,0.53;0.227941x0.35)\n", + "Unit_Cost Axes(0.125,0.11;0.227941x0.35)\n", + "Unit_Price Axes(0.398529,0.11;0.227941x0.35)\n", + "Profit Axes(0.672059,0.11;0.227941x0.35)\n", + "dtype: object" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
YearAxes(0.125,0.53;0.227941x0.35)
Customer_AgeAxes(0.398529,0.53;0.227941x0.35)
Order_QuantityAxes(0.672059,0.53;0.227941x0.35)
Unit_CostAxes(0.125,0.11;0.227941x0.35)
Unit_PriceAxes(0.398529,0.11;0.227941x0.35)
ProfitAxes(0.672059,0.11;0.227941x0.35)
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH0AAAKXCAYAAAAfGTZqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACy+UlEQVR4nOzde1hVZfr/8Q8obFDYICQgiUpZnk0jU0pNjSRTJ0aar5mVecipQU1psqFvNdmJsoOHxsM0mVhJlqWWVBhhYCV4oEjRInUoLdxoGWwhRYT1+6Of6+tOVFBgy+b9uq51tdda937WvbjyYXPvZz2Pm2EYhgAAAAAAAOBS3J2dAAAAAAAAAOoeRR8AAAAAAAAXRNEHAAAAAADABVH0AQAAAAAAcEEUfQAAAAAAAFwQRR8AAAAAAAAXRNEHAAAAAADABVH0AQAAAAAAcEEUfQAAAAAAAFwQRR8AAAAAAAAXRNEHANAgDh8+rOnTp6t9+/by9vbWNddcoy1btpjnDcPQo48+qjZt2sjb21tRUVHatWuXEzMGAAAAGrfmzk6gvlRVVamwsFC+vr5yc3NzdjoA0CAMw9Dhw4cVGhoqd/cLq64/adIk5eXl6fXXX1doaKjeeOMNRUVFaefOnbr44os1e/ZszZ8/X8uWLVN4eLgeeeQRRUdHa+fOnfLy8qrRNej7ATRFF3Lf3xDo+wE0RTXu+w0XtW/fPkMSGxsbW5Pc9u3b5+xu2MFvv/1mNGvWzEhJSXE4fuWVVxr/+7//a1RVVRkhISHGc889Z54rLi42LBaL8eabb9b4OvT9bGxsTXm70Pr+hkLfz8bG1pS3s/X9LjvSx9fXV5K0b98+Wa1WJ2cDAA3DbrcrLCzM7AMvFMePH1dlZeUpI3a8vb31+eefq6CgQDabTVFRUeY5Pz8/9e3bV1lZWbr11lurbbe8vFzl5eXmvmEYkuj7ATQtF2rf31D43A+gKapp3++yRZ8TQzutViudP4Am50Ib3u7r66vIyEg98cQT6tKli4KDg/Xmm28qKytLHTt2lM1mkyQFBwc7vC84ONg8V53ExETNmjXrlOP0/QCaogut728ofO4H0JSdre9veg/9AgCc4vXXX5dhGLr44otlsVg0f/58jRkz5rzmn0hISFBJSYm57du3rw4zBgAAABo3ij4AgAZx6aWXKjMzU6Wlpdq3b582b96siooKXXLJJQoJCZEkFRUVObynqKjIPFcdi8VifrPLN7wAAACAI4o+AIAG1bJlS7Vp00a//vqr1q1bp5tvvlnh4eEKCQlRenq6GWe327Vp0yZFRkY6MVsAAACg8XLZOX0AABeWdevWyTAMderUSbt379YDDzygzp07a/z48XJzc9P06dP15JNP6rLLLjOXbA8NDVVMTIyzUwcAAAAaJYo+AIAGUVJSooSEBP34448KCAhQbGysnnrqKXl4eEiSZs6cqbKyMk2ePFnFxcXq37+/UlNTT1nxCwAAAEDNuBkn1rd1MXa7XX5+fiopKWGOBwBNRlPv+5r6/cM5Dh06pOuuu06FhYUKDQ1VZmamAgICnJ0WmpCm3vc19fsH0DTVtO+r1Zw+iYmJ6tOnj3x9fRUUFKSYmBjl5+c7xBw9elRxcXEKDAyUj4+PYmNjT5mYc9q0aYqIiJDFYlGvXr2qvZZhGHr++ed1+eWXy2Kx6OKLL9ZTTz1Vm3QBAADqVUhIiAIDA5WXl6dDhw4pLy9PgYGBZ5yAHAAAoKHUquiTmZmpuLg4ZWdnKy0tTRUVFRo6dKjKysrMmBkzZmjt2rVauXKlMjMzVVhYqFGjRp3S1oQJEzR69OjTXuu+++7TK6+8oueff17ffvut3n//fV199dW1SRcAAKDehISEmF9s9evXT+np6erXr5+ks688BwAA0BBqNadPamqqw35SUpKCgoKUk5OjgQMHqqSkREuWLFFycrKGDBkiSVq6dKm6dOmi7Oxs84PQ/PnzJUkHDx7Utm3bTrnON998o0WLFikvL0+dOnWSJIWHh9f+7gAAAOrBoUOHzILP4cOH5ePjI0nKyspSaWmpfH19VVRUpEOHDvGoFwAAcJrzmsi5pKREkswPMzk5OaqoqFBUVJQZ07lzZ7Vr105ZWVlm0eds1q5dq0suuUQpKSm68cYbZRiGoqKiNHv27NN+cCovL1d5ebm5b7fbz/W20EQU/FymsvLjNYo9WlGpH389Uq/5tG3lLS+PZjWKbWlprvCLWtZrPgCA07vuuusk/T7Cp7S0VB07dlRxcbH8/f2Vm5urq6++Wps3b9Z1112n7du3OzlbAEBNHDlWqT0HS2scf+JvhNp8jpekS1v7yNuz5vHA+Tjnok9VVZWmT5+ua6+9Vt27d5ck2Ww2eXp6yt/f3yE2ODhYNputxm3/97//1Q8//KCVK1fqtddeU2VlpWbMmKFbbrlF69evr/Y9iYmJmjVr1rneDpqYgp/LNPj5DGencV4+/fsgCj8A4CSFhYWSpC+//FJt2rQxjxcVFalNmzby9PR0iAMAXPj2HCzViJc+r/frpEztr+4X+9X7dQDpPIo+cXFxysvL0+ef1/0/iqqqKpWXl+u1117T5ZdfLklasmSJIiIilJ+fbz7ydbKEhATFx8eb+3a7XWFhYXWeG1zDiRE+c0f3Uscgn7PGX0gjfXYfKNX0t3JrPEoJAFD3QkNDdejQIR07dkzS74+hz549WzNnzlRBQYF5PDQ01JlpAgBq4dLWPkqZ2r/G8Sc+l9f0b4qTrwM0lHMq+kyZMkUpKSnasGGD2rZtax4PCQnRsWPHzOHNJ9R2MsM2bdqoefPmZsFHkrp06SJJ2rt3b7VFH4vFIovFcg53g6asY5BPjavsV3Wo31wAAI3HW2+9pW7dukn6/bH0kSNH6i9/+YvD/ok4AEDj4O3Z7JxG4NTmbwqgodVq9S7DMDRlyhStXr1a69evP2Vy5YiICHl4eCg9Pd08lp+fr7179yoyMrLG17n22mt1/Phx7dmzxzz23XffSZLat29fm5QBAADq3IkFKySZBZ7q9k+OAwAAaGi1GukTFxen5ORkvffee/L19TXn6fHz85O3t7f8/Pw0ceJExcfHKyAgQFarVVOnTlVkZKTDJM67d+9WaWmpbDabjhw5otzcXElS165d5enpqaioKF155ZWaMGGC5s6dq6qqKsXFxemGG25wGP0DAADgDMXFxXUaBwAAUB9qNdJn0aJFKikp0aBBg9SmTRtzO3no8pw5czRixAjFxsZq4MCBCgkJ0apVqxzamTRpknr37q1///vf+u6779S7d2/17t3bnOzQ3d1da9eu1UUXXaSBAwdq+PDh6tKli1asWFEHtwwAAHB+WrRoYb7OyclR9+7dFRAQoO7duysnJ6faOAAAgIZWq5E+hmGcNcbLy0sLFizQggULThuTkZFx1nZCQ0P17rvv1iY9AACABvHrr7+ar3/++Wfl5eVJkg4dOqSff/652jgAAICGVquRPgAAAHAUHR19xn0AAABnoegDAAAAAADggij6AAAA1NKrr75qvl6+fLmCg4NlsVgUHBys5cuXVxsHAADQ0Cj6AAAA1NKECRPM12PHjtXBgwc1YcIEHTx4UGPHjq02DgAAoKHVaiJnAAAAnKqqqkqLFi1ydhoAAAAOGOkDAABwHr766qsz7gNN2aJFi9SzZ09ZrVZZrVZFRkbqo48+Ms8fPXpUcXFxCgwMlI+Pj2JjY1VUVOTEjAHAtVD0AQAAqKVNmzY57MfExKhHjx6KiYk5YxzQ1LRt21bPPPOMcnJytHXrVg0ZMkQ333yzduzYIUmaMWOG1q5dq5UrVyozM1OFhYUaNWqUk7MGANfB410AAAC1dPXVV5uve/fubb7evn271qxZU20c0BSNHDnSYf+pp57SokWLlJ2drbZt22rJkiVKTk7WkCFDJElLly5Vly5dlJ2drX79+jkjZQBwKYz0AQAAOAd9+vQ5r/NAU1NZWakVK1aorKxMkZGRysnJUUVFhaKiosyYzp07q127dsrKyjptO+Xl5bLb7Q4bAKB6FH0AAABqqbS0VFu2bJGbm5syMzMdzmVmZsrNzU1btmxRaWmpkzIELhzbt2+Xj4+PLBaL7rnnHq1evVpdu3aVzWaTp6en/P39HeKDg4Nls9lO215iYqL8/PzMLSwsrJ7vAAAaL4o+AAAAtXTHHXdIkm6//XaFhobKw8NDkuTh4aHQ0FDddtttDnFAU9apUyfl5uZq06ZNuvfeezVu3Djt3LnznNtLSEhQSUmJue3bt68OswUA18KcPgAAALW0Z88eSdIbb7yh119/3TxeUVGhyy67TG5ubg5xQFPm6empjh07SpIiIiK0ZcsWzZs3T6NHj9axY8dUXFzsMNqnqKhIISEhp23PYrHIYrHUd9oA4BIY6QMAAFBLl156qSTJMAxJUosWLfTcc8+pRYsWDsdPxAH4P1VVVSovL1dERIQ8PDyUnp5unsvPz9fevXsVGRnpxAwBwHVQ9AEAAKilf/7zn+brnJwcXXLJJUpMTNQll1yinJycauOApighIUEbNmzQ999/r+3btyshIUEZGRkaO3as/Pz8NHHiRMXHx+vTTz9VTk6Oxo8fr8jISFbuAoA6QtEHANAgKisr9cgjjyg8PFze3t669NJL9cQTT5gjIqTfR0c8+uijatOmjby9vRUVFaVdu3Y5MWugeicvxR4REaG8vDwdOnRIeXl5ioiIqDYOaIoOHDigO++8U506ddL111+vLVu2aN26dbrhhhskSXPmzNGIESMUGxurgQMHKiQkRKtWrXJy1gDgOpjTBwDQIJ599lktWrRIy5YtU7du3bR161aNHz9efn5+mjZtmiRp9uzZmj9/vpYtW6bw8HA98sgjio6O1s6dO+Xl5eXkOwD+T0VFRZ3GAa5qyZIlZzzv5eWlBQsWaMGCBQ2UEQA0LYz0AQA0iI0bN+rmm2/W8OHD1aFDB91yyy0aOnSoNm/eLOn3UT5z587Vww8/rJtvvlk9e/bUa6+9psLCQq1Zs8a5yQN/cGK1Lknav3+/YmJi1KNHD8XExGj//v3VxgEAADQ0ij4AgAZxzTXXKD09Xd99950k6euvv9bnn3+uYcOGSZIKCgpks9kUFRVlvsfPz099+/ZVVlZWtW2Wl5fLbrc7bEBDaNeunfl67969+uSTT7Rjxw598skn2rt3b7VxAAAADY3HuwAADeIf//iH7Ha7OnfurGbNmqmyslJPPfWUxo4dK0my2WySpODgYIf3BQcHm+f+KDExUbNmzarfxIFq/Prrr+brvn37mq9LS0sd9k+OAwAAaGiM9AEANIi3335by5cvV3Jysr788kstW7ZMzz//vJYtW3bObSYkJKikpMTc9u3bV4cZA6cXGhpap3EAAAD1gaIPAKBBPPDAA/rHP/6hW2+9VT169NAdd9yhGTNmKDExUZIUEhIiSSoqKnJ4X1FRkXnujywWi6xWq8MGNITXX3/dfJ2WlmbO3ePh4aG0tLRq4wAAABoaRR8AQIP47bff5O7u+GunWbNmqqqqkiSFh4crJCRE6enp5nm73a5NmzYpMjKyQXMFzmbAgAHm6xtuuMFcpauiosJcivqPcQAAAA2NOX0AAA1i5MiReuqpp9SuXTt169ZNX331lV588UVNmDBBkuTm5qbp06frySef1GWXXWYu2R4aGqqYmBjnJg/8wW+//VancQAAAPWBog8AoEG89NJLeuSRR/S3v/1NBw4cUGhoqP7617/q0UcfNWNmzpypsrIyTZ48WcXFxerfv79SU1Pl5eXlxMyBU7Vo0UKlpaUOx9zc3GQYxilxAAAAzsLjXQCABuHr66u5c+fqhx9+0JEjR7Rnzx49+eST8vT0NGPc3Nz0+OOPy2az6ejRo/rkk090+eWXOzFroHoLFy40X8+bN0+SzILPif0/xgEAADQ0ij4AAAC1dOedd5qv77vvPodzJ++fHAcAANDQKPoAAAAAAAC4IIo+AAAA5yEzM1M+Pj5yd3eXj4+PMjMznZ0SAACAJIo+AAAA561Dhw7y9/dXhw4dnJ0KAACAidW7AAAAzsN1111nvj506JDDPgAAgDMx0gcAAAAAAMAFUfQBAACopfT0dPP1okWLHM6dvH9yHAAAQEOj6AMAAFBLJy/Lfu+99zqcO3n/j8u5AwAANCSKPgAAALVUWFhYp3EAAAD1gaIPAABALYWGhtZpHAAAQH2g6AMAAFBLDz30kPl68eLFDudO3j85DgAAoKFR9AEAAKil2267zXx9zz33OJw7ef/kOAAAgIZG0QcAAAAAAMAFUfQBAAA4Dzk5OerevbsCAgLUvXt35eTkODslAAAASVJzZycAAADQmL399tvKy8uTJB06dEhvv/22kzMCAAD4Xa1G+iQmJqpPnz7y9fVVUFCQYmJilJ+f7xBz9OhRxcXFKTAwUD4+PoqNjVVRUZFDzLRp0xQRESGLxaJevXqdcp3vv/9ebm5up2zZ2dm1v0MAAIB69Oyzz55xHwAAwFlqVfTJzMxUXFycsrOzlZaWpoqKCg0dOlRlZWVmzIwZM7R27VqtXLlSmZmZKiws1KhRo05pa8KECRo9evQZr/fJJ59o//795hYREVGbdAEAAAAAAJqsWj3elZqa6rCflJSkoKAg5eTkaODAgSopKdGSJUuUnJysIUOGSJKWLl2qLl26KDs7W/369ZMkzZ8/X5J08OBBbdu27bTXCwwMVEhISK1uCAAAoL499NBDevrppyVJN910kz788EPz3Mn7LNkOAACc6bwmci4pKZEkBQQESPp9IsOKigpFRUWZMZ07d1a7du2UlZVV6/b/9Kc/KSgoSP3799f7779/xtjy8nLZ7XaHDQAAoD6cKPhIcij4/HH/5DgAAICGds5Fn6qqKk2fPl3XXnutunfvLkmy2Wzy9PSUv7+/Q2xwcLBsNluN2/bx8dELL7yglStX6oMPPlD//v0VExNzxsJPYmKi/Pz8zC0sLOyc7gsAAAAAAMAVnHPRJy4uTnl5eVqxYkVd5iNJuuiiixQfH6++ffuqT58+euaZZ3T77bfrueeeO+17EhISVFJSYm779u2r87wAAAD+6PXXXz/jPgAAgLOcU9FnypQpSklJ0aeffqq2bduax0NCQnTs2DEVFxc7xBcVFZ333Dx9+/bV7t27T3veYrHIarU6bAAAAPVt69atZ9wHmrKarP47aNCgU1btveeee5yUMQC4lloVfQzD0JQpU7R69WqtX79e4eHhDucjIiLk4eGh9PR081h+fr727t2ryMjI80o0NzdXbdq0Oa82AAAA6tq8efPOuA80ZTVZ/VeS7r77bodVe2fPnu2kjAHAtdRq9a64uDglJyfrvffek6+vrzlPj5+fn7y9veXn56eJEycqPj5eAQEBslqtmjp1qiIjI82VuyRp9+7dKi0tlc1m05EjR5SbmytJ6tq1qzw9PbVs2TJ5enqqd+/ekqRVq1bp1Vdf1SuvvFJHtw0AAACgvp1t9d8TWrRowaq9AFAPajXSZ9GiRSopKdGgQYPUpk0bc3vrrbfMmDlz5mjEiBGKjY3VwIEDFRISolWrVjm0M2nSJPXu3Vv//ve/9d1336l3797q3bu3CgsLzZgnnnhCERER6tu3r9577z299dZbGj9+/HneLgAAwPmbOXOm+Xr06NEO507ePzkOwKmr/56wfPlyXXTRRerevbsSEhL022+/nbYNVu0FgJpzMwzDcHYS9cFut8vPz08lJSXM74NT5P1UohEvfa6Uqf3V/WI/Z6dTK405d9S/pt73NfX7R8Nxc3OrcayLftTCBaSx9H1VVVX605/+pOLiYn3++efm8Zdfflnt27dXaGiotm3bpgcffFBXX331KV8cn/DYY49p1qxZpxy/0O8frofP5XCmmvb957x6FwAAtdGhQ4dTJup0c3NTXFycJOno0aOKi4tTYGCgfHx8FBsbq6KiIidnDQCoK6db/Xfy5MmKjo5Wjx49NHbsWL322mtavXq19uzZU207rNoLADVH0QcA0CC2bNniMElnWlqaJOkvf/mLJGnGjBlau3atVq5cqczMTBUWFmrUqFHOTBkAUEdOt/pvdfr27StJp125l1V7AaDmKPoAABpE69atFRISYm4pKSm69NJLdd1116mkpERLlizRiy++qCFDhigiIkJLly7Vxo0blZ2d7ezUgVMMGzbMfN2tWzeHcyfvnxwHNEVnW/23OicWeWHlXgA4f7VavQsAgLpw7NgxvfHGG4qPj5ebm5tycnJUUVGhqKgoM6Zz585q166dsrKyHFaAPFl5ebnKy8vNfSbzREP56KOPzNc7duxwOHfy/slxQFN0ttV/9+zZo+TkZN10000KDAzUtm3bNGPGDA0cOFA9e/Z0cvYA0Pgx0gcA0ODWrFmj4uJi3XXXXZIkm80mT09P+fv7O8QFBwebfyBUJzExUX5+fuYWFhZWj1kDAGrrbKv/enp66pNPPtHQoUPVuXNn3X///YqNjdXatWudnDkAuAZG+gAAGtySJUs0bNgwhYaGnlc7CQkJio+PN/ftdjuFHzS4CRMm6NVXXz3tPtCUnW31urCwMGVmZjZQNgDQ9FD0AQA0qB9++EGffPKJw1K8ISEhOnbsmIqLix1G+xQVFSkkJOS0bVksFlkslvpMFzirb7/99oz7AAAAzsLjXQCABrV06VIFBQVp+PDh5rGIiAh5eHgoPT3dPJafn6+9e/cqMjLSGWkCNbZx48Yz7gMAADgLI30AAA2mqqpKS5cu1bhx49S8+f/9CvLz89PEiRMVHx+vgIAAWa1WTZ06VZGRkaedxBkAAADAmTHSBwDQYD755BPt3btXEyZMOOXcnDlzNGLECMXGxmrgwIEKCQlxeAQMuJD07t3bfP3HZaVP3j85DgAAoKEx0gcA0GCGDh162kk9vby8tGDBAi1YsKCBswJq76uvvjJf79+/3+HcyfsnxwEAADQ0RvoAAAAAAAC4IIo+AAAAAAAALoiiDwAAQC1deumldRoHAABQHyj6AAAA1NKePXvqNA4AAKA+UPQBAAAAAABwQRR9AAAAzkOXLl3OuA8AAOAsFH0AAADOw+TJk2UYhrlNnjzZ2SkBAABIougDAABwXmbMmCE3Nzd5enrKzc1NM2bMcHZKAAAAkij6AAAA1ImKigpnpwAAAOCAog8AAEAt3Xbbbebrrl27Opw7ef/kOAAAgIbW3NkJAAAAXIiOHKvUnoOl1Z5LmL1QycnJkqSdO3c6nDt5P2H2QuX9VHLaa1za2kfens3qIFsAAIBTUfQBAACoxp6DpRrx0uenPd/+wRT98OyIM54/0/slKWVqf3W/2O+ccwQAADgTij4AAADVuLS1j1Km9j9z0NRizfzbBH30/irz0LA/jdLsha/W+BoAAAD1haIPAABANbw9m9VoFM6H772rvJ9KNOKlzxm5AwAALihM5AwAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwCgwfz000+6/fbbFRgYKG9vb/Xo0UNbt241zxuGoUcffVRt2rSRt7e3oqKitGvXLidmDAA4H4mJierTp498fX0VFBSkmJgY5efnO8QcPXpUcXFxCgwMlI+Pj2JjY1VUVOSkjAHAtVD0AQA0iF9//VXXXnutPDw89NFHH2nnzp164YUX1KpVKzNm9uzZmj9/vhYvXqxNmzapZcuWio6O1tGjR52YOQDgXGVmZiouLk7Z2dlKS0tTRUWFhg4dqrKyMjNmxowZWrt2rVauXKnMzEwVFhZq1KhRTswaAFxHc2cnAABoGp599lmFhYVp6dKl5rHw8HDztWEYmjt3rh5++GHdfPPNkqTXXntNwcHBWrNmjW699dYGzxkAcH5SU1Md9pOSkhQUFKScnBwNHDhQJSUlWrJkiZKTkzVkyBBJ0tKlS9WlSxdlZ2erX79+zkgbAFwGRR8AQIN4//33FR0drb/85S/KzMzUxRdfrL/97W+6++67JUkFBQWy2WyKiooy3+Pn56e+ffsqKyur2qJPeXm5ysvLzX273V7/NwIAOGclJSWSpICAAElSTk6OKioqHPr+zp07q127dsrKyqq26EPfj9oo+LlMZeXH66Xt3QdKHf5bH1pamiv8opb11j5cX62KPomJiVq1apW+/fZbeXt765prrtGzzz6rTp06mTFHjx7V/fffrxUrVqi8vFzR0dFauHChgoODzZhp06bpiy++UF5enrp06aLc3NzTXnP37t3q3bu3mjVrpuLi4lrfIADgwvDf//5XixYtUnx8vB566CFt2bJF06ZNk6enp8aNGyebzSZJDr8vTuyfOPdHiYmJmjVrVr3nDgA4f1VVVZo+fbquvfZade/eXZJks9nk6ekpf39/h1j6ftSFgp/LNPj5jHq/zvS3cuu1/U//PojCD85ZrYo+J57J7dOnj44fP66HHnpIQ4cO1c6dO9Wy5e//E86YMUMffPCBVq5cKT8/P02ZMkWjRo3SF1984dDWhAkTtGnTJm3btu2016uoqNCYMWM0YMAAbdy48RxuDwBwoaiqqtJVV12lp59+WpLUu3dv5eXlafHixRo3btw5tZmQkKD4+Hhz3263KywsrE7yBQDUrbi4OOXl5enzzz8/r3bo+1FTJ0b4zB3dSx2DfOq8/aMVlfrx1yNq28pbXh7N6rz93QdKNf2t3HobqYSmoVZFn7p6Jnf+/PmSpIMHD56x6PPwww+rc+fOuv766yn6AEAj16ZNG3Xt2tXhWJcuXfTuu+9KkkJCQiRJRUVFatOmjRlTVFSkXr16VdumxWKRxWKpn4QBAHVmypQpSklJ0YYNG9S2bVvzeEhIiI4dO6bi4mKH0T5FRUXm74U/ou9HbXUM8lH3i/3qpe2rOtRLs0CdOa85ferimdzTWb9+vVauXKnc3FytWrXqrPE824vacmtuV4E9X+5edV/1r08F9lK5Nef/bzQ+11577SnL9H733Xdq3769pN8ndQ4JCVF6erpZ5LHb7dq0aZPuvffehk4XAFAHDMPQ1KlTtXr1amVkZDhM4C9JERER8vDwUHp6umJjYyVJ+fn52rt3ryIjI52RMgC4lHMu+tTVM7nV+eWXX3TXXXfpjTfekNVqrdF7eLYXteXhv0kPbX7a2WmcEw//6yXd5Ow0gFqZMWOGrrnmGj399NP6n//5H23evFkvv/yyXn75ZUmSm5ubpk+frieffFKXXXaZwsPD9cgjjyg0NFQxMTHOTR4AcE7i4uKUnJys9957T76+vubfBH5+fvL29pafn58mTpyo+Ph4BQQEyGq1aurUqYqMjGTlLgCoA+dc9KmrZ3Krc/fdd+u2227TwIEDa/wenu1FbVUU99ULw2/TpfXwfG992nOgVNOW73F2GkCt9enTR6tXr1ZCQoIef/xxhYeHa+7cuRo7dqwZM3PmTJWVlWny5MkqLi5W//79lZqaKi8vLydmDgA4V4sWLZIkDRo0yOH40qVLddddd0mS5syZI3d3d8XGxjosBAMAOH/nVPSpy2dyq7N+/Xq9//77ev755yX9Piy0qqpKzZs318svv6wJEyac8h6e7UVtGcetCrd2UtfA+nm+t75UHS2Rcfygs9MAzsmIESM0YsSI0553c3PT448/rscff7wBswIA1BfDMM4a4+XlpQULFmjBggUNkBEANC21Kvo01DO5WVlZqqysNPffe+89Pfvss9q4caMuvvji2qQMAAAAAADQJNWq6FNXz+Tu3r1bpaWlstlsOnLkiHJzcyVJXbt2laenp7p06eJw3a1bt8rd3d2cOwgAAAAAAABnVquiT109kztp0iRlZmaa+71795YkFRQUqEOHDrW8BQAAAAAAAPxRrR/vOpuaPJObkZFRm8vqrrvuMotKAAAAAAAAODt3ZycAAAAAAACAukfRBwAAAAAAwAVR9AEAAAAAAHBBFH0AAAAAAABcEEUfAAAAAAAAF0TRBwAAAAAAwAVR9AEAAAAAAHBBFH0AAAAAAABcEEUfAAAAAAAAF0TRBwAAAAAAwAVR9AEAAAAAAHBBFH0AAAAAAABcEEUfAAAAAAAAF0TRBwAAAAAAwAVR9AEAAAAAAHBBFH0AAAAAAABcEEUfAAAAAAAAF0TRBwAAAAAAwAVR9AEAAAAAAHBBFH0AAAAAAABcEEUfAAAAAAAAF0TRBwDQIB577DG5ubk5bJ07dzbPHz16VHFxcQoMDJSPj49iY2NVVFTkxIwBAACAxo2iDwCgwXTr1k379+83t88//9w8N2PGDK1du1YrV65UZmamCgsLNWrUKCdmCwAAADRuzZ2dAACg6WjevLlCQkJOOV5SUqIlS5YoOTlZQ4YMkSQtXbpUXbp0UXZ2tvr169fQqQIAAACNHiN9AAANZteuXQoNDdUll1yisWPHau/evZKknJwcVVRUKCoqyozt3Lmz2rVrp6ysrNO2V15eLrvd7rABAAAA+B1FHwBAg+jbt6+SkpKUmpqqRYsWqaCgQAMGDNDhw4dls9nk6ekpf39/h/cEBwfLZrOdts3ExET5+fmZW1hYWD3fBQAAANB4UPQBADSIYcOG6S9/+Yt69uyp6OhoffjhhyouLtbbb799zm0mJCSopKTE3Pbt21eHGQMAzteGDRs0cuRIhYaGys3NTWvWrHE4f9ddd50yyf+NN97onGQBwAVR9AEAOIW/v78uv/xy7d69WyEhITp27JiKi4sdYoqKiqqdA+gEi8Uiq9XqsAEALhxlZWW64oortGDBgtPG3HjjjQ6T/L/55psNmCEAuDYmcgYAOEVpaan27NmjO+64QxEREfLw8FB6erpiY2MlSfn5+dq7d68iIyOdnCkA4FwNGzZMw4YNO2OMxWI5Y4EfAHDuKPoAABrE3//+d40cOVLt27dXYWGh/vnPf6pZs2YaM2aM/Pz8NHHiRMXHxysgIEBWq1VTp05VZGQkK3cBgIvLyMhQUFCQWrVqpSFDhujJJ59UYGDgaePLy8tVXl5u7jOJPwCcHkUfAECD+PHHHzVmzBj98ssvat26tfr376/s7Gy1bt1akjRnzhy5u7srNjZW5eXlio6O1sKFC52cNQCgPt14440aNWqUwsPDtWfPHj300EMaNmyYsrKy1KxZs2rfk5iYqFmzZjVwpgDQOFH0AQA0iBUrVpzxvJeXlxYsWHDGeR8AAK7l1ltvNV/36NFDPXv21KWXXqqMjAxdf/311b4nISFB8fHx5r7dbmf1RgA4DSZyBgAAAHBBuOSSS3TRRRdp9+7dp41hEn8AqDmKPgAAAAAuCD/++KN++eUXtWnTxtmpAIBL4PEuAAAAAPWitLTUYdROQUGBcnNzFRAQoICAAM2aNUuxsbEKCQnRnj17NHPmTHXs2FHR0dFOzBoAXAdFHwAAAAD1YuvWrRo8eLC5f2IunnHjxmnRokXatm2bli1bpuLiYoWGhmro0KF64oknZLFYnJUyALgUij4AAAAA6sWgQYNkGMZpz69bt64BswGApoc5fQAAAAAAAFwQRR8AAAAAAAAXRNEHAAAAAADABdWq6JOYmKg+ffrI19dXQUFBiomJUX5+vkPM0aNHFRcXp8DAQPn4+Cg2NlZFRUUOMdOmTVNERIQsFot69ep1ynXy8/M1ePBgBQcHy8vLS5dccokefvhhVVRU1P4OAQAAAAAAmqBaFX0yMzMVFxen7OxspaWlqaKiQkOHDlVZWZkZM2PGDK1du1YrV65UZmamCgsLNWrUqFPamjBhgkaPHl3tdTw8PHTnnXfq448/Vn5+vubOnav//Oc/+uc//1nL2wMAAAAAAGiaarV6V2pqqsN+UlKSgoKClJOTo4EDB6qkpERLlixRcnKyhgwZIklaunSpunTpouzsbPXr10+SNH/+fEnSwYMHtW3btlOuc8kll+iSSy4x99u3b6+MjAx99tlntbs7AAAAAACAJuq8lmwvKSmRJAUEBEiScnJyVFFRoaioKDOmc+fOateunbKyssyiT23t3r1bqamp1Y4YOqG8vFzl5eXmvt1uP6droWk4UlEpScr7qaRe2j9aUakffz2itq285eXRrE7b3n2gtE7bAwAAAAC4pnMu+lRVVWn69Om69tpr1b17d0mSzWaTp6en/P39HWKDg4Nls9lqfY1rrrlGX375pcrLyzV58mQ9/vjjp41NTEzUrFmzan0NNE17/n/h5B+rtjs5k3PX0nJeNVsAAAAAgIs7578a4+LilJeXp88//7wu83Hw1ltv6fDhw/r666/1wAMP6Pnnn9fMmTOrjU1ISFB8fLy5b7fbFRYWVm+5oXEb2i1EknRpkI+863gkjvT7aJzpb+Vq7uhe6hjkU+ftt7Q0V/hFLeu8XQAAAACA6zinos+UKVOUkpKiDRs2qG3btubxkJAQHTt2TMXFxQ6jfYqKihQSElLr65wo2nTt2lWVlZWaPHmy7r//fjVrduof6RaLRRaLpfY3gyYpoKWnbr26Xb1fp2OQj7pf7Ffv1wEAAAAA4I9qtXqXYRiaMmWKVq9erfXr1ys8PNzhfEREhDw8PJSenm4ey8/P1969exUZGXleiVZVVamiokJVVVXn1Q4AAAAAAEBTUKuRPnFxcUpOTtZ7770nX19fc54ePz8/eXt7y8/PTxMnTlR8fLwCAgJktVo1depURUZGOkzivHv3bpWWlspms+nIkSPKzc2V9PuIHk9PTy1fvlweHh7q0aOHLBaLtm7dqoSEBI0ePVoeHh51d/cAAAAAAAAuqlZFn0WLFkmSBg0a5HB86dKluuuuuyRJc+bMkbu7u2JjY1VeXq7o6GgtXLjQIX7SpEnKzMw093v37i1JKigoUIcOHdS8eXM9++yz+u6772QYhtq3b68pU6ZoxowZtb0/AAAAAACAJqlWRR/DMM4a4+XlpQULFmjBggWnjcnIyDhjG6NHj9bo0aNrkxoAAMBZFfxcprLy43Xe7u7/vyrkif/WBybxBwAAtcWazwAAoEko+LlMg5/PqNdrTH8rt17b//Tvgyj8AACAGqPoAwAAmoQTI3zmju6ljkE+ddr20YpK/fjrEbVt5S0vj1NXGT1fuw+UavpbufUySgkAALguij4AAKBJ6Rjko+4X+9V5u1d1qPMmAQAAzkutlmwHAAAAAABA40DRBwAAAAAAwAVR9AEAAAAAAHBBFH0AAAAAAABcEEUfAECDe+aZZ+Tm5qbp06ebx44ePaq4uDgFBgbKx8dHsbGxKioqcl6SAAAAQCNH0QcA0KC2bNmif//73+rZs6fD8RkzZmjt2rVauXKlMjMzVVhYqFGjRjkpSwAAAKDxo+gDAGgwpaWlGjt2rP7zn/+oVatW5vGSkhItWbJEL774ooYMGaKIiAgtXbpUGzduVHZ2thMzBgAAABovij4AgAYTFxen4cOHKyoqyuF4Tk6OKioqHI537txZ7dq1U1ZW1mnbKy8vl91ud9gAAAAA/K65sxMAADQNK1as0JdffqktW7accs5ms8nT01P+/v4Ox4ODg2Wz2U7bZmJiombNmlXXqQIAAAAugZE+AIB6t2/fPt13331avny5vLy86qzdhIQElZSUmNu+ffvqrG0AAACgsaPoAwCodzk5OTpw4ICuvPJKNW/eXM2bN1dmZqbmz5+v5s2bKzg4WMeOHVNxcbHD+4qKihQSEnLadi0Wi6xWq8MGAAAA4Hc83gUAqHfXX3+9tm/f7nBs/Pjx6ty5sx588EGFhYXJw8ND6enpio2NlSTl5+dr7969ioyMdEbKAAAAQKNH0QcAUO98fX3VvXt3h2MtW7ZUYGCgeXzixImKj49XQECArFarpk6dqsjISPXr188ZKQMAAACNHkUfAMAFYc6cOXJ3d1dsbKzKy8sVHR2thQsXOjstAAAAoNFiTh8AgFNkZGRo7ty55r6Xl5cWLFigQ4cOqaysTKtWrTrjfD4AgAvfhg0bNHLkSIWGhsrNzU1r1qxxOG8Yhh599FG1adNG3t7eioqK0q5du5yTLAC4IIo+AAAAAOpFWVmZrrjiCi1YsKDa87Nnz9b8+fO1ePFibdq0SS1btlR0dLSOHj3awJkCgGvi8S4AAAAA9WLYsGEaNmxYtecMw9DcuXP18MMP6+abb5YkvfbaawoODtaaNWt06623NmSqAOCSKPoAAAAAaHAFBQWy2WyKiooyj/n5+alv377Kyso6bdGnvLxc5eXl5r7dbq/3XNF4uTW3q8CeL3cvH2enUmsF9lK5Nef/b5wfij4AAAAAGpzNZpMkBQcHOxwPDg42z1UnMTFRs2bNqtfc4Do8/Dfpoc1POzuNc+bhf72km5ydBhoxij4AAAAAGo2EhATFx8eb+3a7XWFhYU7MCBeyiuK+emH4bbo0qPGN9NlzoFTTlu9xdhpo5Cj6AAAAAGhwJ1ZoLCoqUps2bczjRUVF6tWr12nfZ7FYZLFY6js9uAjjuFXh1k7qGujn7FRqrepoiYzjB52dBho5Vu8CAAAA0ODCw8MVEhKi9PR085jdbtemTZsUGRnpxMwAwHUw0gcAAABAvSgtLdXu3bvN/YKCAuXm5iogIEDt2rXT9OnT9eSTT+qyyy5TeHi4HnnkEYWGhiomJsZ5SQOAC6HoAwAAAKBebN26VYMHDzb3T8zFM27cOCUlJWnmzJkqKyvT5MmTVVxcrP79+ys1NVVeXl7OShkAXApFHwAAAAD1YtCgQTIM47Tn3dzc9Pjjj+vxxx9vwKwAoOmg6AMAAJoMt+Z2Fdjz5e7VuFZxKbCXyq253dlpAACARoaiDwAAaDI8/Dfpoc1POzuNc+Lhf72km5ydBgAAaEQo+gAAgCajorivXhh+my4NalwjffYcKNW05XucnQYAAGhkKPoAAIAmwzhuVbi1k7oG+jk7lVqpOloi4/hBZ6cBAAAaGXdnJwAAAAAAAIC6R9EHAAAAAADABVH0AQAAAAAAcEEUfQAAAAAAAFwQRR8AAAAAAAAXRNEHAAAAAADABVH0AQAAAAAAcEEUfQAAAAAAAFxQrYo+iYmJ6tOnj3x9fRUUFKSYmBjl5+c7xBw9elRxcXEKDAyUj4+PYmNjVVRU5BAzbdo0RUREyGKxqFevXqdcJyMjQzfffLPatGmjli1bqlevXlq+fHnt7w4AAAAAAKCJqlXRJzMzU3FxccrOzlZaWpoqKio0dOhQlZWVmTEzZszQ2rVrtXLlSmVmZqqwsFCjRo06pa0JEyZo9OjR1V5n48aN6tmzp959911t27ZN48eP15133qmUlJRa3h4AAAAAAEDT1Lw2wampqQ77SUlJCgoKUk5OjgYOHKiSkhItWbJEycnJGjJkiCRp6dKl6tKli7Kzs9WvXz9J0vz58yVJBw8e1LZt2065zkMPPeSwf9999+njjz/WqlWrNGLEiNqkDAAAAAAA0CSd15w+JSUlkqSAgABJUk5OjioqKhQVFWXGdO7cWe3atVNWVtb5XEolJSXmdapTXl4uu93usAEALhyLFi1Sz549ZbVaZbVaFRkZqY8++sg8X5PHgwEAAADU3DkXfaqqqjR9+nRde+216t69uyTJZrPJ09NT/v7+DrHBwcGy2WznnOTbb7+tLVu2aPz48aeNSUxMlJ+fn7mFhYWd8/UAAHWvbdu2euaZZ5STk6OtW7dqyJAhuvnmm7Vjxw5JNX88GAAAAEDN1OrxrpPFxcUpLy9Pn3/+eV3mc4pPP/1U48eP13/+8x9169bttHEJCQmKj4839+12O4UfALiAjBw50mH/qaee0qJFi5Sdna22bdvW6PFgAAAAADV3TkWfKVOmKCUlRRs2bFDbtm3N4yEhITp27JiKi4sdRvsUFRUpJCSk1tfJzMzUyJEjNWfOHN15551njLVYLLJYLLW+BgCg4VVWVmrlypUqKytTZGTkWR8PPl3Rp7y8XOXl5eY+j/YCAAAA/6dWj3cZhqEpU6Zo9erVWr9+vcLDwx3OR0REyMPDQ+np6eax/Px87d27V5GRkbVKLCMjQ8OHD9ezzz6ryZMn1+q9AIAL0/bt2+Xj4yOLxaJ77rlHq1evVteuXc/58WAe7QUAAABOr1YjfeLi4pScnKz33ntPvr6+5gdxPz8/eXt7y8/PTxMnTlR8fLwCAgJktVo1depURUZGOnxLu3v3bpWWlspms+nIkSPKzc2VJHXt2lWenp769NNPNWLECN13332KjY01r+Pp6XnGyZwBABe2Tp06KTc3VyUlJXrnnXc0btw4ZWZmnnN7PNoLAAAAnF6tij6LFi2SJA0aNMjh+NKlS3XXXXdJkubMmSN3d3fFxsaqvLxc0dHRWrhwoUP8pEmTHD7k9+7dW5JUUFCgDh06aNmyZfrtt9+UmJioxMREM+66665TRkZGbVIGAFxAPD091bFjR0m/jw7dsmWL5s2bp9GjR5/T48E82gsAAACcXq2KPoZhnDXGy8tLCxYs0IIFC04bc7bCTVJSkpKSkmqTGgCgEaqqqlJ5ebnD48GxsbGSzv3xYAAAAAC/O+fVuwAAqI2EhAQNGzZM7dq10+HDh5WcnKyMjAytW7euxo8HAwAAAKg5ij4AgAZx4MAB3Xnnndq/f7/8/PzUs2dPrVu3TjfccIOkmj0eDAAAAKDmKPoAABrEkiVLzni+Jo8HA+fjSEWlJCnvp5I6b/toRaV+/PWI2rbylpdHszpvf/eB0jpvEwAAuD6KPgAAoEnY8/8LJ/9Ytd3JmZy7lhY+ugEAgJrjkwMAAGgShnb7fSW4S4N85F3Ho3F2HyjV9LdyNXd0L3UM8qnTtk9oaWmu8Ita1kvbAADANVH0AQAATUJAS0/denW7er1GxyAfdb/Yr16vAQAAUFPuzk4AAAAAAAAAdY+iDwAAAACneOyxx+Tm5uawde7c2dlpAYDL4PEuAAAAAE7TrVs3ffLJJ+Z+8+b8iQIAdYUeFQAAAIDTNG/eXCEhIc5OAwBcEo93AQAAAHCaXbt2KTQ0VJdcconGjh2rvXv3njG+vLxcdrvdYQMAVI+iDwAAAACn6Nu3r5KSkpSamqpFixapoKBAAwYM0OHDh0/7nsTERPn5+ZlbWFhYA2YMAI0LRR8AAAAATjFs2DD95S9/Uc+ePRUdHa0PP/xQxcXFevvtt0/7noSEBJWUlJjbvn37GjBjAGhcmNMHAAAAwAXB399fl19+uXbv3n3aGIvFIovF0oBZAUDjxUgfAAAAABeE0tJS7dmzR23atHF2KgDgEij6AAAAAHCKv//978rMzNT333+vjRs36s9//rOaNWumMWPGODs1AHAJPN4FAAAAwCl+/PFHjRkzRr/88otat26t/v37Kzs7W61bt3Z2agDgEij6AAAAAHCKFStWODsFAHBpPN4FAAAAAADggij6AAAAAAAAuCCKPgAAAAAAAC6Iog8AAAAAAIALougDAAAAAADggij6AAAAAAAAuCCKPgAAAAAAAC6Iog8AAAAAAIALougDAAAAAADggij6AAAAAAAAuCCKPgAAAAAAAC6Iog8AoEEkJiaqT58+8vX1VVBQkGJiYpSfn+8Qc/ToUcXFxSkwMFA+Pj6KjY1VUVGRkzIGAAAAGjeKPgCABpGZmam4uDhlZ2crLS1NFRUVGjp0qMrKysyYGTNmaO3atVq5cqUyMzNVWFioUaNGOTFrAAAAoPFq7uwEAABNQ2pqqsN+UlKSgoKClJOTo4EDB6qkpERLlixRcnKyhgwZIklaunSpunTpouzsbPXr188ZaQMAAACNFiN9AABOUVJSIkkKCAiQJOXk5KiiokJRUVFmTOfOndWuXTtlZWVV20Z5ebnsdrvDBgAAAOB3FH0AAA2uqqpK06dP17XXXqvu3btLkmw2mzw9PeXv7+8QGxwcLJvNVm07iYmJ8vPzM7ewsLD6Th0AAABoNHi8CwDQ4OLi4pSXl6fPP//8vNpJSEhQfHy8uW+32yn8AAAASdKRikpJUt5PJfXS/tGKSv346xG1beUtL49mdd7+7gOldd4mmh6KPgCABjVlyhSlpKRow4YNatu2rXk8JCREx44dU3FxscNon6KiIoWEhFTblsVikcViqe+UAQBAI7Tn/xdN/rFqu5MzOT8tLfzZjnPH/z0AgAZhGIamTp2q1atXKyMjQ+Hh4Q7nIyIi5OHhofT0dMXGxkqS8vPztXfvXkVGRjojZQAA0IgN7fb7l0aXBvnIu55G4kx/K1dzR/dSxyCfOm9f+r3gE35Ry3ppG00DRR8AQIOIi4tTcnKy3nvvPfn6+prz9Pj5+cnb21t+fn6aOHGi4uPjFRAQIKvVqqlTpyoyMpKVuwAAQK0FtPTUrVe3q/frdAzyUfeL/er9OsC5oOgDAGgQixYtkiQNGjTI4fjSpUt11113SZLmzJkjd3d3xcbGqry8XNHR0Vq4cGEDZwoAAAC4hlqt3pWYmKg+ffrI19dXQUFBiomJUX5+vkPM0aNHFRcXp8DAQPn4+Cg2NlZFRUUOMdOmTVNERIQsFot69ep1ynWOHj2qu+66Sz169FDz5s0VExNT6xsDAFxYDMOodjtR8JEkLy8vLViwQIcOHVJZWZlWrVp12vl8AAAAAJxZrYo+mZmZiouLU3Z2ttLS0lRRUaGhQ4eqrKzMjJkxY4bWrl2rlStXKjMzU4WFhRo1atQpbU2YMEGjR4+u9jqVlZXy9vbWtGnTFBUVVctbAgAAAAAAQK0e70pNTXXYT0pKUlBQkHJycjRw4ECVlJRoyZIlSk5O1pAhQyT9Pmy/S5cuys7ONudkmD9/viTp4MGD2rZt2ynXadmypfkYwBdffKHi4uJa3xgAAAAAAEBTdl5z+pSUlEiSAgICJEk5OTmqqKhwGJ3TuXNntWvXTllZWfU6EWd5ebnKy8vNfbvdXm/XQtNz5Fil9hwsrXH87v+/POSJ/9bEpa195O1Z96sKAADOTW36/nPp9yX6fgC4kDTEZ36Jvh8N65yLPlVVVZo+fbquvfZade/eXZJks9nk6ekpf39/h9jg4GBzlZb6kpiYqFmzZtXrNdB07TlYqhEvfV7r901/K7fGsSlT+zPrPwBcQM6l769Nvy/R9wPAhaQhPvNL9P1oWOdc9ImLi1NeXp4+/7z2/yjqQ0JCguLj4819u92usLAwJ2YEV3Jpax+lTO1f4/ijFZX68dcjatvKW14eNaviX9ra51zTAwDUg9r0/efS75+4BgDgwtAQn/lPXAdoKOdU9JkyZYpSUlK0YcMGtW3b1jweEhKiY8eOqbi42GG0T1FRUb2vvmKxWGSxWOr1Gmi6vD2b1boaf1WH+skFANAwatv30+8DQOPGZ364olqt3mUYhqZMmaLVq1dr/fr1Cg8PdzgfEREhDw8Ppaenm8fy8/O1d+9eRUZG1k3GAAAAAAAAOKtajfSJi4tTcnKy3nvvPfn6+prz9Pj5+cnb21t+fn6aOHGi4uPjFRAQIKvVqqlTpyoyMtJhEufdu3ertLRUNptNR44cUW5uriSpa9eu8vT0lCTt3LlTx44d06FDh3T48GEzplevXud/1wAAAAAAAC6uVkWfE8uoDxo0yOH40qVLddddd0mS5syZI3d3d8XGxqq8vFzR0dFauHChQ/ykSZOUmZlp7vfu3VuSVFBQoA4dOkiSbrrpJv3www+nxBiGUZuUAQAAAFzgFixYoOeee042m01XXHGFXnrpJV199dXOTgsAGr1aFX1qUnDx8vLSggULtGDBgtPGZGRknLWd77//vhaZAQAAAGiM3nrrLcXHx2vx4sXq27ev5s6dq+joaOXn5ysoKMjZ6QFAo1arOX0AAAAAoC69+OKLuvvuuzV+/Hh17dpVixcvVosWLfTqq686OzUAaPQo+gAAAABwimPHjiknJ0dRUVHmMXd3d0VFRSkrK6va95SXl8tutztsAIDqUfQBAAAA4BQ///yzKisrFRwc7HA8ODjYXDTmjxITE+Xn52duYWFhDZEqADRKFH0AAAAANBoJCQkqKSkxt3379jk7JQC4YNVqImcAAAAAqCsXXXSRmjVrpqKiIofjRUVFCgkJqfY9FotFFoulIdIDgEbPZYs+J1Ya4xlfAE3JiT6vJqstuiL6fgBNUWPu+z09PRUREaH09HTFxMRIkqqqqpSenq4pU6bUqA36fgBNUU37fpct+hw+fFiSeMYXQJN0+PBh+fn5OTuNBkffD6Apa6x9f3x8vMaNG6errrpKV199tebOnauysjKNHz++Ru+n7wfQlJ2t73czGuNXAjVQVVWlwsJC+fr6ys3NzdnpoImx2+0KCwvTvn37ZLVanZ0OmhDDMHT48GGFhobK3b3pTdtG3w9nod+HM7lC3/+vf/1Lzz33nGw2m3r16qX58+erb9++NXovfT+chb4fzlTTvt9liz6AM9ntdvn5+amkpIRfAADQBNDvA0DTQ9+PxqBxfhUAAAAAAACAM6LoAwAAAAAA4IIo+gD1wGKx6J///CfLiQJAE0G/DwBND30/GgPm9AEAAAAAAHBBjPQBAAAAAABwQRR9AAAAAAAAXBBFHwAAAAAAABdE0QcAAAAAAMAFUfQBzsAwDEVFRSk6OvqUcwsXLpS/v79+/PFHJ2QGAK7JZrNp6tSpuuSSS2SxWBQWFqaRI0cqPT39vNv+/vvv5ebmptzc3PNP9ALQuXNnWSwW2Ww2Z6cCAE6VlJQkf39/Z6dxwRg0aJCmT5/u7DRwgaDoA5yBm5ubli5dqk2bNunf//63ebygoEAzZ87USy+9pLZt29bpNSsqKuq0PQBoLL7//ntFRERo/fr1eu6557R9+3alpqZq8ODBiouLc3Z6DaKmvwM+//xzHTlyRLfccouWLVtWz1kBQN3bt2+fJkyYoNDQUHl6eqp9+/a677779Msvvzg7tTNatmyZ+vTpoxYtWsjX11fXXXedUlJSnJJLRkaG3NzcVFxc7HB81apVeuKJJ8z9Dh06aO7cuQ2bHC4YFH2AswgLC9O8efP097//XQUFBTIMQxMnTtTQoUPVu3dvDRs2TD4+PgoODtYdd9yhn3/+2Xxvamqq+vfvL39/fwUGBmrEiBHas2ePef7Et85vvfWWrrvuOnl5eWn58uXOuE0AcLq//e1vcnNz0+bNmxUbG6vLL79c3bp1U3x8vLKzs6sdqVNcXCw3NzdlZGRIkn799VeNHTtWrVu3lre3ty677DItXbpUkhQeHi5J6t27t9zc3DRo0CBJUlVVlR5//HG1bdtWFotFvXr1UmpqqnmNE9d9++23NWDAAHl7e6tPnz767rvvtGXLFl111VXy8fHRsGHDdPDgQYd7euWVV9SlSxd5eXmpc+fOWrhw4SntnsvvgCVLlui2227THXfcoVdfffWU8/v379fw4cPl7e2t8PBwJScnn/Khv7i4WJMmTVLr1q1ltVo1ZMgQff311zW6PgCcj//+97+66qqrtGvXLr355pvavXu3Fi9erPT0dEVGRurQoUPVvu/YsWP1llNNiu5///vf9de//lWjR4/Wtm3btHnzZvXv318333yz/vWvf9VbbrUVEBAgX19fZ6eBC4UBoEZuvvlmY9CgQcb8+fON1q1bGwcOHDBat25tJCQkGN98843x5ZdfGjfccIMxePBg8z3vvPOO8e677xq7du0yvvrqK2PkyJFGjx49jMrKSsMwDKOgoMCQZHTo0MF49913jf/+979GYWGhs24RAJzml19+Mdzc3Iynn376tDEn+syvvvrKPPbrr78akoxPP/3UMAzDiIuLM3r16mVs2bLFKCgoMNLS0oz333/fMAzD2Lx5syHJ+OSTT4z9+/cbv/zyi2EYhvHiiy8aVqvVePPNN41vv/3WmDlzpuHh4WF89913Dtft3LmzkZqaauzcudPo16+fERERYQwaNMj4/PPPjS+//NLo2LGjcc8995i5vfHGG0abNm3M/v3dd981AgICjKSkJId2a/s7wG63Gy1btjTy8vKM48ePG8HBwcaGDRscYqKiooxevXoZ2dnZRk5OjnHdddcZ3t7expw5cxxiRo4caWzZssX47rvvjPvvv98IDAw0fy4AUF9uvPFGo23btsZvv/3mcHz//v1GixYtzL60ffv2xuOPP27ccccdhq+vrzFu3DjDMAxj6dKlRlhYmOHt7W3ExMQYzz//vOHn5+fQ1po1a4zevXsbFovFCA8PNx577DGjoqLCPC/JWLhwoTFy5EijRYsWxj//+c8z5pyVlWVIMubPn3/Kufj4eMPDw8PYu3evYRiG8c9//tO44oorHGLmzJljtG/f3tzfvHmzERUVZQQGBhpWq9UYOHCgkZOT4/AeScZ//vMfIyYmxvD29jY6duxovPfee4Zh/N/vkJO3Ez+f6667zrjvvvvM13+MKy0tNXx9fY2VK1c6XG/16tVGixYtDLvdfsafBRoXij5ADRUVFRkXXXSR4e7ubqxevdp44oknjKFDhzrE7Nu3z5Bk5OfnV9vGwYMHDUnG9u3bDcP4v8567ty59Z4/AFzINm3aZEgyVq1addqYmhR9Ro4caYwfP77G7zcMwwgNDTWeeuoph2N9+vQx/va3vzm875VXXjHPv/nmm4YkIz093TyWmJhodOrUydy/9NJLjeTkZId2n3jiCSMyMtKh3dr+Dnj55ZeNXr16mfv33Xef+UHfMAzjm2++MSQZW7ZsMY/t2rXLkGQWfT777DPDarUaR48edWj70ksvNf7973/XKh8AqI2zFfnvvvtuo1WrVkZVVZXRvn17w2q1Gs8//7yxe/duY/fu3UZ2drbh7u5uPPvss0Z+fr4xb948w9/f36Hos2HDBsNqtRpJSUnGnj17jI8//tjo0KGD8dhjj5kxkoygoCDj1VdfNfbs2WP88MMPZ8x72rRpho+Pj1FeXn7KuZ9++smhj61J0Sc9Pd14/fXXjW+++cbYuXOnMXHiRCM4ONih4CLJaNu2rZGcnGzs2rXLzOGXX34xjh8/brz77rvm3x779+83iouLDcNwLPr88ssvRtu2bY3HH3/c2L9/v7F//37z53zTTTc55PinP/3JuPPOO8/4c0Dj07zehxIBLiIoKEh//etftWbNGsXExGj58uX69NNP5ePjc0rsnj17dPnll2vXrl169NFHtWnTJv3888+qqqqSJO3du1fdu3c346+66qoGuw8AuBAZhlEn7dx7772KjY3Vl19+qaFDhyomJkbXXHPNaePtdrsKCwt17bXXOhy/9tprT3nUqWfPnubr4OBgSVKPHj0cjh04cECSVFZWpj179mjixIm6++67zZjjx4/Lz8/Pod3a/g549dVXdfvtt5v7t99+u6677jq99NJL8vX1VX5+vpo3b64rr7zSjOnYsaNatWpl7n/99dcqLS1VYGCgQ9tHjhxxeAwZAOrarl27ZBiGunTpUu35Ll266NdffzUflx0yZIjuv/9+8/wjjzyiG2+8UTNnzpQkXX755dq4caPDY7mzZs3SP/7xD40bN06SdMkll+iJJ57QzJkz9c9//tOMu+222zR+/Pga5f3dd9/p0ksvlaen5ynnQkNDZbVa9d1339WorRP3dbKXX35Z/v7+yszM1IgRI8zjd911l8aMGSNJevrppzV//nxt3rxZN954owICAiT9/nfK6SayDggIULNmzeTr66uQkBDz+KRJk3TNNddo//79atOmjQ4cOKAPP/xQn3zySY3vAY0DRR+gFpo3b67mzX//Z1NaWqqRI0fq2WefPSWuTZs2kqSRI0eqffv2+s9//qPQ0FBVVVWpe/fupzyP3LJly/pPHgAuYJdddpnc3Nz07bffnjbG3f33qQhPLhD9cQ6GYcOG6YcfftCHH36otLQ0XX/99YqLi9Pzzz9/3jl6eHiYr93c3Ko9dqK4X1paKkn6z3/+o759+zq006xZM4f92vwO2Llzp7Kzs7V582Y9+OCD5vHKykqtWLHCocB0JqWlpWrTpo05F9LJWAEHQEOoabH/j4Xxb775Rn/+858djkVGRjoUfb7++mt98cUXeuqpp8xjlZWVOnr0qH777Te1aNGi2rbPN+fqCkKnU1RUpIcfflgZGRk6cOCAKisr9dtvv2nv3r0OcSd/4dCyZUtZrVbzC4bzcfXVV6tbt25atmyZ/vGPf+iNN95Q+/btNXDgwPNuGxcWJnIGztGVV16pHTt2qEOHDurYsaPD1rJlS/3yyy/Kz8/Xww8/rOuvv9781gIAcKqAgABFR0drwYIFKisrO+V8cXGxWrduLen3SYpPqG759datW2vcuHF64403NHfuXL388suS/u/DeGVlpRlrtVoVGhqqL774wqGNL774Ql27dj3n+wkODlZoaKj++9//nvI74sSE0udiyZIlGjhwoL7++mvl5uaaW3x8vJYsWSJJ6tSpk44fP66vvvrKfN/u3bsdfgddeeWVstlsat68+Sn5XXTRReecHwCcTceOHeXm5qZvvvmm2vPffPONWrVqZfb55/LlaGlpqWbNmuXQT27fvl27du2Sl5eXGVebti+77DL997//rXYy6cLCQtntdl1++eWSfv+S4o8Foj9+STFu3Djl5uZq3rx52rhxo3JzcxUYGHhK+yd/uSA5fsFwviZNmqSkpCRJ0tKlSzV+/HjzSw24Doo+wDmKi4vToUOHNGbMGG3ZskV79uzRunXrNH78eFVWVqpVq1YKDAzUyy+/rN27d2v9+vWKj493dtoAcMFasGCBKisrdfXVV+vdd9/Vrl279M0332j+/PmKjIyUt7e3+vXrp2eeeUbffPONMjMz9fDDDzu08eijj+q9997T7t27tWPHDqWkpJiPEAQFBcnb21upqakqKipSSUmJJOmBBx7Qs88+q7feekv5+fn6xz/+odzcXN13333ndT+zZs1SYmKi5s+fr++++07bt2/X0qVL9eKLL55TexUVFXr99dc1ZswYde/e3WGbNGmSNm3apB07dqhz586KiorS5MmTtXnzZn311VeaPHmyvL29zQ/zUVFRioyMVExMjD7++GN9//332rhxo/73f/9XW7duPa/7BoAzCQwM1A033KCFCxfqyJEjDudsNpuWL1+u0aNHn7b40KVLF23atMnhWHZ2tsP+lVdeqfz8/FOK2h07djRHjdbWmDFjVFpaqn//+9+nnHv++efl5eWl0aNHS/r9ywebzeZQ+PnjlxRffPGFpk2bpptuukndunWTxWJxWAW4Jqr7MuN0cdXF3H777frhhx80f/587dy503wcDq6Fog9wjk58M1xZWamhQ4eqR48emj59uvz9/eXu7i53d3etWLFCOTk56t69u2bMmKHnnnvO2WkDwAXrkksu0ZdffqnBgwfr/vvvV/fu3XXDDTcoPT1dixYtkvT7fDbHjx9XRESEpk+frieffNKhDU9PTyUkJKhnz54aOHCgmjVrphUrVkj6/RHd+fPn69///rdCQ0N18803S5KmTZum+Ph43X///erRo4dSU1P1/vvv67LLLjuv+5k0aZJeeeUVLV26VD169NB1112npKSkcx7p8/777+uXX3455bEG6fc/grp06WKO9nnttdcUHBysgQMH6s9//rPuvvtu+fr6mt9wu7m56cMPP9TAgQM1fvx4XX755br11lv1ww8/mPMVAUB9+de//qXy8nJFR0drw4YN2rdvn1JTU3XDDTfo4osvdngs64+mTZum1NRUPf/889q1a5f+9a9/OTzaJf3+BcBrr72mWbNmaceOHfrmm2+0YsWKU74oqI3IyEjdd999euCBB/TCCy9oz549+vbbb/Xwww9r/vz5+s9//mPOkzZo0CAdPHhQs2fP1p49e7RgwQJ99NFHDu1ddtllev311/XNN99o06ZNGjt2rLy9vWuVU/v27eXm5qaUlBQdPHjQfLT4jzp06KANGzbop59+cigstWrVSqNGjdIDDzygoUOHqm3btrX8qaBRcOIk0gAAAGgAJ1aX/OSTT5ydCgAYhmEY33//vTFu3DgjODjY8PDwMMLCwoypU6caP//8sxnTvn17c0Wsky1ZssRo27at4e3tbYwcObLaJdtTU1ONa665xvD29jasVqtx9dVXGy+//LJ5XpKxevXqWue9ZMkSIyIiwvDy8jIkGZ6enkZmZuYpcYsWLTLCwsKMli1bGnfeeafx1FNPOaze9eWXXxpXXXWV4eXlZVx22WXGypUrT7nf6nL08/Mzli5dau4//vjjRkhIiOHm5lbtku2G8fty8z179jQsFovxxxJAenq6Icl4++23a/2zQOPgZhh1tFwGAAAALgjr169XaWmpevToof3792vmzJn66aef9N13350yPwQA4Nx8//33uu666xQZGanly5efMlF/Y/D6669rxowZKiwsrNVE1Gg8eLwLAADgAjFs2DD5+PhUuz399NM1bqeiokIPPfSQunXrpj//+c9q3bq1MjIyKPgAQB3q0KGDMjIy1Llz52oXFriQ/fbbb9qzZ4+eeeYZ/fWvf6Xg48IY6QMAAHCB+Omnn06Z2PSEgIAABQQENHBGANA03HPPPXrjjTeqPXf77bdr8eLFDZxR/Xrsscf01FNPaeDAgXrvvffk4+Pj7JRQTyj6AAAAAACatAMHDshut1d7zmq1KigoqIEzAuoGRR8AAAAAAAAXxJw+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4oObOTqC+VFVVqbCwUL6+vnJzc3N2OgDQIAzD0OHDhxUaGip396ZX16fvB9AU0ffT9wNoemra97ts0aewsFBhYWHOTgMAnGLfvn1q27ats9NocPT9AJoy+n4AaHrO1ve7bNHH19dX0u8/AKvV6uRsAKBh2O12hYWFmX1gU0PfD6Apou+n7wfQ9NS073fZos+JoZ1Wq5XOH0CT01SHt9P3A2jK6Pvp+wE0PWfr+5veQ78AAAAAAABNAEUfAAAAAAAAF0TRBwAAAAAAwAVR9AEAAAAAAHBBFH0AAAAAAABckMuu3gU4S3WzpxuG4YRMAAANgX4fAJqeyspKffbZZ9q/f7/atGmjAQMGqFmzZs5OCzgFI32AOnS65fKa6hKqAODq6PcBoOlZtWqVOnbsqMGDB+u2227T4MGD1bFjR61atcrZqQGnoOgD1JGzfcDnDwAAcC30+wDQ9KxatUq33HKLevTooaysLB0+fFhZWVnq0aOHbrnlFgo/uOBQ9AHqwB8/2BuGYW5nigMANE70+wDQ9FRWVur+++/XiBEjtGbNGvXr108+Pj7q16+f1qxZoxEjRujvf/+7KisrnZ0qYKLoA9SxP37gZ14HAHBt9PsA0DR89tln+v777/XQQw/J3d3xT2l3d3clJCSooKBAn332mZMyBE5F0QcAAAAAgLPYv3+/JKl79+7Vnj9x/EQccCGg6AMAOKNFixapZ8+eslqtslqtioyM1EcffWSeHzRokNzc3By2e+65x6GNvXv3avjw4WrRooWCgoL0wAMP6Pjx4w4xGRkZuvLKK2WxWNSxY0clJSU1xO0BAADUSJs2bSRJeXl51Z4/cfxEHHAhoOgD1LE/zt/AfA5o7Nq2batnnnlGOTk52rp1q4YMGaKbb75ZO3bsMGPuvvtu7d+/39xmz55tnqusrNTw4cN17Ngxbdy4UcuWLVNSUpIeffRRM6agoEDDhw/X4MGDlZubq+nTp2vSpElat25dg94rcC7o9wGgaRgwYIA6dOigp59+WlVVVQ7nqqqqlJiYqPDwcA0YMMBJGQKnougD1IHqJu48sZ0pDmgMRo4cqZtuukmXXXaZLr/8cj311FPy8fFRdna2GdOiRQuFhISYm9VqNc99/PHH2rlzp9544w316tVLw4YN0xNPPKEFCxbo2LFjkqTFixcrPDxcL7zwgrp06aIpU6bolltu0Zw5cxr8foGaoN8HgKanWbNmeuGFF5SSkqKYmBiH1btiYmKUkpKi559/Xs2aNXN2qoCJog9QR872wZ4P/nAFlZWVWrFihcrKyhQZGWkeX758uS666CJ1795dCQkJ+u2338xzJ5YxDQ4ONo9FR0fLbrebo4WysrIUFRXlcK3o6GhlZWWdMZ/y8nLZ7XaHDWgo9PsA0PSMGjVK77zzjrZv365rrrlGVqtV11xzjfLy8vTOO+9o1KhRzk4RcNDc2QkArsQwjGqH9fPBH43d9u3bFRkZqaNHj8rHx0erV69W165dJUm33Xab2rdvr9DQUG3btk0PPvig8vPztWrVKkmSzWZzKPhIMvdtNtsZY+x2u44cOSJvb+9q80pMTNSsWbPq9F6B2qDfB4CmZ9SoUbr55pv12Wefaf/+/WrTpo0GDBjACB9ckCj6AHWMD/pwRZ06dVJubq5KSkr0zjvvaNy4ccrMzFTXrl01efJkM65Hjx5q06aNrr/+eu3Zs0eXXnppveaVkJCg+Ph4c99utyssLKxerwn8Ef0+ADQ9zZo106BBg5ydBnBWPN4FADgrT09PdezYUREREUpMTNQVV1yhefPmVRvbt29fSdLu3bslSSEhISoqKnKIObEfEhJyxhir1XraUT6SZLFYzFXFTmwAAAAAfkfRBwBQa1VVVSovL6/2XG5urqT/W640MjJS27dv14EDB8yYtLQ0Wa1W8xGxyMhIpaenO7STlpbmMG8QcKE6eRLn6iZzBgAAcBYe7wIAnFFCQoKGDRumdu3a6fDhw0pOTlZGRobWrVunPXv2KDk5WTfddJMCAwO1bds2zZgxQwMHDlTPnj0lSUOHDlXXrl11xx13aPbs2bLZbHr44YcVFxcni8UiSbrnnnv0r3/9SzNnztSECRO0fv16vf322/rggw+ceevAWZ2uwOPm5sZjXwAAwOko+gAAzujAgQO68847tX//fvn5+alnz55at26dbrjhBu3bt0+ffPKJ5s6dq7KyMoWFhSk2NlYPP/yw+f5mzZopJSVF9957ryIjI9WyZUuNGzdOjz/+uBkTHh6uDz74QDNmzNC8efPUtm1bvfLKK4qOjnbGLQM1crYRPRR+AACAs7kZLvppxG63y8/PTyUlJczxAKDJaOp9X1O/fzSc2jzC5aIftXABaep9X1O/fwBNU037Pkb6AAAAnKeTCzvM6QMArq+yspIl29EoMJEzAADAefjjSB5G9gCAa1u1apU6duyowYMH67bbbtPgwYPVsWNHrVq1ytmpAaeg6AMAAAA0MRs2bNDIkSMVGhoqNzc3rVmz5rSx99xzj9zc3DR37lyH44cOHdLYsWNltVrl7++viRMnqrS01CFm27ZtGjBggLy8vBQWFqbZs2ef0v7KlSvVuXNneXl5qUePHvrwww/r4haBerFq1Srdcsst6tGjh7KysnT48GFlZWWpR48euuWWWyj84IJD0QcAAOA8/PFxLh7vQmNQVlamK664QgsWLDhj3OrVq5Wdna3Q0NBTzo0dO1Y7duxQWlqaUlJStGHDBk2ePNk8b7fbNXToULVv3145OTl67rnn9Nhjj+nll182YzZu3KgxY8Zo4sSJ+uqrrxQTE6OYmBjl5eXV3c0CdaSyslL333+/RowYoTVr1qhfv37y8fFRv379tGbNGo0YMUJ///vfVVlZ6exUAVOtij6JiYnq06ePfH19FRQUpJiYGOXn5zvEHD16VHFxcQoMDJSPj49iY2NVVFTkELN3714NHz5cLVq0UFBQkB544AEdP37cISYjI0NXXnmlLBaLOnbsqKSkpHO7QwAAgHrm5uZmbkBjMGzYMD355JP685//fNqYn376SVOnTtXy5cvl4eHhcO6bb75RamqqXnnlFfXt21f9+/fXSy+9pBUrVqiwsFCStHz5ch07dkyvvvqqunXrpltvvVXTpk3Tiy++aLYzb9483XjjjXrggQfUpUsXPfHEE7ryyiv1r3/9q35uHDgPn332mb7//ns99NBDcnd3/FPa3d1dCQkJKigo0GeffeakDIFT1arok5mZqbi4OGVnZystLU0VFRUaOnSoysrKzJgZM2Zo7dq1WrlypTIzM1VYWKhRo0aZ5ysrKzV8+HAdO3ZMGzdu1LJly5SUlKRHH33UjCkoKNDw4cM1ePBg5ebmavr06Zo0aZLWrVtXB7cMAABwfmo6bw/z+6Cxqqqq0h133KEHHnhA3bp1O+V8VlaW/P39ddVVV5nHoqKi5O7urk2bNpkxAwcOlKenpxkTHR2t/Px8/frrr2ZMVFSUQ9vR0dHKyso6bW7l5eWy2+0OG9AQ9u/fL0nq3r17tedPHD8RB1wIarV6V2pqqsN+UlKSgoKClJOTo4EDB6qkpERLlixRcnKyhgwZIklaunSpunTpouzsbPXr108ff/yxdu7cqU8++UTBwcHq1auXnnjiCT344IN67LHH5OnpqcWLFys8PFwvvPCCJKlLly76/PPPNWfOHEVHR9fRrQMAAJw7wzDOOLKHgg8as2effVbNmzfXtGnTqj1vs9kUFBTkcKx58+YKCAiQzWYzY8LDwx1igoODzXOtWrWSzWYzj50cc6KN6iQmJmrWrFm1vifgfLVp00aSlJeXp379+p1y/sRjiSfigAvBec3pU1JSIkkKCAiQJOXk5KiiosKhWt+5c2e1a9fOrNafmOTq5M49OjpadrtdO3bsMGOo+AMAgAvd6Qo7FHzQmOXk5GjevHlKSkq6IB9ZTEhIUElJibnt27fP2SmhiRgwYIA6dOigp59+WlVVVQ7nqqqqlJiYqPDwcA0YMMBJGQKnOueiT1VVlaZPn65rr73WHMZms9nk6ekpf39/h9iTq/Wnq+afOHemGLvdriNHjlSbT2Jiovz8/MwtLCzsXG8NAACgxgzDOGUDGrPPPvtMBw4cULt27dS8eXM1b95cP/zwg+6//3516NBBkhQSEqIDBw44vO/48eM6dOiQQkJCzJg/zu15Yv9sMSfOV8dischqtTpsQENo1qyZXnjhBaWkpCgmJsZh9a6YmBilpKTo+eefV7NmzZydKmA656JPXFyc8vLytGLFirrM55xR8QcAAADO3x133KFt27YpNzfX3EJDQ/XAAw+Yc2xGRkaquLhYOTk55vvWr1+vqqoq9e3b14zZsGGDKioqzJi0tDR16tRJrVq1MmPS09Mdrp+WlqbIyMj6vk3gnIwaNUrvvPOOtm/frmuuuUZWq1XXXHON8vLy9M477zjMZwtcCGo1p88JU6ZMMZdlbNu2rXk8JCREx44dU3FxscNon5Or9SEhIdq8ebNDezWt+FutVnl7e1ebk8VikcViOZfbAQAAAJqU0tJS7d6929wvKChQbm6uAgIC1K5dOwUGBjrEe3h4KCQkRJ06dZL0+5ybN954o+6++24tXrxYFRUVmjJlim699VZzeffbbrtNs2bN0sSJE/Xggw8qLy9P8+bN05w5c8x277vvPl133XV64YUXNHz4cK1YsUJbt251WNYduNCMGjVKN998sz777DPt379fbdq00YABAxjhgwtSrUb6GIahKVOmaPXq1Vq/fv0pE7NFRETIw8PDoVqfn5+vvXv3mtX6yMhIbd++3WE4aFpamqxWq7p27WrGUPEHAAAA6sfWrVvVu3dv9e7dW5IUHx+v3r17O6yoezbLly9X586ddf311+umm25S//79HYo1fn5++vjjj1VQUKCIiAjdf//9evTRRzV58mQz5pprrlFycrJefvllXXHFFXrnnXe0Zs2a066OBFwomjVrpkGDBmnMmDEaNGgQBR9csNyMWjx4/re//U3Jycl67733zCq/9HuHfmIEzr333qsPP/xQSUlJslqtmjp1qiRp48aNkn5fsr1Xr14KDQ3V7NmzZbPZdMcdd2jSpEl6+umnJf3+TUP37t0VFxenCRMmaP369Zo2bZo++OCDGq/eZbfb5efnp5KSEp7zBdBkNPW+r6nfP4Cmqan3fU39/gE0TTXt+2r1eNeiRYskSYMGDXI4vnTpUt11112SpDlz5sjd3V2xsbEqLy9XdHS0Fi5caMY2a9ZMKSkpuvfeexUZGamWLVtq3Lhxevzxx82Y8PBwffDBB5oxY4bmzZuntm3b6pVXXmG5djQK1a1ywaSeAAAAAICGVquRPo0JFX84w5mWNXXRf2q4wDT1vq+p3z+Apqmp931N/f4BNE017fvOefUuAI7OVPCpyXkAAAAAAOoSRR+gDtS0oEPhBwAAAADQUCj6AAAAAAAAuKBaTeQMoGZOnr+H0T0AAAAAAGdgpA9Qx/44YTMTOAMAAAAAnIGiD1DH/jiyh5E+AAAAAABn4PEuoB5Q6AEAAAAAOBsjfQAAAAAAAFwQRR+gDtR03h7m9wEAAAAANBSKPkAdOVtBh4IPAAAAAKAhUfQB6tDpCjsUfNCYLVq0SD179pTVapXValVkZKQ++ugj8/zRo0cVFxenwMBA+fj4KDY2VkVFRQ5t7N27V8OHD1eLFi0UFBSkBx54QMePH3eIycjI0JVXXimLxaKOHTsqKSmpIW4PAAAAcFkUfYA6ZhjGKRvQmLVt21bPPPOMcnJytHXrVg0ZMkQ333yzduzYIUmaMWOG1q5dq5UrVyozM1OFhYUaNWqU+f7KykoNHz5cx44d08aNG7Vs2TIlJSXp0UcfNWMKCgo0fPhwDR48WLm5uZo+fbomTZqkdevWNfj9AgAAAK7CzXDRv0jtdrv8/PxUUlIiq9Xq7HQAoEE0VN8XEBCg5557Trfccotat26t5ORk3XLLLZKkb7/9Vl26dFFWVpb69eunjz76SCNGjFBhYaGCg4MlSYsXL9aDDz6ogwcPytPTUw8++KA++OAD5eXlmde49dZbVVxcrNTU1BrnRd8PoClq6n1fU79/AE1TTfs+RvoAAGqssrJSK1asUFlZmSIjI5WTk6OKigpFRUWZMZ07d1a7du2UlZUlScrKylKPHj3Mgo8kRUdHy263m6OFsrKyHNo4EXOijdMpLy+X3W532AAAAAD8jqIPAOCstm/fLh8fH1ksFt1zzz1avXq1unbtKpvNJk9PT/n7+zvEBwcHy2azSZJsNptDwefE+RPnzhRjt9t15MiR0+aVmJgoPz8/cwsLCzvfWwUAAABcBkUfAMBZderUSbm5udq0aZPuvfdejRs3Tjt37nR2WkpISFBJSYm57du3z9kpAQAAABeM5s5OAABw4fP09FTHjh0lSREREdqyZYvmzZun0aNH69ixYyouLnYY7VNUVKSQkBBJUkhIiDZv3uzQ3onVvU6O+eOKX0VFRbJarfL29j5tXhaLRRaL5bzvDwAAAHBFjPQBANRaVVWVysvLFRERIQ8PD6Wnp5vn8vPztXfvXkVGRkqSIiMjtX37dh04cMCMSUtLk9VqVdeuXc2Yk9s4EXOiDQAAAAC1x0gfAMAZJSQkaNiwYWrXrp0OHz6s5ORkZWRkaN26dfLz89PEiRMVHx+vgIAAWa1WTZ06VZGRkerXr58kaejQoeratavuuOMOzZ49WzabTQ8//LDi4uLMUTr33HOP/vWvf2nmzJmaMGGC1q9fr7ffflsffPCBM28dAAAAaNQo+gAAzujAgQO68847tX//fvn5+alnz55at26dbrjhBknSnDlz5O7urtjYWJWXlys6OloLFy4039+sWTOlpKTo3nvvVWRkpFq2bKlx48bp8ccfN2PCw8P1wQcfaMaMGZo3b57atm2rV155RdHR0Q1+vwAAAICrcDMMw3B2EvWhpmvWA4Araep9X1O/fwBNU1Pv+5r6/QNommra9zGnDwAAANDEbNiwQSNHjlRoaKjc3Ny0Zs0a81xFRYUefPBB9ejRQy1btlRoaKjuvPNOFRYWOrRx6NAhjR07VlarVf7+/po4caJKS0sdYrZt26YBAwbIy8tLYWFhmj179im5rFy5Up07d5aXl5d69OihDz/8sF7uGQCaIoo+AAAAQBNTVlamK664QgsWLDjl3G+//aYvv/xSjzzyiL788kutWrVK+fn5+tOf/uQQN3bsWO3YsUNpaWlKSUnRhg0bNHnyZPO83W7X0KFD1b59e+Xk5Oi5557TY489ppdfftmM2bhxo8aMGaOJEyfqq6++UkxMjGJiYpSXl1d/Nw8ATQiPdwGAC2nqfV9Tv38ATdP59n1ubm5avXq1YmJiThuzZcsWXX311frhhx/Url07ffPNN+ratau2bNmiq666SpKUmpqqm266ST/++KNCQ0O1aNEi/e///q9sNps8PT0lSf/4xz+0Zs0affvtt5Kk0aNHq6ysTCkpKea1+vXrp169emnx4sUNcv8A0BjxeBcAAACAOlFSUiI3Nzf5+/tLkrKysuTv728WfCQpKipK7u7u2rRpkxkzcOBAs+AjSdHR0crPz9evv/5qxkRFRTlcKzo6WllZWafNpby8XHa73WEDAFSPog8AAACA0zp69KgefPBBjRkzxvw22WazKSgoyCGuefPmCggIkM1mM2OCg4MdYk7sny3mxPnqJCYmys/Pz9zCwsLO7wYBwIVR9AEAAABQrYqKCv3P//yPDMPQokWLnJ2OJCkhIUElJSXmtm/fPmenBAAXrObOTgAAAADAhedEweeHH37Q+vXrHeaMCAkJ0YEDBxzijx8/rkOHDikkJMSMKSoqcog5sX+2mBPnq2OxWGSxWM79xgCgCWGkDwAAAAAHJwo+u3bt0ieffKLAwECH85GRkSouLlZOTo55bP369aqqqlLfvn3NmA0bNqiiosKMSUtLU6dOndSqVSszJj093aHttLQ0RUZG1tetAUCTQtEHAAAAaGJKS0uVm5ur3NxcSVJBQYFyc3O1d+9eVVRU6JZbbtHWrVu1fPlyVVZWymazyWaz6dixY5KkLl266MYbb9Tdd9+tzZs364svvtCUKVN06623KjQ0VJJ02223ydPTUxMnTtSOHTv01ltvad68eYqPjzfzuO+++5SamqoXXnhB3377rR577DFt3bpVU6ZMafCfCQC4IpZsBwAX0tT7vqZ+/wCapnPp+zIyMjR48OBTjo8bN06PPfaYwsPDq33fp59+qkGDBkmSDh06pClTpmjt2rVyd3dXbGys5s+fLx8fHzN+27ZtiouL05YtW3TRRRdp6tSpevDBBx3aXLlypR5++GF9//33uuyyyzR79mzddNNNNbx7+n4ATVNN+z6KPgDgQpp639fU7x9A09TU+76mfv8Amqaa9n083gUAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAui6AMAAAAAAOCCKPoAAAAAAAC4IIo+AAAAAAAALoiiDwAAAAAAgAtq7uwEAFfj5uZ2yjHDMJyQCQAAAACgKWOkD1CHqiv4nOk4AAAAAAD1haIPUEfOVtih8AMAAAAAaEgUfYA68MeCjmEY5namOAAAAAAA6gtz+gD1gOIOAAAAAMDZGOkDAAAAAADggij6AADOKDExUX369JGvr6+CgoIUExOj/Px8h5hBgwbJzc3NYbvnnnscYvbu3avhw4erRYsWCgoK0gMPPKDjx487xGRkZOjKK6+UxWJRx44dlZSUVN+3BwAAALgsij5APTjdnD5AY5SZmam4uDhlZ2crLS1NFRUVGjp0qMrKyhzi7r77bu3fv9/cZs+ebZ6rrKzU8OHDdezYMW3cuFHLli1TUlKSHn30UTOmoKBAw4cP1+DBg5Wbm6vp06dr0qRJWrduXYPdKwAAAOBKal302bBhg0aOHKnQ0FC5ublpzZo1DufvuuuuU77tvfHGGx1iDh06pLFjx8pqtcrf318TJ05UaWmpQ8y2bds0YMAAeXl5KSwszOGPB+BCd/L//0Bjl5qaqrvuukvdunXTFVdcoaSkJO3du1c5OTkOcS1atFBISIi5Wa1W89zHH3+snTt36o033lCvXr00bNgwPfHEE1qwYIGOHTsmSVq8eLHCw8P1wgsvqEuXLpoyZYpuueUWzZkzp0HvFwAAAHAVtS76lJWV6YorrtCCBQtOG3PjjTc6fNv75ptvOpwfO3asduzYobS0NKWkpGjDhg2aPHmyed5ut2vo0KFq3769cnJy9Nxzz+mxxx7Tyy+/XNt0AQB1rKSkRJIUEBDgcHz58uW66KKL1L17dyUkJOi3334zz2VlZalHjx4KDg42j0VHR8tut2vHjh1mTFRUlEOb0dHRysrKOm0u5eXlstvtDhvQ0P74ZRcFfwAAcKGo9epdw4YN07Bhw84YY7FYFBISUu25b775RqmpqdqyZYuuuuoqSdJLL72km266Sc8//7xCQ0O1fPlyHTt2TK+++qo8PT3VrVs35ebm6sUXX3QoDgEAGlZVVZWmT5+ua6+9Vt27dzeP33bbbWrfvr1CQ0O1bds2Pfjgg8rPz9eqVaskSTabzaHgI8nct9lsZ4yx2+06cuSIvL29T8knMTFRs2bNqtN7BGrjdAUeNzc3HvEFAABOVy9z+mRkZCgoKEidOnXSvffeq19++cU8l5WVJX9/f7PgI0lRUVFyd3fXpk2bzJiBAwfK09PTjImOjlZ+fr5+/fXXaq/Jt70AUP/i4uKUl5enFStWOByfPHmyoqOj1aNHD40dO1avvfaaVq9erT179tRrPgkJCSopKTG3ffv21ev1gJOdbUQPI34AAICz1XnR58Ybb9Rrr72m9PR0Pfvss8rMzNSwYcNUWVkp6fdvcoOCghze07x5cwUEBJz1294T56qTmJgoPz8/cwsLC6vrWwOAJm3KlClKSUnRp59+qrZt254xtm/fvpKk3bt3S5JCQkJUVFTkEHNi/8TI0NPFWK3Wakf5SL+PLLVarQ4b0BD+WNA53QT+FH4AAIAz1XnR59Zbb9Wf/vQn9ejRQzExMUpJSdGWLVuUkZFR15dywLe9AFA/DMPQlClTtHr1aq1fv17h4eFnfU9ubq4kqU2bNpKkyMhIbd++XQcOHDBj0tLSZLVa1bVrVzMmPT3doZ20tDRFRkbW0Z0A9Yf5fAAAwIWo3pdsv+SSS3TRRRc5fNt78od+STp+/LgOHTp01m97T5yrDt/2AkD9iIuL0xtvvKHk5GT5+vrKZrPJZrPpyJEjkqQ9e/boiSeeUE5Ojr7//nu9//77uvPOOzVw4ED17NlTkjR06FB17dpVd9xxh77++mutW7dODz/8sOLi4mSxWCRJ99xzj/773/9q5syZ+vbbb7Vw4UK9/fbbmjFjhtPuHQAAAGjM6r3o8+OPP+qXX35x+La3uLjYYanf9evXq6qqynwcIDIyUhs2bFBFRYUZk5aWpk6dOqlVq1b1nTJwXk4e4l/dUH+gsVm0aJFKSko0aNAgtWnTxtzeeustSZKnp6c++eQTDR06VJ07d9b999+v2NhYrV271myjWbNmSklJUbNmzRQZGanbb79dd955px5//HEzJjw8XB988IHS0tJ0xRVX6IUXXtArr7yi6OjoBr9nAHB1GzZs0MiRIxUaGio3NzetWbPG4bxhGHr00UfVpk0beXt7KyoqSrt27XKIOXTokMaOHSur1Sp/f39NnDhRpaWlDjHbtm3TgAED5OXlpbCwMM2ePfuUXFauXKnOnTvLy8tLPXr00Icffljn9wsATVWtV+8qLS01R+1IUkFBgXJzcxUQEKCAgADNmjVLsbGxCgkJ0Z49ezRz5kx17NjR/NDepUsX3Xjjjbr77ru1ePFiVVRUaMqUKbr11lsVGhoq6fdVYGbNmqWJEyfqwQcfVF5enubNm6c5c+bU0W0D9eePK7Yw1B+N3dkKl2FhYcrMzDxrO+3btz/rB/lBgwbpq6++qlV+wIWAfh+NTVlZma644gpNmDBBo0aNOuX87NmzNX/+fC1btkzh4eF65JFHFB0drZ07d8rLy0uSNHbsWO3fv19paWmqqKjQ+PHjNXnyZCUnJ0uS7Ha7hg4dqqioKC1evFjbt2/XhAkT5O/vb67Iu3HjRo0ZM0aJiYkaMWKEkpOTFRMToy+//NJhlUgAwDkyaunTTz81JJ2yjRs3zvjtt9+MoUOHGq1btzY8PDyM9u3bG3fffbdhs9kc2vjll1+MMWPGGD4+PobVajXGjx9vHD582CHm66+/Nvr3729YLBbj4osvNp555pla5VlSUmJIMkpKSmp7i8A5qe7fxR83oL419b6vqd8/Gk5N+nz6fjSU8+37JBmrV68296uqqoyQkBDjueeeM48VFxcbFovFePPNNw3DMIydO3cakowtW7aYMR999JHh5uZm/PTTT4ZhGMbChQuNVq1aGeXl5WbMgw8+aHTq1Mnc/5//+R9j+PDhDvn07dvX+Otf/1rj/On7ATRFNe37aj3SZ9CgQWf81nfdunVnbSMgIMD8BuB0evbsqc8++6y26QFOYxjGGb/dPdO/GwAAgAtFQUGBbDaboqKizGN+fn7q27evsrKydOuttyorK0v+/v666qqrzJioqCi5u7tr06ZN+vOf/6ysrCwNHDhQnp6eZkx0dLSeffZZ/frrr2rVqpWysrIUHx/vcP3o6OhTHjc7WXl5ucrLy819u91eB3cNAK6p3uf0AZqS0xV2KPgAAIDGwmazSZKCg4MdjgcHB5vnbDabgoKCHM43b95cAQEBDjHVtXHyNU4Xc+J8dRITE+Xn52duYWFhtb1FAGgyKPoAdcxgImcAAIB6k5CQoJKSEnPbt2+fs1MCgAsWRR8AAAAAppCQEElSUVGRw/GioiLzXEhIiA4cOOBw/vjx4zp06JBDTHVtnHyN08WcOF8di8Uiq9XqsAEAqkfRBwAAAIApPDxcISEhSk9PN4/Z7XZt2rRJkZGRkqTIyEgVFxcrJyfHjFm/fr2qqqrUt29fM2bDhg2qqKgwY9LS0tSpUye1atXKjDn5OidiTlwHAHB+KPoAAAAATUxpaalyc3OVm5sr6ffJm3Nzc7V37165ublp+vTpevLJJ/X+++9r+/btuvPOOxUaGqqYmBhJUpcuXXTjjTfq7rvv1ubNm/XFF19oypQpuvXWWxUaGipJuu222+Tp6amJEydqx44deuuttzRv3jyHiZvvu+8+paam6oUXXtC3336rxx57TFu3btWUKVMa+kcCAC6p1qt3AQAAwNHJ87edaSVH4EKxdetWDR482Nw/UYgZN26ckpKSNHPmTJWVlWny5MkqLi5W//79lZqaKi8vL/M9y5cv15QpU3T99dfL3d1dsbGxmj9/vnnez89PH3/8seLi4hQREaGLLrpIjz76qCZPnmzGXHPNNUpOTtbDDz+shx56SJdddpnWrFmj7t27N8BPAQBcn5vhorPM2u12+fn5qaSkhOd8ATQZTb3va+r3j4ZTm8KOi37UwgWkqfd9Tf3+ATRNNe37eLwLAAAAAADABVH0AQAAqKWajt5hlA8AAHAmij4AAADn4GwFHQo+AADA2Sj6AAAAnKPTFXYo+AAAgAsBq3cBAACcBwo8AADgQsVIHwAAAAAAABdE0QcAAAAAAMAFUfQBAAAAAABwQczpA9QxNze3U44x3wMAAAAAoKEx0geoQ9UVfM50HAAAAACA+kLRB6gjZyvsUPgBAAAAADQkij5AHahpQYfCDwAAAACgoVD0AQAAAAAAcEFM5AzUg5MnbmZ0DwAAAADAGRjpA9SxP67UxcpdAAAAAABnoOgD1LE/juxhpA8au8TERPXp00e+vr4KCgpSTEyM8vPzHWKOHj2quLg4BQYGysfHR7GxsSoqKnKI2bt3r4YPH64WLVooKChIDzzwgI4fP+4Qk5GRoSuvvFIWi0UdO3ZUUlJSfd8eAAAA4LIo+gD1wM3NzdyAxi4zM1NxcXHKzs5WWlqaKioqNHToUJWVlZkxM2bM0Nq1a7Vy5UplZmaqsLBQo0aNMs9XVlZq+P9r797Doq7z//8/BpCDKIMnGNjIPOQxU8NNWbVLk69I5GbZ57Mma9qyurlQH6Wy/G3xMTuYWJ7ylNaKXWll135yDTcV8UCriIaRhofU1dBysE1hhBRQ5vdHF+91FBR0YHDmfruu97XM+/Wc17xeXetzZp7zer/ecXEqLy/Xjh07tGLFCqWlpSklJcWIOXbsmOLi4jR48GDl5eVp0qRJ+uMf/6gNGzY06HwBAAAAd2Gyu+m1JzabTWazWcXFxQoKCnL1cODm6lLccdN/cmgkGiL3/fjjjwoJCdG2bdt03333qbi4WG3atNGqVav06KOPSpIOHjyorl27Kjs7W/369dPnn3+uBx98UD/88INCQ0MlSUuWLNHzzz+vH3/8Ub6+vnr++ee1bt06ffPNN8ZrjRo1SkVFRVq/fn2txkbuB+CJPD33efr8AXim2uY+VvoATlDbQg4FH7iD4uJiSVLLli0lSbm5uaqoqFB0dLQR06VLF91+++3Kzs6WJGVnZ6tHjx5GwUeSYmJiZLPZlJ+fb8Rc3kdVTFUf1SkrK5PNZnM4AAAAAPyCog/gJNcr6FDwgTuorKzUpEmT1L9/f911112SJKvVKl9fXwUHBzvEhoaGymq1GjGXF3yq2qvarhVjs9l0/vz5asczY8YMmc1m44iIiLjpOQIAAADugqIP4EQ1FXYo+MBdJCYm6ptvvtFHH33k6qFIkqZOnari4mLjOHHihKuHBAAAADQaPq4eAOBuKPDAXSUlJSk9PV1ZWVm67bbbjPMWi0Xl5eUqKipyWO1TWFgoi8VixOzatcuhv6q7e10ec+UdvwoLCxUUFKSAgIBqx+Tn5yc/P7+bnhsAAADgjljpAwC4JrvdrqSkJH366afavHmz2rVr59AeGRmpJk2aKDMz0zh36NAhFRQUKCoqSpIUFRWlffv26fTp00ZMRkaGgoKC1K1bNyPm8j6qYqr6AAA0nEuXLumll15Su3btFBAQoA4dOuiVV15x+HHLbrcrJSVFYWFhCggIUHR0tA4fPuzQz5kzZxQfH6+goCAFBwcrISFBJSUlDjF79+7VwIED5e/vr4iICKWmpjbIHAHAE1D0AQBcU2Jioj744AOtWrVKzZs3l9VqldVqNfbZMZvNSkhIUHJysrZs2aLc3Fw98cQTioqKUr9+/SRJQ4cOVbdu3TRmzBh9/fXX2rBhg1588UUlJiYaK3WefPJJ/etf/9KUKVN08OBBLVq0SKtXr9bkyZNdNncA8FQzZ87U4sWLtWDBAh04cEAzZ85Uamqq3n77bSMmNTVV8+fP15IlS5STk6PAwEDFxMTowoULRkx8fLzy8/OVkZFhrBadMGGC0W6z2TR06FC1bdtWubm5mjVrlqZNm6alS5c26HwBwG3Z3VRxcbFdkr24uNjVQwGABlMfuU9Stcfy5cuNmPPnz9v//Oc/21u0aGFv2rSp/eGHH7afOnXKoZ/jx4/bY2Nj7QEBAfbWrVvbn3nmGXtFRYVDzJYtW+y9evWy+/r62tu3b+/wGrVB7gfgieoj98XFxdn/8Ic/OJx75JFH7PHx8Xa73W6vrKy0WywW+6xZs4z2oqIiu5+fn/3DDz+02+12+/79++2S7Lt37zZiPv/8c7vJZLJ///33drvdbl+0aJG9RYsW9rKyMiPm+eeft3fu3LnWYyX3A/BEtc197OkDALgmey32qfL399fChQu1cOHCGmPatm2rf/zjH9fsZ9CgQfrqq6/qPEYAgHP95je/0dKlS/Xtt9+qU6dO+vrrr/XPf/5Ts2fPliQdO3ZMVqtV0dHRxnPMZrP69u2r7OxsjRo1StnZ2QoODlafPn2MmOjoaHl5eSknJ0cPP/ywsrOzdd9998nX19eIiYmJ0cyZM3X27Fm1aNHiqrGVlZWprKzMeGyz2erjPwEAuAWKPgAAAAAcvPDCC7LZbOrSpYu8vb116dIlvfbaa4qPj5ckWa1WSVJoaKjD80JDQ402q9WqkJAQh3YfHx+1bNnSIebKveKq+rRardUWfWbMmKGXX37ZCbMEAPfHnj4AAAAAHKxevVorV67UqlWrtGfPHq1YsUJvvvmmVqxY4eqhaerUqSouLjaOEydOuHpIANBosdIHAAAAgIPnnntOL7zwgkaNGiVJ6tGjh7777jvNmDFDY8eOlcVikSQVFhYqLCzMeF5hYaF69eolSbJYLA53bZSkixcv6syZM8bzLRaLCgsLHWKqHlfFXMnPz8+4CQAA4NpY6QM4mclkuuoAAAC4lfz888/y8nL8quDt7a3KykpJUrt27WSxWJSZmWm022w25eTkKCoqSpIUFRWloqIi5ebmGjGbN29WZWWl+vbta8RkZWWpoqLCiMnIyFDnzp2rvbQLAFA3FH0AJ6qpwEPhBwAA3EqGDx+u1157TevWrdPx48f16aefavbs2Xr44Ycl/fLZZtKkSXr11Ve1du1a7du3T48//rjCw8M1YsQISVLXrl01bNgwjR8/Xrt27dL27duVlJSkUaNGKTw8XJI0evRo+fr6KiEhQfn5+fr44481b948JScnu2rqAOBWuLwLcJLrFXZMJlOt7oIEAADgam+//bZeeukl/fnPf9bp06cVHh6uP/3pT0pJSTFipkyZotLSUk2YMEFFRUUaMGCA1q9fL39/fyNm5cqVSkpK0pAhQ+Tl5aWRI0dq/vz5RrvZbNbGjRuVmJioyMhItW7dWikpKZowYUKDzhcA3JXJ7qbfQm02m8xms4qLixUUFOTq4cDNXVnwufyf1bXaAGfz9Nzn6fMH4Jk8Pfd5+vwBeKba5j4u7wKc7MqiDkUeAAAAAIArUPQBAAAAAABwQ+zpAwAAcBOq29ONVZ4AAKAxYKUP4GRXfvjnzl0A4L64ayMAAGjMKPoATnDlL7omk8k4rhUHALh11eaujQAAAK5E0QdwkusVdCj4AID7qK6oX3VcKw4AAKAhUfQBnKimwg4FHwBwX9y1EQAANFZ1LvpkZWVp+PDhCg8Pl8lk0po1axza7Xa7UlJSFBYWpoCAAEVHR+vw4cMOMWfOnFF8fLyCgoIUHByshIQElZSUOMTs3btXAwcOlL+/vyIiIpSamlr32QEucPmvvdX96gsAAAAAQEOoc9GntLRUPXv21MKFC6ttT01N1fz587VkyRLl5OQoMDBQMTExunDhghETHx+v/Px8ZWRkKD09XVlZWZowYYLRbrPZNHToULVt21a5ubmaNWuWpk2bpqVLl97AFAEAAAAAADxPnW/ZHhsbq9jY2Grb7Ha75s6dqxdffFEPPfSQJOn9999XaGio1qxZo1GjRunAgQNav369du/erT59+kiS3n77bT3wwAN68803FR4erpUrV6q8vFx//etf5evrq+7duysvL0+zZ892KA4BAAC4mslkcljVyT4+AACgsXDqnj7Hjh2T1WpVdHS0cc5sNqtv377Kzs6WJGVnZys4ONgo+EhSdHS0vLy8lJOTY8Tcd9998vX1NWJiYmJ06NAhnT17ttrXLisrk81mczgAAADqA3dtBAAAtwKnFn2sVqskKTQ01OF8aGio0Wa1WhUSEuLQ7uPjo5YtWzrEVNfH5a9xpRkzZshsNhtHRETEzU8IAACgBty1EQAANHZuc/euqVOnqri42DhOnDjh6iEBAAA3x10bAQBAY1bnPX2uxWKxSJIKCwsVFhZmnC8sLFSvXr2MmNOnTzs87+LFizpz5ozxfIvFosLCQoeYqsdVMVfy8/OTn5+fU+YBAABQWxR4AABAY+XUlT7t2rWTxWJRZmamcc5msyknJ0dRUVGSpKioKBUVFSk3N9eI2bx5syorK9W3b18jJisrSxUVFUZMRkaGOnfurBYtWjhzyAAAAAAAAG6pzkWfkpIS5eXlKS8vT9Ivmzfn5eWpoKBAJpNJkyZN0quvvqq1a9dq3759evzxxxUeHq4RI0ZIkrp27aphw4Zp/Pjx2rVrl7Zv366kpCSNGjVK4eHhkqTRo0fL19dXCQkJys/P18cff6x58+YpOTnZaRMHAAAAAABwZ3W+vOvLL7/U4MGDjcdVhZixY8cqLS1NU6ZMUWlpqSZMmKCioiINGDBA69evl7+/v/GclStXKikpSUOGDJGXl5dGjhyp+fPnG+1ms1kbN25UYmKiIiMj1bp1a6WkpHC7dgAAAAAAgFoy2d30QnSbzSaz2azi4mIFBQW5ejgA0CA8Pfd5+vwBeCZPz32ePn8Anqm2uc9t7t4FAKg/WVlZGj58uMLDw2UymbRmzRqH9nHjxslkMjkcw4YNc4g5c+aM4uPjFRQUpODgYCUkJKikpMQhZu/evRo4cKD8/f0VERGh1NTU+p4aAAAA4LYo+gAArqu0tFQ9e/bUwoULa4wZNmyYTp06ZRwffvihQ3t8fLzy8/OVkZGh9PR0ZWVlOVy2a7PZNHToULVt21a5ubmaNWuWpk2bpqVLl9bbvAAAAAB35tRbtgMA3FNsbKxiY2OvGePn5yeLxVJt24EDB7R+/Xrt3r1bffr0kSS9/fbbeuCBB/Tmm28qPDxcK1euVHl5uf7617/K19dX3bt3V15enmbPns2ebgAAAMANYKUPAMAptm7dqpCQEHXu3FkTJ07UTz/9ZLRlZ2crODjYKPhIUnR0tLy8vJSTk2PE3HffffL19TViYmJidOjQIZ09e7ba1ywrK5PNZnM4AAAAAPyCog8A4KYNGzZM77//vjIzMzVz5kxt27ZNsbGxunTpkiTJarUqJCTE4Tk+Pj5q2bKlrFarERMaGuoQU/W4KuZKM2bMkNlsNo6IiAhnTw0AAAC4ZVH0AQDctFGjRum3v/2tevTooREjRig9PV27d+/W1q1b6/V1p06dquLiYuM4ceJEvb4eAHiS77//Xr///e/VqlUrBQQEqEePHvryyy+NdrvdrpSUFIWFhSkgIEDR0dE6fPiwQx9s4g8ArkXRBwDgdO3bt1fr1q115MgRSZLFYtHp06cdYi5evKgzZ84Y+wBZLBYVFhY6xFQ9rmmvID8/PwUFBTkcAICbd/bsWfXv319NmjTR559/rv379+utt95SixYtjJjU1FTNnz9fS5YsUU5OjgIDAxUTE6MLFy4YMWziDwCuxUbOAACnO3nypH766SeFhYVJkqKiolRUVKTc3FxFRkZKkjZv3qzKykr17dvXiPnLX/6iiooKNWnSRJKUkZGhzp07O3zJAADUv5kzZyoiIkLLly83zrVr18742263a+7cuXrxxRf10EMPSZLef/99hYaGas2aNRo1ahSb+ANAI8BKHwDAdZWUlCgvL095eXmSpGPHjikvL08FBQUqKSnRc889p507d+r48ePKzMzUQw89pI4dOyomJkaS1LVrVw0bNkzjx4/Xrl27tH37diUlJWnUqFEKDw+XJI0ePVq+vr5KSEhQfn6+Pv74Y82bN0/JycmumjYAeKy1a9eqT58++q//+i+FhISod+/eWrZsmdF+7NgxWa1WRUdHG+fMZrP69u2r7OxsSWziDwCNAUUfAMB1ffnll+rdu7d69+4tSUpOTlbv3r2VkpIib29v7d27V7/97W/VqVMnJSQkKDIyUl988YX8/PyMPlauXKkuXbpoyJAheuCBBzRgwACH5ftms1kbN27UsWPHFBkZqWeeeUYpKSn80gsALvCvf/1Lixcv1p133qkNGzZo4sSJevrpp7VixQpJ/9lgv7oN+C/foJ9N/AHAtbi8CwBwXYMGDZLdbq+xfcOGDdfto2XLllq1atU1Y+6++2598cUXdR4fAMC5Kisr1adPH73++uuSpN69e+ubb77RkiVLNHbsWJeOberUqQ6rQG02G4UfNLjy8nItWrRIR48eVYcOHfTnP//ZYcUa0Fiw0gcAAACAg7CwMHXr1s3hXNeuXVVQUCDpPxvsV7cB/+Ub9LOJP9zRlClTFBgYqMmTJ2vBggWaPHmyAgMDNWXKFFcPDbgKRR8AAAAADvr3769Dhw45nPv222/Vtm1bSb9s6myxWJSZmWm022w25eTkKCoqSpLjJv5VqtvEPysrSxUVFUYMm/ijMZsyZYpmzZqlVq1aadmyZTp16pSWLVumVq1aadasWRR+0OhQ9AEAAADgYPLkydq5c6def/11HTlyRKtWrdLSpUuVmJgoSTKZTJo0aZJeffVVrV27Vvv27dPjjz+u8PBwjRgxQhKb+MP9lJeXa86cOQoNDdVXX32l1157TR07dtRrr72mr776SqGhoZozZ47Ky8tdPVTAwJ4+AAAAABz8+te/1qeffqqpU6dq+vTpateunebOnav4+HgjZsqUKSotLdWECRNUVFSkAQMGaP369fL39zdiVq5cqaSkJA0ZMkReXl4aOXKk5s+fb7RXbeKfmJioyMhItW7dmk380WgtWrRIFy9elM1mMwqXklRaWqrw8HAFBATo4sWLWrRokSZNmuS6gQKXoegDAAAA4CoPPvigHnzwwRrbTSaTpk+frunTp9cYwyb+cCdHjx6VJJ0/f77a9qrzVXFAY8DlXQAAAAAAXEerVq2cGgc0BIo+gJOZTKarDgAAAAC3tuXLl191bvz48bWKA1yFog/gRDUVeCj8AAAAALe277//3vg7KChI77zzjqZNm6Z33nlHQUFB1cYBrsaePoCTXK+wYzKZZLfbG2g0AICGUl3+J98DgPu5dOmS8ffPP/+sP/3pT8ZjHx+fauMAV2OlD+AEV37gt9vtxnGtOADArY0VngDgmQ4ePKg77rhDgYGBuuOOO3Tw4EFXDwmoFit9ACe7stBjt9v58A8AbogVngDguTp27Gj8XVpa6vAYaExY6QM4GRs5A4D7Y4UnAHienJwcp8YBDYGiDwAAwE2oboUnAMD9dO7c2alxQEOg6AMAAAAAwHXExsY6NQ5oCBR9AAAAAAC4jiNHjkiSli5detUlXDk5OVq4cKFDHNAYUPQBAAC4CezlBgCeITg4WJK0evVq3XvvvQ77ud17773629/+5hAHNAbcvQsAAKCOantnRvb3AQD3MWvWLI0YMUKbNm1SUVGR0tLSdPToUXXo0EHjxo3T5s2bjTigsaDoAzhZdR/w+dUXAAAAuLU9+OCD8vHx0cWLF9WiRQuHtsmTJ0uSfHx89OCDD7pieEC1uLwLcLIrCzwUfADA/dQ2t/MeAADuw9vbW3FxcdeMiYuLk7e3dwONCLg+ij6AE1y5uqemfR1Y5g8A7ufyPR2qDgCA+ykvL9e6detkNpsVFhbm0BYeHi6z2ax169apvLzcRSMErkbRB3CS633I50sAAAAAcOtatGiRLl68qDfffFMnTpzQli1btGrVKm3ZskUFBQVKTU3VxYsXtWjRIlcPFTCwpw/gRDVt7EnBBwAAALi1HT16VNIve/t4e3tr0KBBDu1Ve/lUxQGNASt9ACdjmT8AeBb2cgMAz9ChQwdJUnp6erXtVeer4oDGwGR302+kNptNZrNZxcXFCgoKcvVwAKBBeHru8/T5o2Fxy3Y0Fp6e+zx9/mg45eXlCgwMVKtWrfTdd98pOztbp06dUlhYmKKiotS2bVv99NNPKi0tla+vr6uHCzdX29zHSh8AwHVlZWVp+PDhCg8Pl8lk0po1axza7Xa7UlJSFBYWpoCAAEVHR+vw4cMOMWfOnFF8fLyCgoIUHByshIQElZSUOMTs3btXAwcOlL+/vyIiIpSamlrfUwNuGHu5AYBn8fX11eTJk1VYWKimTZtq8ODBGj16tAYPHqymTZuqsLBQkydPpuCDRoWiDwDgukpLS9WzZ08tXLiw2vbU1FTNnz9fS5YsUU5OjgIDAxUTE6MLFy4YMfHx8crPz1dGRobS09OVlZWlCRMmGO02m01Dhw5V27ZtlZubq1mzZmnatGlaunRpvc8PuFE1FXYo+ACAe+rXr58kqbKy0uF81eOqdqCx4PIuAHAjDZH7TCaTPv30U40YMULSL19uw8PD9cwzz+jZZ5+VJBUXFys0NFRpaWkaNWqUDhw4oG7dumn37t3q06ePJGn9+vV64IEHdPLkSYWHh2vx4sX6y1/+IqvVavxC9sILL2jNmjU6ePBgrcZG7gfgiTw993n6/NFwLl26pI4dO+r48eM1xrRr106HDx+Wt7d3ww0MHonLuwAADeLYsWOyWq2Kjo42zpnNZvXt21fZ2dmSpOzsbAUHBxsFH0mKjo6Wl5eXcnJyjJj77rvPYUl0TEyMDh06pLNnz1b72mVlZbLZbA4HAABAffjiiy+uWfCRfvlc9MUXXzTMgIBaoOgDALgpVqtVkhQaGupwPjQ01GizWq0KCQlxaPfx8VHLli0dYqrr4/LXuNKMGTNkNpuNIyIi4uYnBAC4yhtvvCGTyaRJkyYZ5y5cuKDExES1atVKzZo108iRI1VYWOjwvIKCAsXFxalp06YKCQnRc889p4sXLzrEbN26Vffcc4/8/PzUsWNHpaWlNcCMgLr77LPPnBoHNASKPgCAW9bUqVNVXFxsHCdOnHD1kADA7ezevVvvvPOO7r77bofzkydP1meffaZPPvlE27Zt0w8//KBHHnnEaL906ZLi4uJUXl6uHTt2aMWKFUpLS1NKSooRc+zYMcXFxWnw4MHKy8vTpEmT9Mc//lEbNmxosPkBtTV79myHxyEhIbrnnnuu+mHryjjAlSj6AABuisVikaSrft0tLCw02iwWi06fPu3QfvHiRZ05c8Yhpro+Ln+NK/n5+SkoKMjhAAA4T0lJieLj47Vs2TK1aNHCOF9cXKz33ntPs2fP1v3336/IyEgtX75cO3bs0M6dOyVJGzdu1P79+/XBBx+oV69eio2N1SuvvKKFCxeqvLxckrRkyRK1a9dOb731lrp27aqkpCQ9+uijmjNnjkvmC9TF6dOntWfPnqs+4wCNCUUfAMBNadeunSwWizIzM41zNptNOTk5ioqKkiRFRUWpqKhIubm5RszmzZtVWVmpvn37GjFZWVmqqKgwYjIyMtS5c2eHLxoAgIaTmJiouLg4h33bJCk3N1cVFRUO57t06aLbb7/dYT+3Hj16OFy6GxMTI5vNpvz8fCPmyr5jYmKMPqrDfm4AUHsUfQAA11VSUqK8vDzl5eVJ+mU5fl5engoKCow9Hl599VWtXbtW+/bt0+OPP67w8HDjDl9du3bVsGHDNH78eO3atUvbt29XUlKSRo0apfDwcEnS6NGj5evrq4SEBOXn5+vjjz/WvHnzlJyc7KJZA4Bn++ijj7Rnzx7NmDHjqraqOy0GBwc7nL9yP7fr7dVWU4zNZtP58+erHRf7uQFA7fm4egAAgMbvyy+/1ODBg43HVYWYsWPHKi0tTVOmTFFpaakmTJigoqIiDRgwQOvXr5e/v7/xnJUrVyopKUlDhgyRl5eXRo4cqfnz5xvtZrNZGzduVGJioiIjI9W6dWulpKRowoQJDTdRAIAk6cSJE/qf//kfZWRkOOTyxmDq1KkOPwjYbDYKPwBQA4o+AIDrGjRokOx2e43tJpNJ06dP1/Tp02uMadmypVatWnXN17n77ru5zSkANAK5ubk6ffq07rnnHuPcpUuXlJWVpQULFmjDhg0qLy9XUVGRw2qfK/dz27Vrl0O/V+7VVtN+bkFBQQoICKh2bH5+fvLz87vpOQKAJ+DyLgAAAAAOhgwZon379hmX9ubl5alPnz6Kj483/m7SpInDfm6HDh1SQUGBw35u+/btc9jkNiMjQ0FBQerWrZsRc3kfVTFVfQAAbg4rfQAAAAA4aN68ue666y6Hc4GBgWrVqpVxPiEhQcnJyWrZsqWCgoL01FNPKSoqSv369ZMkDR06VN26ddOYMWOUmpoqq9WqF198UYmJicZKnSeffFILFizQlClT9Ic//EGbN2/W6tWrtW7duoadMAC4Kaev9Jk2bZpMJpPD0aVLF6P9woULSkxMVKtWrdSsWTONHDnyqiWdBQUFiouLU9OmTRUSEqLnnntOFy9edPZQgXpx5f//TSaTq4cEAADgdHPmzNGDDz6okSNH6r777pPFYtH//d//Ge3e3t5KT0+Xt7e3oqKi9Pvf/16PP/64w6XA7dq107p165SRkaGePXvqrbfe0rvvvquYmBhXTAkA3E69rPTp3r27Nm3a9J8X8fnPy0yePFnr1q3TJ598IrPZrKSkJD3yyCPavn27pF+uFY6Li5PFYtGOHTt06tQpPf7442rSpIlef/31+hgu4DQ1FXhMJtM190MBAABo7LZu3erw2N/fXwsXLtTChQtrfE7btm31j3/845r9Dho0SF999ZUzhggAuEK9FH18fHyMzdkuV1xcrPfee0+rVq3S/fffL0lavny5unbtqp07d6pfv37auHGj9u/fr02bNik0NFS9evXSK6+8oueff17Tpk2Tr69vfQwZuGnXW9FD4QcA3FN1+Z98DwAAGoN62cj58OHDCg8PV/v27RUfH6+CggJJv9wFoKKiQtHR0UZsly5ddPvttys7O1uSlJ2drR49eig0NNSIiYmJkc1mU35+fo2vWVZWJpvN5nAADaW2l3BxqRcAuJdrrfAEAABwNacXffr27au0tDStX79eixcv1rFjxzRw4ECdO3dOVqtVvr6+Drd1lKTQ0FBZrVZJktVqdSj4VLVXtdVkxowZMpvNxhEREeHciQEAAFymNis8AQAAXMnpl3fFxsYaf999993q27ev2rZtq9WrVysgIMDZL2eYOnWqkpOTjcc2m43CDwAAqBd1WeHJpV4AAMBV6uXyrssFBwerU6dOOnLkiCwWi8rLy1VUVOQQU1hYaOwBZLFYrrqbV9Xj6vYJquLn56egoCCHA3AVu91uHAAAAABufZffoMgZcUBDqPeiT0lJiY4ePaqwsDBFRkaqSZMmyszMNNoPHTqkgoICRUVFSZKioqK0b98+nT592ojJyMhQUFCQunXrVt/DBQAAAADgKpdf1eKMOKAhOL0E+eyzz2r48OFq27atfvjhB/3v//6vvL299dhjj8lsNishIUHJyclq2bKlgoKC9NRTTykqKkr9+vWTJA0dOlTdunXTmDFjlJqaKqvVqhdffFGJiYny8/Nz9nCBesE+DgDgWS5f2cl7AAC4p88++8ypcUBDcHrR5+TJk3rsscf0008/qU2bNhowYIB27typNm3aSJLmzJkjLy8vjRw5UmVlZYqJidGiRYuM53t7eys9PV0TJ05UVFSUAgMDNXbsWE2fPt3ZQwUAAAAAAHBbJrubbjpis9lkNptVXFzM/j6od3X5VddN/8mhkfD03Ofp80fDIe+jMfH03Ofp80fDIfejMalt7qv3PX0AAAAAAADQ8Cj6AAAAAAAAuCGKPgAAAHVU22X7LO8HAACu5PSNnAFPV90HfO7kAgDux263XzO/U/ABAACuxkofwMmu/AJAwQcA3FdNhR0KPgAAoDFgpQ/gBFf+2ltToYcvAQDgfsjtAACgsaLoAzgJy/wBwDNVl/vJ+QAAoDHg8i4AAIAbVFOxn0t7AQBAY0DRB3CS633A5wsAALgX8j4AAGjsKPoATnDlB3u73W4c14oDANyaapvPyfsAAMCV2NMHqAd8yAcAAAAAuBpFHwAAgJt0+cpOCv8AAKCx4PIuAMBNmzZtmkwmk8PRpUsXo/3ChQtKTExUq1at1KxZM40cOVKFhYUOfRQUFCguLk5NmzZVSEiInnvuOV28eLGhpwLU2ZWX8nLnLgAA0FhQ9AEAOEX37t116tQp4/jnP/9ptE2ePFmfffaZPvnkE23btk0//PCDHnnkEaP90qVLiouLU3l5uXbs2KEVK1YoLS1NKSkprpgKUCdXruxhpQ/cwYwZM/TrX/9azZs3V0hIiEaMGKFDhw45xDiroL9161bdc8898vPzU8eOHZWWllbf0wMAj0HRBwDgFD4+PrJYLMbRunVrSVJxcbHee+89zZ49W/fff78iIyO1fPly7dixQzt37pQkbdy4Ufv379cHH3ygXr16KTY2Vq+88ooWLlyo8vJyV04LqJXLV7kB7mDbtm1KTEzUzp07lZGRoYqKCg0dOlSlpaVGjDMK+seOHVNcXJwGDx6svLw8TZo0SX/84x+1YcOGBp0vALgrij4AAKc4fPiwwsPD1b59e8XHx6ugoECSlJubq4qKCkVHRxuxXbp00e23367s7GxJUnZ2tnr06KHQ0FAjJiYmRjabTfn5+TW+ZllZmWw2m8MBALh569ev17hx49S9e3f17NlTaWlpKigoUG5uriTnFfSXLFmidu3a6a233lLXrl2VlJSkRx99VHPmzHHZ3AHAnVD0AQDctL59+yotLU3r16/X4sWLdezYMQ0cOFDnzp2T1WqVr6+vgoODHZ4TGhoqq9UqSbJarQ4Fn6r2qraazJgxQ2az2TgiIiKcOzGgBrXdt4f9feAuiouLJUktW7aU5LyCfnZ2tkMfVTFVfVSHgj8A1B537wLqAXdxgaeJjY01/r777rvVt29ftW3bVqtXr1ZAQEC9ve7UqVOVnJxsPLbZbBR+0GDsdvs1czwFH7iLyspKTZo0Sf3799ddd90lSU4r6NcUY7PZdP78+WrfQ2bMmKGXX37ZKXMDAHfHSh+gHrC3AzxdcHCwOnXqpCNHjshisai8vFxFRUUOMYWFhbJYLJIki8Vy1eafVY+rYqrj5+enoKAghwNoSDUVdij4wJ0kJibqm2++0UcffeTqoUj6peBfXFxsHCdOnHD1kACg0aLoAwBwupKSEh09elRhYWGKjIxUkyZNlJmZabQfOnRIBQUFioqKkiRFRUVp3759On36tBGTkZGhoKAgdevWrcHHD9SF3W6/6gDcRVJSktLT07VlyxbddtttxnlnFfRrigkKCqpxpSgFfwCoPYo+gBOwtwM83bPPPqtt27bp+PHj2rFjhx5++GF5e3vrsccek9lsVkJCgpKTk7Vlyxbl5ubqiSeeUFRUlPr16ydJGjp0qLp166YxY8bo66+/1oYNG/Tiiy8qMTFRfn5+Lp4dAHgeu92upKQkffrpp9q8ebPatWvn0O6sgn5UVJRDH1UxVX0AAG4Oe/oATsLeDvBkJ0+e1GOPPaaffvpJbdq00YABA7Rz5061adNGkjRnzhx5eXlp5MiRKisrU0xMjBYtWmQ839vbW+np6Zo4caKioqIUGBiosWPHavr06a6aEgB4tMTERK1atUp///vf1bx5c2MPHrPZrICAAIeCfsuWLRUUFKSnnnqqxoJ+amqqrFbrVQX9J598UgsWLNCUKVP0hz/8QZs3b9bq1au1bt06l80dANyJye6m30RtNpvMZrOKi4tZ8okGVV3hx03/maER8vTc5+nzB+CZ6iP31fRD1vLlyzVu3DhJ0oULF/TMM8/oww8/dCjoX74X23fffaeJEydq69atRkH/jTfekI/Pf3573rp1qyZPnqz9+/frtttu00svvWS8Rm2Q+9FQ6rJfJ5//Ud9qm/so+gCAG/H03Ofp8wfgmTw993n6/NFwKPqgMalt7mNPHwAAAAAAADdE0QcAAAAAAMANUfQBAAAAAABwQxR9AAAAAAAA3BBFHwAAAAAAADdE0QcAAAAAAMANUfQBAAAAAABwQxR9AAAAAAAA3BBFHwAAAAAAADdE0QcAAAAAAMANUfQBAAAAAABwQxR9AAAAAAAA3JCPqwcAAAAAAICrnS+/pKM/ljilr2++L66xrUObZgrw9XbK6wDXQ9EHAAAAAODxjv5Yogff/qdT+rpWP+lPDdBdvzI75XWA66HoAwAAAADweB3aNFP6UwNqbO8xs/Z9XaufDm2a1WVYwE2h6AMAAFCNuizzv1BxSSfPntdtLQLk36T2S/ZZ4g8AjUeAr7fTVuCwkgeNBUUfAACAajhzmX9NWOIPALcOu90uk8lUqzigsaDoAwAAUI3rLfO/3JHTJZr0cZ7m/q6XOobUftk+S/wB4NZyvcIPBR80NhR9AAAAqnEjy/w7hjRj5Q4AuLmaCj8UfNAYebl6AAAAAAAA3Ersdrv2nSxS2+fTte9kEQUfNFqs9AFqoS6beUo3tqEnm3kCAAAAznXs36UqLbtYL30fOV3i8L/1IdDPR+1aB9Zb/3B/FH2AWmAzTwAAAODWcuzfpRr85tZ6f51JH+fVa/9bnh1E4Qc3jKIPPFZdqv4XKi5p7u961brvE2d+1lsZ3+qZ/9dJES2b1vo1vvm+uFaxVPwB4MbU1y++/NoLAI1PVb6v6yb7tXUjq/vrouomAfW1UgmegaIPPFJDVf3fyvi23vqm4g8AddMQuZ9fe4Ebs3DhQs2aNUtWq1U9e/bU22+/rXvvvdfVw4KbqM9N9vvcUS/dAk7TqIs+JH/Ul1u56k/FH+6O3I/6Up+5n197gRv38ccfKzk5WUuWLFHfvn01d+5cxcTE6NChQwoJCXH18HCLM/nYdMx2SF7+zv/MX9+O2Upk8rG5ehi4xTXaog/JH/XN5GOTt//39fIG0NRf6tRckmp3uVZdePuT/OG+yP2ob/WV++sz70vkfri32bNna/z48XriiSckSUuWLNG6dev017/+VS+88IKLR4db2fmKS2oSnKP/b9frrh7KDWsSPETSA64eBm5hjbboQ/JHfbrV3wBI/nBX5H7UJ3I/0PiUl5crNzdXU6dONc55eXkpOjpa2dnZ1T6nrKxMZWVlxmObjYIoqnf0dIkqivrqYkk3Vw/lhtkvNlegX6P92o5bQKP8fw/JH/XtVn8DIPnDHZH7Ud/I/UDj8+9//1uXLl1SaGiow/nQ0FAdPHiw2ufMmDFDL7/8ckMMD7e4od0tkvqrQ0gzBdTi0tuqS2nrW10uM2YTf9ysRvnJgeSP+lbXN4CqvRrqU132gSD5wx2R+1HfyP2Ae5g6daqSk5ONxzabTRERES4cERqrloG+GnXv7bWO79CmmdKfGlDr+Bvdz61Dm2YK8HX+/m9AdRpl0edGkPxRF3V9A5DYmR9ojMj9qAtyP9D4tG7dWt7e3iosLHQ4X1hYKIvFUu1z/Pz85Ofn1xDDg4cJ8PWu812+eJ9AY+fl6gFU50aTf1BQkMMBALh1kPsBwPP4+voqMjJSmZmZxrnKykplZmYqKirKhSMDAPfQKIs+JH8A8DzkfgDwTMnJyVq2bJlWrFihAwcOaOLEiSotLTU29QcA3LhGe3lXcnKyxo4dqz59+ujee+/V3LlzSf4A4ObI/QDgeX73u9/pxx9/VEpKiqxWq3r16qX169dftccbAKDuGm3Rh+QPAJ6H3A8AnikpKUlJSUmuHgYAuB2T3W63u3oQ9cFms8lsNqu4uJg9HgB4DE/PfZ4+fwCeydNzn6fPH4Bnqm3ua5R7+gAAAAAAAODmUPQBAAAAAABwQxR9AAAAAAAA3BBFHwAAAAAAADfUaO/edbOq9qe22WwuHgkANJyqnOeme/RfF7kfgCci95P7AXie2uZ+ty36nDt3TpIUERHh4pEAQMM7d+6czGazq4fR4Mj9ADwZuZ/cD8DzXC/3u+0t2ysrK/XDDz+oefPmMplMrh4OPIzNZlNERIROnDjBrUPRoOx2u86dO6fw8HB5eXneFbzkfrgKeR+uRO4n98M1yP1wpdrmfrct+gCuZLPZZDabVVxczBsAAHgA8j4AeB5yP24FnvdTAAAAAAAAgAeg6AMAAAAAAOCGKPoA9cDPz0//+7//Kz8/P1cPBQDQAMj7AOB5yP24FbCnDwAAAAAAgBtipQ8AAAAAAIAbougDAAAAAADghij6AAAAAAAAuCGKPgAAAAAAONG0adMUGhoqk8mkNWvWaNy4cRoxYoSrhwUPRNEHuI477rhDc+fOdfUwAAANwFU5ny8DAOAa48aNk8lkkslkkq+vrzp27Kjp06fr4sWLN9zngQMH9PLLL+udd97RqVOnFBsbq3nz5iktLc2IGTRokCZNmnTzEwCug6IP3FZNiTQtLU3BwcG17mf37t2aMGGC8biqWl8X5eXlSk1NVc+ePdW0aVO1bt1a/fv31/Lly1VRUVGnvqpz/PhxmUwm5eXl3XRfAHAraiw5Py0tzfjy4OXlpdtuu01PPPGETp8+fc3nXfllAADQcIYNG6ZTp07p8OHDeuaZZzRt2jTNmjXrqrjy8vJa9Xf06FFJ0kMPPSSLxSI/Pz+ZzeY6vR8BzkLRB7iONm3aqGnTpjf8/PLycsXExOiNN97QhAkTtGPHDu3atUuJiYl6++23lZ+f78TRAgBuxs3mfEkKCgrSqVOndPLkSS1btkyff/65xowZU23spUuXVFlZyZcBAHAhPz8/WSwWtW3bVhMnTlR0dLTWrl1rrMJ87bXXFB4ers6dO0uS9u3bp/vvv18BAQFq1aqVJkyYoJKSEkm/XNY1fPhwSZKXl5dMJpMkxxWd48aN07Zt2zRv3jzjh4Ljx483+LzhGSj6wKNVJd8333xTYWFhatWqlRITEx1W31y+1P+OO+6QJD388MMymUzG42uZO3eusrKylJmZqcTERPXq1Uvt27fX6NGjlZOTozvvvFOSVFZWpqefflohISHy9/fXgAEDtHv3bqOfs2fPKj4+Xm3atFFAQIDuvPNOLV++XJLUrl07SVLv3r1lMpk0aNCgm/+PAwBupiFyvvTL6iCLxaLw8HDFxsbq6aef1qZNm3T+/Hlj5dHatWvVrVs3+fn5qaCg4KrLuyorK5WamqqOHTvKz89Pt99+u1577TWj/cSJE/rv//5vBQcHq2XLlnrooYf4wgAAThIQEGCs6snMzNShQ4eUkZGh9PR0lZaWKiYmRi1atNDu3bv1ySefaNOmTUpKSpIkPfvss8Zn9FOnTunUqVNX9T9v3jxFRUVp/PjxRkxERETDTRAexcfVAwBcbcuWLQoLC9OWLVt05MgR/e53v1OvXr00fvz4q2J3796tkJAQLV++XMOGDZO3t/d1+1+5cqWio6PVu3fvq9qaNGmiJk2aSJKmTJmiv/3tb1qxYoXatm2r1NRUxcTE6MiRI2rZsqVeeukl7d+/X59//rlat26tI0eO6Pz585KkXbt26d5779WmTZvUvXt3+fr63uR/FQBwT/Wd86sTEBCgyspKY3+In3/+WTNnztS7776rVq1aKSQk5KrnTJ06VcuWLdOcOXM0YMAAnTp1SgcPHpQkVVRUKCYmRlFRUfriiy/k4+OjV199VcOGDdPevXt5DwCAG2S325WZmakNGzboqaee0o8//qjAwEC9++67Rm5dtmyZLly4oPfff1+BgYGSpAULFmj48OGaOXOmQkNDjZWbFoul2tcxm83y9fVV06ZNa4wBnIWiDzxeixYttGDBAnl7e6tLly6Ki4tTZmZmtV8A2rRpI0kKDg6udYI+fPjwdVfelJaWavHixUpLS1NsbKykX95QMjIy9N577+m5555TQUGBevfurT59+kiSwy/OVeNq1aoVbxwAcA31nfOvdPjwYS1ZskR9+vRR8+bNJf1StFm0aJF69uxZ7XPOnTunefPmacGCBRo7dqwkqUOHDhowYIAk6eOPP1ZlZaXeffdd47KB5cuXKzg4WFu3btXQoUNvaKwA4KnS09PVrFkzVVRUqLKyUqNHj9a0adOUmJioHj16OBTTDxw4oJ49exoFH0nq37+/KisrdejQIYWGhrpiCkCNKPrA43Xv3t3h19uwsDDt27fPaf3b7fbrxhw9elQVFRXq37+/ca5Jkya69957deDAAUnSxIkTNXLkSO3Zs0dDhw7ViBEj9Jvf/MZp4wQAT1DfOV+SiouL1axZM1VWVurChQsaMGCA3n33XaPd19dXd999d43PP3DggMrKyjRkyJBq27/++msdOXLEKCJVuXDhgrF5KACg9gYPHqzFixfL19dX4eHh8vH5z9fky4s7wK2Iog/cVlBQkIqLi686X1RUJLPZbDyuuryqislkUmVlpdPG0alTJ2NJ/s2IjY3Vd999p3/84x/KyMjQkCFDlJiYqDfffNMJowSAW1tjyfmS1Lx5c+3Zs0deXl4KCwtTQECAQ3tAQICxQqc6V8ZfqaSkRJGRkVq5cuVVbVWrkwAAtRcYGKiOHTvWKrZr165KS0tTaWmpURDavn27vLy8jI2ea8PX11eXLl26ofECdcFGznBbnTt31p49e646v2fPHnXq1OmG+23SpEmdEvTo0aO1adMmffXVV1e1VVRUqLS0VB06dJCvr6+2b9/u0LZ7925169bNONemTRuNHTtWH3zwgebOnaulS5dKkrHklDcOAJ6qseR86Ze7tXTs2FHt27e/bgGnOnfeeacCAgKUmZlZbfs999yjw4cPKyQkRB07dnQ4Li9wAQCcLz4+Xv7+/ho7dqy++eYbbdmyRU899ZTGjBlTp0u77rjjDuXk5Oj48eP697//7fQfIIAqFH3gtiZOnKhvv/1WTz/9tPbu3atDhw5p9uzZ+vDDD/XMM8/ccL933HGHMjMzZbVadfbs2evGT5o0Sf3799eQIUO0cOFCff311/rXv/6l1atXq1+/fjp8+LACAwM1ceJEPffcc1q/fr3279+v8ePH6+eff1ZCQoIkKSUlRX//+9915MgR5efnKz09XV27dpUkhYSEKCAgQOvXr1dhYWG1v3YDgDtrLDnfGfz9/fX8889rypQpev/993X06FHt3LlT7733nqRfvnC0bt1aDz30kL744gsdO3ZMW7du1dNPP62TJ082yBgBwFM1bdpUGzZs0JkzZ/TrX/9ajz76qIYMGaIFCxbUqZ9nn31W3t7e6tatm9q0aaOCgoJ6GjE8HZd3wW21b99eWVlZ+stf/qLo6GiVl5erS5cu+uSTTzRs2LAb7vett95ScnKyli1bpl/96lfXvUWun5+fMjIyNGfOHL3zzjt69tln1bRpU3Xt2lVPP/207rrrLknSG2+8ocrKSo0ZM0bnzp1Tnz59tGHDBrVo0ULSL6t5pk6dquPHjysgIEADBw7URx99JEny8fHR/PnzNX36dKWkpGjgwIHaunXrDc8RAG41jSXnO8tLL70kHx8fpaSk6IcfflBYWJiefPJJSb984cjKytLzzz+vRx55ROfOndOvfvUrDRkyREFBQQ0yPgBwF2lpaXVu69GjhzZv3lzj80aMGHHVvp5X9tWpUydlZ2fXdpjADTPZa7PLLAAAAAAAAG4pXN4FAAAAAADghij6ADepe/fuatasWbVHdXdWAQDcusj5AADgVsLlXcBN+u6771RRUVFtW2hoqJo3b97AIwIA1BdyPgAAuJVQ9AEAAAAAAHBDXN4FAAAAAADghij6AAAAAAAAuCGKPgAAAAAAAG6Iog8AAAAAAIAbougDAAAAAADghij6AAAAAAAAuCGKPgAAAAAAAG7o/wfDhqdtuuO7JAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "boxplot_cols = ['Year', 'Customer_Age', 'Order_Quantity', 'Unit_Cost', 'Unit_Price', 'Profit']\n", + "\n", + "sales[boxplot_cols].plot(kind='box', subplots=True, layout=(2,3), figsize=(14,8))" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sales.plot(kind='scatter', x='Customer_Age', y='Revenue', figsize=(6,6))" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FqzjLgA5qTy_" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "## Column wrangling\n", + "\n", + "We can also create new columns or modify existing ones.\n", + "\n", + "### Add and calculate a new `Revenue_per_Age` column" ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAFzCAYAAAAKU79uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df3yV5X3/8dcnEAIKSggRaYKDNswWlVJNEUtlTlfEHwW/X521Wwtr7ehWt7V2/Sq2a12131Zx32n9trUytdWurVJ04qwWKersVkWDIipWSQVJmEAIQUEBA+ezP84VOEnOyc9zrpNz8n4+Hnnkvq/713XVU9657vs+12XujoiISK6V5LsCIiIyOChwREQkCgWOiIhEocAREZEoFDgiIhKFAkdERKIYmu8KxDZ27FifOHFivqshIlJQ1qxZs8PdK/tzjkEXOBMnTqSuri7f1RARKShm9np/z6FbaiIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0SkyDXv2c/zDbto3rM/r/UYdEPbiIgMJsvXbuHKe9dRWlJCayLB4gunMndaVV7qoh6OiEiRat6znyvvXce+1gS79x9gX2uCK+5dl7eejgJHRKRINbbspbSk/T/zpSUlNLbszUt9FDgiIkWqunwErYlEu7LWRILq8hF5qY8CR0SkSFWMLGPxhVMZXlrCqLKhDC8tYfGFU6kYWZaX+uilARGRIjZ3WhUza8bS2LKX6vIReQsbUOCIiBS9ipFleQ2aNrqlJiIiUShwREQkCgWOiIhEocAREZEoFDgiIhKFAkdERKJQ4IiISBQKHBERiUKBIyIiUShwREQkCgWOiIhEocAREZEoFDgiIhKFAkdEZABp3rOf5xt25W0a6FzKWeCY2R1mtt3MXkyz7e/NzM1sbFg3M7vZzOrNbJ2ZnZyy7wIz2xB+FqSUn2JmL4RjbjYzy1VbRERiWL52CzOvf5RP3baamdc/ygNrt+S7SlmVyx7Oj4E5HQvNbAIwG9icUnwOMDn8LARuCfuOAa4GTgWmA1ebWXk45hbgL1OO63QtEZFC0bxnP1feu459rQl27z/AvtYEV9y7rqh6OjkLHHd/AtiZZtONwBWAp5TNA+7ypKeA0WY2HjgbWOnuO929BVgJzAnbjnL3p9zdgbuAC3LVFhGRXGts2UtpSft/kktLSmhs2ZunGmVf1Gc4ZjYP2OLuz3fYVAU0pKw3hrKuyhvTlGe67kIzqzOzuqampn60QEQkN6rLR9CaSLQra00kqC4fkacaZV+0wDGzI4CvAt+Idc027r7E3WvdvbaysjL25UVEulUxsozFF05leGkJo8qGMry0hMUXTh0QU0Nny9CI13ofMAl4PjzfrwaeNbPpwBZgQsq+1aFsC3BGh/LHQ3l1mv1FRArW3GlVzKwZS2PLXqrLRxRV2EDEHo67v+Dux7j7RHefSPI22MnuvhV4AJgf3labAbzp7m8AK4DZZlYeXhaYDawI294ysxnh7bT5wPJYbRERyZWKkWV8cMLoogsbyO1r0T8HngSON7NGM7u0i90fAl4D6oF/Ab4A4O47gWuBZ8LPNaGMsM9t4ZjfAw/noh0iIpIdlnzJa/Cora31urq6fFdDRKSgmNkad6/tzzk00oCIiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJImeBY2Z3mNl2M3sxpewGM/udma0zs38zs9Ep264ys3oze8XMzk4pnxPK6s1sUUr5JDNbHcrvMbNhuWqLiIj0Xy57OD8G5nQoWwmc6O5TgVeBqwDMbApwCXBCOOYHZjbEzIYA3wfOAaYAnwz7AlwP3OjuNUALcGkO2yIiIv2Us8Bx9yeAnR3KHnH3A2H1KaA6LM8D7nb3/e6+EagHpoefend/zd3fBe4G5pmZAWcCy8LxdwIX5KotIiLSf/l8hvNZ4OGwXAU0pGxrDGWZyiuAXSnh1VaelpktNLM6M6tramrKUvVFRKQ38hI4ZvY14ADw0xjXc/cl7l7r7rWVlZUxLikiIh0MjX1BM/sL4HzgLHf3ULwFmJCyW3UoI0N5MzDazIaGXk7q/iIiMgBF7eGY2RzgCmCuu7+TsukB4BIzKzOzScBk4GngGWByeCNtGMkXCx4IQfUYcFE4fgGwPFY7RESk93L5WvTPgSeB482s0cwuBb4HjAJWmtlaM/shgLu/BCwF1gO/Ai5z94Oh9/I3wArgZWBp2BfgSuDLZlZP8pnO7blqi4iI9J8dvqs1ONTW1npdXV2+qyEiUlDMbI271/bnHBppQEREolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiESRs8AxszvMbLuZvZhSNsbMVprZhvC7PJSbmd1sZvVmts7MTk45ZkHYf4OZLUgpP8XMXgjH3Gxmlqu2iIhI/+Wyh/NjYE6HskXAKnefDKwK6wDnAJPDz0LgFkgGFHA1cCowHbi6LaTCPn+ZclzHa4mIyACSs8Bx9yeAnR2K5wF3huU7gQtSyu/ypKeA0WY2HjgbWOnuO929BVgJzAnbjnL3p9zdgbtSziUiIgNQ7Gc449z9jbC8FRgXlquAhpT9GkNZV+WNacrTMrOFZlZnZnVNTU39a4GIiPRJ3l4aCD0Tj3StJe5e6+61lZWVMS4pIiIdxA6cbeF2GOH39lC+BZiQsl91KOuqvDpNuYiIDFCxA+cBoO1NswXA8pTy+eFttRnAm+HW2wpgtpmVh5cFZgMrwra3zGxGeDttfsq5RERkABqaqxOb2c+BM4CxZtZI8m2z64ClZnYp8Dpwcdj9IeBcoB54B/gMgLvvNLNrgWfCfte4e9uLCF8g+SbcCODh8CMiIgOUJR+lDB61tbVeV1eX72qIiBQUM1vj7rX9OYdGGhARkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJRKHBERCQKBY6IiEShwBERkSgUOCIiEoUCR0REolDgiIhIFAocERGJQoEjIiJR5CVwzOxyM3vJzF40s5+b2XAzm2Rmq82s3szuMbNhYd+ysF4ftk9MOc9VofwVMzs7H20REZGeiR44ZlYF/B1Q6+4nAkOAS4DrgRvdvQZoAS4Nh1wKtITyG8N+mNmUcNwJwBzgB2Y2JGZbRESk53oUOGY2sydlvTAUGGFmQ4EjgDeAM4FlYfudwAVheV5YJ2w/y8wslN/t7vvdfSNQD0zvR51ERCSHetrD+f89LOuWu28B/gnYTDJo3gTWALvc/UDYrRGoCstVQEM49kDYvyK1PM0xIiIywAztaqOZnQZ8BKg0sy+nbDqK5K2wXjOzcpK9k0nALuAXJG+J5YyZLQQWAhx33HG5vJSIiGTQXQ9nGDCSZDCNSvl5C7ioj9f8E2Cjuze5eytwHzATGB1usQFUA1vC8hZgAkDYfjTQnFqe5ph23H2Ju9e6e21lZWUfqy0iIv3RZQ/H3f8D+A8z+7G7v56la24GZpjZEcBe4CygDniMZIjdDSwAlof9HwjrT4btj7q7m9kDwM/M7J+B9wCTgaezVEcREcmy7m6p3eTuXwK+Z2becbu7z+3tBd19tZktA54FDgDPAUuAXwJ3m9m3Qtnt4ZDbgZ+YWT2wk+Sbabj7S2a2FFgfznOZux/sbX1ERCQOc++UI4c3mp3s7s+a2R+l2x56QAWltrbW6+rq8l0NEZGCYmZr3L22P+fosocD3EDylte57n5lfy4kIiKDW3eBM97MPgLMNbO7AUvd6O7P5qxmIiJSVLoLnG8AXyf5Btg/d9jmJL+sKSIi0q3u3lJbBiwzs6+7+7WR6iQiIkWoux4OAO5+rZnNBWaFosfd/cHcVUtERIpNT8dS+w7wRZKvIK8Hvmhm385lxUREpLj0qIcDnAdMc/cEgJndSfK7Ml/NVcVERKS49GZ6gtEpy0dnuyIiIlLcetrD+Q7wnJk9RvLV6FnAopzVSkREik63gRPmnvlPYAbw4VB8pbtvzWXFRESkuHQbOGGgzIfc/SSSA2mKiIj0Wk+f4TxrZh/ufjcREZH0evoM51TgU2a2CXib5HMcd/epuaqYiIgUl54Gztk5rYWIiBS97ubDGQ78FVADvADc7u4HYlRMRESKS3fPcO4EakmGzTnA/8t5jUREpCh1d0ttSng7DTO7HU3hLCIifdRdD6e1bUG30kREpD+66+F80MzeCssGjAjrbW+pHZXT2omISNHobj6cIbEqIiIixa03g3eKiIj0mQJHRESiUOCIiEgUChwREYlCgSMiIlEocEREJAoFjoiIRKHAERGRKBQ4IiIShQJHRESiyEvgmNloM1tmZr8zs5fN7DQzG2NmK81sQ/hdHvY1M7vZzOrNbJ2ZnZxyngVh/w1mtiAfbRERkZ7JVw/nu8Cv3P39wAeBl4FFwCp3nwysCuuQnIdncvhZCNwCYGZjgKtJTn89Hbi6LaRERGTgiR44ZnY0MAu4HcDd33X3XcA8khO+EX5fEJbnAXd50lPAaDMbT3La65XuvtPdW4CVwJyITRERkV7IRw9nEtAE/MjMnjOz28zsSGCcu78R9tkKjAvLVUBDyvGNoSxTuYiIDED5CJyhwMnALe7+IeBtDt8+A5IT7QCerQua2UIzqzOzuqampmydVkREeiEfgdMINLr76rC+jGQAbQu3ygi/t4ftW4AJKcdXh7JM5Z24+xJ3r3X32srKyqw1REREei564Lj7VqDBzI4PRWcB64EHgLY3zRYAy8PyA8D88LbaDODNcOttBTDbzMrDywKzQ5mIiAxA3U0xnSt/C/zUzIYBrwGfIRl+S83sUuB14OKw70PAuUA98E7YF3ffaWbXAs+E/a5x953xmiAiIr1hycclg0dtba3X1dXluxpFoXnPfhpb9lJdPoKKkWXdlotI4TKzNe5e259z5KuHIwVu+dotXHnvOkpLSmhNJFh84VTmTqvKWC4ioqFtpNea9+znynvXsa81we79B9jXmuCKe9dRv2132vLmPfvzXWURGQAUONJrjS17KS1p/9EpLSlhbcMuOt6hLS0pobFlb8TaichApVtq0mvV5SNoTSTalbUmEnz1vnW8276Y1kSC6vIREWsnIgOVejjSaxUjy1h84VSGl5Ywqmwow0tL+Nj7j+kUNgBnf+AYvTggIoB6ONJHc6dVMbNm7KG30T51++q0+73a9HbkmonIQKXAkT6rGFl2qPfy8hu70+5zwdTxMaskIgOYbqlJv51/0+MZt33+jyfHq4iIDGgKHOm3l7amv21mkeshIgObAkf67YRjj+xVuYgMTgoc6bcHv3RGr8pFZHBS4EivNO/Zz/MNu9qNHjDj2yvb7WPApuvOi1wzERno9Jaa9Fi6cdISiQRb33q33X4O3P9sAxecPCH9iURkUFIPR3ok0/hp/7Y27Zx3PPjC1sg1FJGBToEjPZJp/LQPTShPu//5Jx0bo1oiUkAUONIjmcZP+/RpExl/1LB25eOPGqbbaSLSiZ7hSI+0jZ92RYdnOBUjy3jyqx/j/mcbePCFrZx/0rEKGxFJSzN+Sq9oNk+RwUkzfkp0qeOniYj0hp7hSL/Ub9vNsroG6relH7xTRKSNejjSZ9+4/wXuemrzofX5px3HNfNOymONRGQgUw9H+qR+2+52YQNw15Ob1dMRkYwUONInaxt29apcRESBI30ybcLoXpWLiChwpE9qxo1i/mnHtSubf9px1IwblacaichAp5cGpM+umXcS82dMZG3DLqZNGK2wEZEuKXAGqWx9gbNm3CgFjYj0iAJnEEo3zcDcaVX5rpaIFDk9wxlkMk0zkDqhmohILqiHM0i0Da45teooSktK2MfhkZ9LS0o476Yn2LrnXSaNGc5jV5yVx5qKSLHS4J2DwIxvr+w0K2d3Nl13ngbqFJFDCnrwTjMbAtQBW9z9fDObBNwNVABrgE+7+7tmVgbcBZwCNAOfcPdN4RxXAZcCB4G/c/cV8VsysN3/bEOvwwag9poV7H43gZGcMvqGi/ScR0T6J5/PcL4IvJyyfj1wo7vXAC0kg4TwuyWU3xj2w8ymAJcAJwBzgB+EEJMUX1q6rk/H7XjnAPsPJNh3IMH+AwkuX/q8nvOISL/kJXDMrBo4D7gtrBtwJrAs7HIncEFYnhfWCdvPCvvPA+529/3uvhGoB6bHaUFh+NffbszauQ4mnCd/35y184nI4JOvHs5NwBVw6Ml1BbDL3Q+E9Uag7f5NFdAAELa/GfY/VJ7mmHbMbKGZ1ZlZXVNTUzbbMaAtX/dGVs+3Qz0cEemH6IFjZucD2919TaxruvsSd69199rKyspYl827eVPHZ9w2qqz3j+8+WjO2P9URkUEuHz2cmcBcM9tE8iWBM4HvAqPNrO1fwWpgS1jeAkwACNuPJvnywKHyNMcIcM+ahrTlN108lX/93KkZj9t03Xlpx0n797WNnHHDY9y44uUMR4qIZJbX16LN7AzgK+EttV8A97r73Wb2Q2Cdu//AzC4DTnL3vzKzS4D/7e4Xm9kJwM9IPrd5D7AKmOzuB7u65mB5LbpuYzMX3fpU2m1DS4wxI4ay/e3WTttqxo7g1185E0jOedM2Tto5Nz1Ba8pHpdRgw3fOy0ndRWTgycZr0QNppIErgS+bWT3JZzS3h/LbgYpQ/mVgEYC7vwQsBdYDvwIu6y5sBpMnNuzIuO1AwtOGDUD9jr2HlmvGjeKi2gn8+9rGdmED0OqopyMivZLXwHH3x939/LD8mrtPd/cad/9Td98fyveF9Zqw/bWU4/+vu7/P3Y9394fz1Y6BaNbkvj1vqRk7olPZD59I/7bb8nVb+3QNERmcBlIPR7LoplUb+nRc2+20NnUbm9l/MP1t13lTj+3TNURkcFLgFKG6jc38Z33n78x09x/715fPonnPfp5v2HXoS56Zbs0ZcPnZH+hnTUVkMNHgnUUoU0iMGj6EN/dlfsx1x39t4r7nGttNWzBr8lhufrS+076/+PyMrNVXRAYH9XCKUKbnN12FDcCyNZs7TVswqXIkp9dUtNvv9JoKaidVZDiLiEh66uEUodpJFZxeU8FvUm6r/eExR/Lq9rczHnPE0BKGDCnh3YMHDpWVlpTQ2LKXmy75ECtf2kp909vMOWGcwkZE+kSBU6R+8rkZ1G1s5okNO5g1eSyjjxjGn9z4RMb9//zUCfzk6fZfFG1NJHhxy5t8YsmTh26zTa0+OtdVF5EipcApYrWTDt/6uviW33a579c+fiInTSjnipSpp79+3hSu/eV69rUmDk3YdsW965hZM1bz44hIrylwClRvJker37abp19vybh903XJEQPmTqtiZs3YQ+dtbNmbdnbQxpa9ChwR6TUFTgFavnYLV6b0RBZfmHlytIU/Xs2jr2YedeBbc6e0W68YWdYuTFoTiXbbWxMJqss7fzlURKQ7ekutwDTv2c+V967r9DZZusnRJi76JY/8bgcHEmlOBAwfYnzqI5MOnTf1+zeQDJ/FF05leGkJo8qGMry0hMUXTlXvRkT6RD2cAtPYspd9re0TZF9r4tBtrlsf28D9696gtfVAhjMctvCP3gdk7jGtWr+V/6rfwXX/60QmVY7q0e07EZFM8jpadD4U+mjRExf9MuO2EUONvQd6/t9zQvlw7r/so8y8/tF2ITa8tISq0cP5fdM7h8qOH3ckKy4/o091FpHCV2yjRUs/9SZsABpa9nHfs8mRBdpJJNqFDcAr295m1XoN1ikifafAKSCTu+jd9NVL//1mpxcD3s0wIMEj67dl/foiMngocApI+hls+ufjU9/T6cWASz86Ke2+s6eMy0ENRGSw0EsDg9hx5SM4a0pyioHU799UjCzjiQ3beWXb4aFwjh935KF9RUT6QoEziG1uOTy7Z8fv36y4/AxWrd/KI+u3MXvKOIWNiPSbAkcyOmvKsQoaEckaPcMpEF29Dp1t9dt2s6yugfptu6NdU0SKn3o4BeBPf/CbnJy3bQy1VN+4/wXuemrzofX5px3HNfNOysn1RWRwUQ+nAKzZ/Fafjps4Zjhjj0j/N8UX//i9ncrqt+1uFzYAdz25WT0dEckKBU4BeF/lEb0+ZmrVKB6/4ix2vNN5iJtSg8vP/kCn8rUNu9KeK1O5iEhvKHAKwCc+fFyvjznj+HHUXvOrtNuOHjEkbflXlq1LWz5twuheX19EpCMFTgFYWtfQ/U4dzJo8lh3vpB8yIF35wh+vTrtv9dHDqBk3qtfXFxHpSIEzwNVv282r29/ufscOrn94PaWWftvYIzr3cJ6ob0677463czG+gYgMRgqcAW7FS30bMPOZzW/RmmEsz7pvzOlUNqumIu2+mcpFRHpLgZMH6SY7iyXdq9AAS/7i1F6Vi4j0lgInshsfeYVTv72KTy55ipnXP8oDa7d0uf8Nj7ya1ev/2a3/lbZ8+dotDC89/HE4cfyRGcNJRKQvFDgRfeLW3/LdR+s5kHDeaT3Y5fTQADU5GF3g6dc7v+KcOm11m/ode/PSAxOR4qWRBiKp29jM6o0tncoNo7FlL6d869eHytp6Ft1PEt170/+g8yvOjS17KS0pYR+HA6e0pOTQtNUiItkQvYdjZhPM7DEzW29mL5nZF0P5GDNbaWYbwu/yUG5mdrOZ1ZvZOjM7OeVcC8L+G8xsQey29MaKDJOXvXswwbzvt7/Nlctx0372+ZmdyqrLR3SahK01kaC6fETO6iEig08+bqkdAP7e3acAM4DLzGwKsAhY5e6TgVVhHeAcYHL4WQjcAsmAAq4GTgWmA1e3hdRA9Nbe9K8XH0ykf5UsF6Hz68tnpS2vGFnWaRK2xRdOVe9GRLIq+i01d38DeCMs7zazl4EqYB5wRtjtTuBx4MpQfpe7O/CUmY02s/Fh35XuvhPAzFYCc4CfR2tMDzXv2c/SNY05v85xY4azeee+tNvmn3Zcl1/gnDutqtMkbCIi2ZTXlwbMbCLwIWA1MC6EEcBWoG0+4yog9av2jaEsU3m66yw0szozq2tqaspa/Xtq4V11eIbvxGTD0BLj9vmnZAwbgAfXdh94FSPL+OCE0QobEcmJvAWOmY0E7gW+5O7thkMOvZms/RPt7kvcvdbdaysrK7N12h5Z8h+/Z83m3A5+OaJ0CC3vtDIsw8gCADv3JjJvFBGJIC+BY2alJMPmp+5+XyjeFm6VEX5vD+VbgAkph1eHskzlA0bznv18++Hf5fw6rYkE0yaM5t0c9qJERPorH2+pGXA78LK7/3PKpgeAtjfNFgDLU8rnh7fVZgBvhltvK4DZZlYeXhaYHcoGjCd/n358smwqG2osvnAqq9b3bQgcEZFY8vE9nJnAp4EXzGxtKPsqcB2w1MwuBV4HLg7bHgLOBeqBd4DPALj7TjO7Fngm7HdN2wsEA8V1D6/PuG0IkH4s59757aKzqBhZxrRvpp+KoM0xR+orVyKSX/l4S+0/gUxPG85Ks78Dl2U41x3AHdmrXfbUbWymcVfmb+pnI2wg+aC/fttudu3t+oxPf/3sLF1RRKRvNLRNjnzz3zP3bk57bzkZZn7uk+5m5Mz0/RsRkZgUODlQv203L/z3Wxm3//mpf0CamZ/77GdPv97ldk0RLSIDgQInB66674Uut1/bRe+nN26ffwp1G5t5dvObXe6nKaJFZCBQ4GRZ/bbdPPN650E6U23b826/r1MCnDXlWG594rUu9+tuhAERkVj06lKWxbp9VRL+VGh5O/2LCRPHDOe2BdMVNiIyYKiHk2VfWbYuynXaphmY+b70U0DP++B7FDYiMqAocLLoH+57Ptq12qYZcEv/nzBTuYhIvuhfpSz616dzPyJ0R7Mmj+1VuYhIvihwsmTaPz4U7VoTjh52aLl2UgWn17S/rXZ6TQW1k9LfahMRyRe9NJAlu/bFGznzR5+d0W79J5+bQd3GZp7YsINZk8cqbERkQFLgZMGf/uA3Ua+X7mWA2knq1YjIwKZbalnwzObMowpkWxdT3oiIDGgKnALzsffrZQARKUwKnH6auOiXUa83+8T3RL2eiEi2KHAKjMZFE5FCpcDph1z0brp6RjPvg+M1eoCIFCwFzgBTNbqMoRlS5/TJlXErIyKSRQqcPsrVs5tvzj2RX30p/YRpup0mIoVMgTOAGMkpB2rGjWL+ace126ZpBkSk0OmLn30w67pf5+S8Y488PGTNNfNOYv6Miaxt2MW0CaMVNiJS8BQ4fbB5V/o5aPrrz6ZXt1uvGTdKQSMiRUO31AaQy8/+QL6rICKSMwqcXsrVywJr/uFPcnJeEZGBQoEzAEyrOoqKkWX5roaISE4pcHohV72b+//29JycV0RkIFHg5MHHTzyGI4eV8PETj2HTdefluzoiIlHoLbUeylbvRgEjIoOVejgRKWxEZDBTDyeCb82dwqc+Minf1RARySsFTg/053aaejUiIkkFf0vNzOaY2StmVm9mi/Jdn1QKGxGRwwo6cMxsCPB94BxgCvBJM5uSzWv0tXejsBERaa+gAweYDtS7+2vu/i5wNzAvz3USEZE0Cj1wqoCGlPXGUNaOmS00szozq2tqaopWOREROazQA6dH3H2Ju9e6e21lZe5nzfzoe8tzfg0RkUJT6IGzBZiQsl4dyrKmL89ivvtnp2SzCiIiRaHQA+cZYLKZTdh0eXQAAAd4SURBVDKzYcAlwAPZvkhvQufmS6ZpIE4RkTQK+ns47n7AzP4GWAEMAe5w95dyca3U0Knb2Mzdz2zmv3ftZV9rgrEjyzjz/cfwsROOVdiIiGRQ0IED4O4PAQ/FvGbtpApqJ1XEvKSISMEr9FtqIiJSIBQ4IiIShQJHRESiUOCIiEgUChwREYlCgSMiIlEocEREJAoFjoiIRKHAERGRKBQ4IiIShbl7vusQlZk1Aa/38fCxwI4sViffiq09UHxtKrb2QPG1abC05w/cvV/zuwy6wOkPM6tz99p81yNbiq09UHxtKrb2QPG1Se3pOd1SExGRKBQ4IiIShQKnd5bkuwJZVmztgeJrU7G1B4qvTWpPD+kZjoiIRKEejoiIRKHA6QEzm2Nmr5hZvZktynd9OjKzO8xsu5m9mFI2xsxWmtmG8Ls8lJuZ3Rzass7MTk45ZkHYf4OZLUgpP8XMXgjH3GxmluP2TDCzx8xsvZm9ZGZfLOQ2mdlwM3vazJ4P7flmKJ9kZqtDHe4xs2GhvCys14ftE1POdVUof8XMzk4pj/4ZNbMhZvacmT1YJO3ZFD4Ta82sLpQV5GcuXG+0mS0zs9+Z2ctmdlre2+Pu+uniBxgC/B54LzAMeB6Yku96dajjLOBk4MWUssXAorC8CLg+LJ8LPAwYMANYHcrHAK+F3+VhuTxsezrsa+HYc3LcnvHAyWF5FPAqMKVQ2xSuMTIslwKrw7WXApeE8h8Cfx2WvwD8MCxfAtwTlqeEz18ZMCl8Lofk6zMKfBn4GfBgWC/09mwCxnYoK8jPXLjencDnwvIwYHS+25PT/4DF8AOcBqxIWb8KuCrf9UpTz4m0D5xXgPFheTzwSli+Ffhkx/2ATwK3ppTfGsrGA79LKW+3X6S2LQc+VgxtAo4AngVOJfnluqEdP2fACuC0sDw07GcdP3tt++XjMwpUA6uAM4EHQ/0Ktj3hOpvoHDgF+ZkDjgY2Ep7TD5T26JZa96qAhpT1xlA20I1z9zfC8lZgXFjO1J6uyhvTlEcRbr98iGSvoGDbFG4/rQW2AytJ/gW/y90PpKnDoXqH7W8CFfS+nbl0E3AFkAjrFRR2ewAceMTM1pjZwlBWqJ+5SUAT8KNw2/M2MzuSPLdHgTMIePJPkIJ7HdHMRgL3Al9y97dStxVam9z9oLtPI9kzmA68P89V6jMzOx/Y7u5r8l2XLPuou58MnANcZmazUjcW2GduKMnb7Le4+4eAt0neQjskH+1R4HRvCzAhZb06lA1028xsPED4vT2UZ2pPV+XVacpzysxKSYbNT939vlBc0G0CcPddwGMkbxuNNrOhaepwqN5h+9FAM71vZ67MBOaa2SbgbpK31b5L4bYHAHffEn5vB/6N5B8GhfqZawQa3X11WF9GMoDy255c3xct9B+Sfym8RrKL2vYA84R81ytNPSfS/hnODbR/OLg4LJ9H+4eDT4fyMSTv+ZaHn43AmLCt48PBc3PcFgPuAm7qUF6QbQIqgdFheQTwG+B84Be0f8j+hbB8Ge0fsi8NyyfQ/iH7ayQfsOftMwqcweGXBgq2PcCRwKiU5d8Ccwr1Mxeu9xvg+LD8j6EteW1Pzj+QxfBD8g2OV0ned/9avuuTpn4/B94AWkn+ZXMpyXvkq4ANwK9TPiQGfD+05QWgNuU8nwXqw89nUsprgRfDMd+jw4PIHLTnoyS7+uuAteHn3EJtEzAVeC6050XgG6H8veH/tPUk/7EuC+XDw3p92P7elHN9LdT5FVLeCsrXZ5T2gVOw7Ql1fz78vNR2zUL9zIXrTQPqwufufpKBkdf2aKQBERGJQs9wREQkCgWOiIhEocAREZEoFDgiIhKFAkdERKIY2v0uItKRmR0k+froUJLfTfi0J7/UKSIZqIcj0jd73X2au58I7CT55UYR6YICR6T/niRl4EIz+z9m9kyYV6Rt7pvrzOyylH3+0cy+0sX+E8McJv9iyTl0HjGzEWHb42ZWG5bHhiFm2gYIvSHlXJ+P9T+ASE8ocET6wcyGAGcBD4T12cBkkuNwTQNOCYNA3gNcnHLoxcA9XexPKP++u58A7AIu7KY6lwJvuvuHgQ8Df2lmk/rfSpHs0DMckb4ZEaYbqAJeJjnlAMDs8PNcWB8JTHb3283sGDN7D8mx1VrcvcGSs5l22h/YDGx097WhfA3J8fK6MhuYamYXhfWjw7k29r2ZItmjwBHpm73uPs3MjiA5cdhlwM0kx6T6jrvfmuaYXwAXAceS7PGQaf8wD9D+lKKDJAf+BDjA4bsTw1MPA/7W3Vf0sU0iOaVbaiL94O7vAH8H/H0Yen8F8Nkwlw9mVmVmx4Td7yE5WvJFJMOHbvbPZBNwSli+KKV8BfDXYWoHzOwPw6RbIgOCejgi/eTuz5nZOpJT9P7EzD4APGlmAHuAT5GcsOwlMxsFbPEw66K7P5Jh/4NdXPKfgKVhVspfppTfRvK227OWPFkTcEEWmyrSLxotWkREotAtNRERiUKBIyIiUShwREQkCgWOiIhEocAREZEoFDgiIhKFAkdERKJQ4IiISBT/A7qPl5Fbx1cYAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "AZ7BvENEqTzA", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "outputId": "20206fa7-ea45-4262-fb40-fac027d054a6" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 50.000000\n", + "1 50.000000\n", + "2 49.000000\n", + "3 42.612245\n", + "4 8.893617\n", + "Name: Revenue_per_Age, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Revenue_per_Age
050.000000
150.000000
249.000000
342.612245
48.893617
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ], + "source": [ + "sales['Revenue_per_Age'] = sales['Revenue'] / sales['Customer_Age']\n", + "\n", + "sales['Revenue_per_Age'].head()" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sales.plot(kind='scatter', x='Revenue', y='Profit', figsize=(6,6))" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'Profit')" + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "UgpKOBD2qTzA", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 309 + }, + "outputId": "13cf562c-e8c4-4f3d-f3aa-a9360f22e1d2" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAH+CAYAAAARRv78AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLaklEQVR4nO39fZiU5Xk//p8zu+yuILs8KQsGBSORqAhRA2JMbZr9CcY0EhNDbL6i1Jr0wdQWtQkeCqa2JSbVaKLV2ibR/FqjMV9rU2NNCIm1CUQjYIzxodGoGGVBRFhEHnZn7u8fuzP7CMLuzM4MvF7HsZ9l77lm9ro/PWbAd87zvFJJkiQBAAAAAF2kS70BAAAAAMqP0AgAAACAXoRGAAAAAPQiNAIAAACgF6ERAAAAAL0IjQAAAADoRWgEAAAAQC9CIwAAAAB6ERoBAAAA0IvQCAAAAIBeyiI0uvnmm2PixIlRV1cXM2fOjEcffXSP6++5556YMmVK1NXVxdSpU+OBBx7o9vgFF1wQqVSq29ecOXOKeQsAAAAA+5WSh0Z33313LFy4MJYsWRKrV6+OadOmxezZs2PDhg19rl+xYkWce+65ceGFF8aaNWti7ty5MXfu3HjyySe7rZszZ06sW7cu//Xtb397MG4HAAAAYL+QSpIkKeUGZs6cGe9973vjpptuioiIbDYbEyZMiM9+9rPx+c9/vtf6efPmxbZt2+L+++/PXzv55JNj+vTpceutt0ZEe6XR5s2b47777uvXnrLZbLz66qsxfPjwSKVS/XoNAAAAgHKTJEls3bo1xo8fH+n0nmuJqgdpT33atWtXrFq1KhYtWpS/lk6no6mpKVauXNnnc1auXBkLFy7sdm327Nm9AqKHHnooDj300Bg5cmT8wR/8Qfzd3/1djB49us/X3LlzZ+zcuTP/8yuvvBLHHHNMP+8KAAAAoLy9/PLL8Y53vGOPa0oaGm3cuDEymUyMHTu22/WxY8fGM8880+dzmpub+1zf3Nyc/3nOnDlx9tlnx6RJk+L555+PK664Is4444xYuXJlVFVV9XrNpUuXxhe+8IVe119++eWor6/vz60BAAAAlJ2WlpaYMGFCDB8+/G3XljQ0KpZPfvKT+T9PnTo1jj/++HjnO98ZDz30UHzwgx/stX7RokXdqpdy/x9YX18vNAIAAAD2O3szjqekg7DHjBkTVVVVsX79+m7X169fH42NjX0+p7GxcZ/WR0QceeSRMWbMmHjuuef6fLy2tjYfEAmKAAAAAEocGtXU1MSJJ54Yy5cvz1/LZrOxfPnymDVrVp/PmTVrVrf1ERHLli3b7fqIiN/97nfx+uuvx7hx4wqzcQAAAID9XElDo4iIhQsXxr/8y7/EHXfcEU8//XT82Z/9WWzbti0WLFgQERHz58/vNij7kksuiQcffDCuu+66eOaZZ+Lqq6+Oxx57LC6++OKIiHjzzTfj8ssvj5///Ofx4osvxvLly+Oss86Ko446KmbPnl2SewQAAACoNCWfaTRv3rx47bXXYvHixdHc3BzTp0+PBx98MD/seu3atd2OgDvllFPizjvvjCuvvDKuuOKKmDx5ctx3331x3HHHRUREVVVVPPHEE3HHHXfE5s2bY/z48XH66afHNddcE7W1tSW5RwAAAIBKk0qSJCn1JspNS0tLNDQ0xJYtW8w3AgAAAPYb+5J5lLw9DQAAAIDyIzQCAAAAoBehEQAAAAC9CI0AAAAA6EVoBAAAAEAvQiMAAAAAehEaAQAAANCL0AgAAACAXoRGAAAAAPQiNAIAAACgF6ERAAAAAL0IjQAAAADoRWgEUGHueezl+Nx3n4hMNin1VgAAgP1Ydak3AMC+ufy7T0RExPsmj4mPTBtf4t0AAAD7K5VGABVq81u7Sr0FAABgPyY0AqhQqVJvAAAA2K8JjQAqVUpsBAAAFI/QCAAAAIBehEYAFaTriWnqjAAAgGISGgFUkF1t2fyfdacBAADFJDQCqCDdQiO1RgAAQBEJjQAqyM5MJv/nbJLsYSUAAMDACI0AKkjXSqO2THYPKwEAAAZGaARQQVozSZ9/BgAAKDShEUAF6VpptEulEQAAUERCI4AK0jU0ahUaAQAARSQ0Aqggu7oMwhYaAQAAxSQ0Aqggu9rMNAIAAAaH0AiggnSdY9S1VQ0AAKDQhEYAFcRMIwAAYLAIjQAqiNAIAAAYLEIjgArSNSgy0wgAACgmoRFABelaabRLpREAAFBEQiOACrKza6WRQdgAAEARCY0AKoiZRgAAwGARGgFUkO6hkZlGAABA8QiNACpI1+oiM40AAIBiEhoBVBDtaQAAwGARGgFUkK7VRUIjAACgmIRGABWkW6VRm5lGAABA8QiNACqISiMAAGCwCI0AKkjXSiODsAEAgGISGgFUEIOwAQCAwSI0Aqgg3UMjM40AAIDiERoBVJBWM40AAIBBIjQCqCAGYQMAAINFaARQQXZqTwMAAAaJ0AiggnSdaZTJJpHJCo4AAIDiEBoBVJCuoVGEFjUAAKB4hEYAFaRnSCQ0AgAAikVoBFBBeodG2tMAAIDiEBoBVJC2HjOMVBoBAADFIjQCqCBJj8KinjOOAAAACkVoBFBBep6WptIIAAAoFqERQAXJJj1DIzONAACA4hAaAVSQrPY0AABgkAiNACpIz0qjTM8hRwAAAAUiNAKoIL1Co56lRwAAAAUiNAKoINkeIVHPEAkAAKBQhEYAFSSXGVWnUxGh0ggAACgeoRFABclVFg2pav/4FhoBAADFIjQCqCC50Ki6SqURAABQXEIjgAqSzbZ/r8lVGplpBAAAFInQCKCC9Kw06jkYGwAAoFCERgAVJGOmEQAAMEiERgAVIkmSyHWj5UKjrPY0AACgSIRGABWiaz40pKM9rU2lEQAAUCRCI4AK0XXotfY0AACg2IRGABWiaytatfY0AACgyIRGABWiaz5U09GelsmWaDMAAMB+T2gEUCG6tqJVpzsqjbSnAQAARSI0AqgQ3dvTOiqNtKcBAABFIjQCqBDZLq1oNR0zjZyeBgAAFIvQCKBCZPs4PU17GgAAUCxCI4AK0Wd7mtAIAAAoEqERQIXoOr+oOt0eGmXNNAIAAIpEaARQIXL5UFU6Fem0SiMAAKC4yiI0uvnmm2PixIlRV1cXM2fOjEcffXSP6++5556YMmVK1NXVxdSpU+OBBx7Y7do//dM/jVQqFTfccEOBdw0wuHJVRelURFXK6WkAAEBxlTw0uvvuu2PhwoWxZMmSWL16dUybNi1mz54dGzZs6HP9ihUr4txzz40LL7ww1qxZE3Pnzo25c+fGk08+2Wvtf/zHf8TPf/7zGD9+fLFvA6DoclVF6VQqqnKVRhmhEQAAUBwlD42uv/76uOiii2LBggVxzDHHxK233hpDhw6Nb3zjG32uv/HGG2POnDlx+eWXx7vf/e645ppr4oQTToibbrqp27pXXnklPvvZz8a///u/x5AhQwbjVgCKKldU1C00UmkEAAAUSUlDo127dsWqVauiqakpfy2dTkdTU1OsXLmyz+esXLmy2/qIiNmzZ3dbn81m47zzzovLL788jj322Lfdx86dO6OlpaXbF0C56daelhuEbaYRAABQJCUNjTZu3BiZTCbGjh3b7frYsWOjubm5z+c0Nze/7fprr702qqur4y//8i/3ah9Lly6NhoaG/NeECRP28U4Aii/fnpZORdpMIwAAoMhK3p5WaKtWrYobb7wxbr/99kh1/EfV21m0aFFs2bIl//Xyyy8XeZcA+y7bV3tatoQbAgAA9mslDY3GjBkTVVVVsX79+m7X169fH42NjX0+p7GxcY/r//d//zc2bNgQhx9+eFRXV0d1dXW89NJLcemll8bEiRP7fM3a2tqor6/v9gVQbvpsT1NpBAAAFElJQ6Oampo48cQTY/ny5flr2Ww2li9fHrNmzerzObNmzeq2PiJi2bJl+fXnnXdePPHEE/H444/nv8aPHx+XX355/OAHPyjezQAUWS4gquranmamEQAAUCTVpd7AwoUL4/zzz4+TTjopZsyYETfccENs27YtFixYEBER8+fPj8MOOyyWLl0aERGXXHJJnHbaaXHdddfFmWeeGXfddVc89thjcdttt0VExOjRo2P06NHdfseQIUOisbExjj766MG9OYACyna0oqVSqajqiPyFRgAAQLGUPDSaN29evPbaa7F48eJobm6O6dOnx4MPPpgfdr127dpIpzsLok455ZS4884748orr4wrrrgiJk+eHPfdd18cd9xxpboFgEGRrzRKpaKq43NRaAQAABRLyUOjiIiLL744Lr744j4fe+ihh3pdO+ecc+Kcc87Z69d/8cUX+7kzgPLRbaaR09MAAIAi2+9OTwPYX+WKirq2p2VVGgEAAEUiNAKoELlWtKp0KtJpg7ABAIDiEhoBVIhEexoAADCIhEYAFSJXVZROpaJKpREAAFBkQiOACpHLh9JpoREAAFB8QiOACtGtPa0jNMpqTwMAAIpEaARQITJJZ3taOqXSCAAAKC6hEUCFyLendZtpVMINAQAA+zWhEUCFyLWipdOdp6dpTwMAAIpFaARQIbIdpUZVqVSkOyqN2rSnAQAARSI0AqgQuXwolUpFdW4QttAIAAAoEqERQIXIdjk9LZ02CBsAACguoRFAhci3p6VT+ZlGGTONAACAIhEaAVSIru1pVR2f3trTAACAYhEaAVSIXFVRVSoVaZVGAABAkQmNACpEkptplG5vUYsw0wgAACgeoRFAhegchJ0yCBsAACg6oRFAhchk27+nU6moFhoBAABFJjQCqBCdlUaRPz0ta6YRAABQJEIjgAqRm2lUldaeBgAAFJ/QCKBC5NrTUqlUfhC2zAgAACgWoRFAhejanpZOqTQCAACKS2gEUCGyXdrTqrSnAQAARSY0AqgQ2Y6AKOX0NAAAYBAIjQAqRC4fSqdSne1pTk8DAACKRGgEUCHy7Wmp6ByErdIIAAAoEqERQIXoHISdiqqOT2+VRgAAQLEIjQAqRL49LZ1yehoAAFB0QiOACpELiNJd2tOERgAAQLEIjQAqRNKlPU2lEQAAUGxCI4AK0bU9rbqqYxC2mUYAAECRCI0AKkS39jSVRgAAQJEJjQAqRLf2tHSu0qjzOgAAQCEJjQAqRKZLaJSrNIrobFsDAAAoJKERQIXIzzTqUmkUEdGWzZZoRwAAwP5MaARQIXJDr6vSEVVdQiOZEQAAUAxCI4AKkc12tqdVdwmNMmYaAQAARSA0AqgQufa0VCoV6S4zjZygBgAAFIPQCKBC7L49TWgEAAAUntAIoEJ0bU/rkhlpTwMAAIpCaARQIbq2p6W6BEfa0wAAgGIQGgFUiFxFUVXHPKNci5rQCAAAKAahEUCFSJJce1p0fBcaAQAAxSM0AqgQ2Wz793RHalTd8T1rphEAAFAEQiOACpFJOgdhR3SGRyqNAACAYhAaAVSIbI/2tCqVRgAAQBEJjQAqRC4byoVFuYHYbSqNAACAIhAaAVSIXBtaSnsaAAAwCIRGABWiV3taR3iUG5ANAABQSEIjgArRqz0tV2lkphEAAFAEQiOACtGzPa1KexoAAFBEQiOACpFrT6vqERo5PQ0AACgGoRFAheg50yj3XaURAABQDEIjgAqRy4bS2tMAAIBBIDQCqBD5SqOOsCgXHgmNAACAYhAaAVSIXDiUa0tzehoAAFBMQiOACpHLhnJhUXVuELZKIwAAoAiERgAVIteelupoS0ubaQQAABSR0AigQvRqT+sIj7La0wAAgCIQGgFUiHx7Wo9KozaVRgAAQBEIjQAqRKZHe1qV09MAAIAiEhoBVIhcG1rP09O0pwEAAMUgNAKoENkep6dV5Qdhl2pHAADA/kxoBFAhsvlB2N1Do6z2NAAAoAiERgAVIt+e1hEW5cKjjPY0AACgCIRGABUiV1DUOdOo/bvT0wAAgGIQGgFUCO1pAADAYBIaAVSIztPTerSnCY0AAIAiEBoBVIjO0Kj953ylkZlGAABAEQiNACpEfqZRunt7mkojAACgGIRGABWiZ3taldPTAACAIhIaAVSI3bWnZTJCIwAAoPCERgAVIptt/54fhJ1WaQQAABSP0AigQiS7aU/LmmkEAAAUgdAIoELksqFUz/Y0lUYAAEARCI0AKkSvQdj509NKtiUAAGA/JjQCqBC5SqN0xyd3LjTKqjQCAACKoCxCo5tvvjkmTpwYdXV1MXPmzHj00Uf3uP6ee+6JKVOmRF1dXUydOjUeeOCBbo9fffXVMWXKlBg2bFiMHDkympqa4pFHHinmLQAUXc+ZRrnvGTONAACAIih5aHT33XfHwoULY8mSJbF69eqYNm1azJ49OzZs2NDn+hUrVsS5554bF154YaxZsybmzp0bc+fOjSeffDK/5l3velfcdNNN8atf/Sp++tOfxsSJE+P000+P1157bbBuC6DgOtvT2n+u6vgEFxoBAADFUPLQ6Prrr4+LLrooFixYEMccc0zceuutMXTo0PjGN77R5/obb7wx5syZE5dffnm8+93vjmuuuSZOOOGEuOmmm/Jr/uiP/iiampriyCOPjGOPPTauv/76aGlpiSeeeGKwbgug4DoHYXc/PU1oBAAAFENJQ6Ndu3bFqlWroqmpKX8tnU5HU1NTrFy5ss/nrFy5stv6iIjZs2fvdv2uXbvitttui4aGhpg2bVqfa3bu3BktLS3dvgDKTTbboz3N6WkAAEARlTQ02rhxY2QymRg7dmy362PHjo3m5uY+n9Pc3LxX6++///44+OCDo66uLr7yla/EsmXLYsyYMX2+5tKlS6OhoSH/NWHChAHcFUBx9GpP6wiPsiqNAACAIih5e1qxfOADH4jHH388VqxYEXPmzIlPfOITu52TtGjRotiyZUv+6+WXXx7k3QK8vfzpabn2tCrtaQAAQPGUNDQaM2ZMVFVVxfr167tdX79+fTQ2Nvb5nMbGxr1aP2zYsDjqqKPi5JNPjq9//etRXV0dX//61/t8zdra2qivr+/2BVBu8pVG6R4zjbSnAQAARVDS0KimpiZOPPHEWL58ef5aNpuN5cuXx6xZs/p8zqxZs7qtj4hYtmzZbtd3fd2dO3cOfNMAJZLkK43av1elVRoBAADFU13qDSxcuDDOP//8OOmkk2LGjBlxww03xLZt22LBggURETF//vw47LDDYunSpRERcckll8Rpp50W1113XZx55plx1113xWOPPRa33XZbRERs27Yt/v7v/z4+8pGPxLhx42Ljxo1x8803xyuvvBLnnHNOye4TYKA6Zxqlun0XGgEAAMVQ8tBo3rx58dprr8XixYujubk5pk+fHg8++GB+2PXatWsjne4siDrllFPizjvvjCuvvDKuuOKKmDx5ctx3331x3HHHRUREVVVVPPPMM3HHHXfExo0bY/To0fHe9743/vd//zeOPfbYktwjQCHkQqNUj0qjrPY0AACgCEoeGkVEXHzxxXHxxRf3+dhDDz3U69o555yz26qhurq6uPfeewu5PYCy0HMQdlp7GgAAUET77elpAPuTpEs1US40qs6HRiXZEgAAsJ8TGgFUgK7FRPlB2CntaQAAQPEIjQAqQNdgKNWjPa1NexoAAFAEQiOACpDt1p7W/r2q4xM8KzQCAACKQGgEUAGyXeYW5QdhpwzCBgAAikdoBFABulYaVXWUGuW+Z8w0AgAAikBoBFABus80av+eH4St0ggAACgCoRFABeh+eppKIwAAoPiERgAVIOk2CLtHaKTSCAAAKAKhEUAF6F5p1PFdaAQAABSR0AigAnSfadRRaeT0NAAAoIiERgAVIBca5aqMIjrb07JmGgEAAEUgNAKoALlcKDfPqOufVRoBAADFIDQCqACdlUadoVF1Va7SqCRbAgAA9nNCI4AKkAuGumRGKo0AAICiEhoBVIBstnelUZXT0wAAgCISGgFUgD4HYas0AgAAikhoBFABcrlQuktqlO74BM84PQ0AACgCoRFABehrEHauPS2r0ggAACgCoRFABUj21J6m0ggAACgCoRFABci3pxmEDQAADBKhEUAFyLWnpYRGAADAIBEaAVSAbLb9e9f2tLTT0wAAgCISGgFUgD0OwjbTCAAAKIJ+hUa//e1vC70PAPYgyc806rymPQ0AACimfoVGRx11VHzgAx+If/u3f4sdO3YUek8A9NDXTKNc1VE26TxdDQAAoFD6FRqtXr06jj/++Fi4cGE0NjbGZz7zmXj00UcLvTcAOuTb07p8ald3KTtSbAQAABRav0Kj6dOnx4033hivvvpqfOMb34h169bFqaeeGscdd1xcf/318dprrxV6nwAHtL5mGqW7hEZtuUnZAAAABTKgQdjV1dVx9tlnxz333BPXXnttPPfcc3HZZZfFhAkTYv78+bFu3bpC7RPggJarJKrqYxB2ROfpagAAAIUyoNDoscceiz//8z+PcePGxfXXXx+XXXZZPP/887Fs2bJ49dVX46yzzirUPgEOaNlsbqZR57WuAVLGTCMAAKDAqvvzpOuvvz6++c1vxrPPPhsf+tCH4lvf+lZ86EMfinTHsI1JkybF7bffHhMnTizkXgEOWNn86Wld29M6H3eCGgAAUGj9Co1uueWW+OM//uO44IILYty4cX2uOfTQQ+PrX//6gDYHQLukj5lGXSuNskIjAACgwPoVGi1btiwOP/zwfGVRTpIk8fLLL8fhhx8eNTU1cf755xdkkwAHulwm1K09La09DQAAKJ5+zTR65zvfGRs3bux1fdOmTTFp0qQBbwqA7vo6PS2VSkUuN9KeBgAAFFq/QqNkN/+L9ptvvhl1dXUD2hAAveVDox6f2rlqI6ERAABQaPvUnrZw4cKIaP9ftxcvXhxDhw7NP5bJZOKRRx6J6dOnF3SDAEQkfQzC7vw5ERoBAAAFt0+h0Zo1ayKivdLoV7/6VdTU1OQfq6mpiWnTpsVll11W2B0CkK80SvUIjXKVRlkzjQAAgALbp9DoJz/5SURELFiwIG688caor68vyqYA6C6brzTqfj13gppKIwAAoND6dXraN7/5zULvA4A9yIVCvdrTVBoBAABFsteh0dlnnx2333571NfXx9lnn73Htffee++ANwZApyR/elr369UdF9pUGgEAAAW216FRQ0NDfpZGQ0ND0TYEQG/Z3QzCzs00assIjQAAgMLa69Coa0ua9jSAwZVN+m5PG1KVjgiVRgAAQOGl+/Ok7du3x1tvvZX/+aWXXoobbrghfvjDHxZsYwB0yodGPT61q6tylUbZwd4SAACwn+tXaHTWWWfFt771rYiI2Lx5c8yYMSOuu+66OOuss+KWW24p6AYBiEh2056Wm2nUqj0NAAAosH6FRqtXr473v//9ERHx3e9+NxobG+Oll16Kb33rW/HVr361oBsEoLPSKLXb9jSVRgAAQGH1KzR66623Yvjw4RER8cMf/jDOPvvsSKfTcfLJJ8dLL71U0A0C0HUQdvfrne1pKo0AAIDC6ldodNRRR8V9990XL7/8cvzgBz+I008/PSIiNmzYEPX19QXdIAC7H4Rd3THkqNVMIwAAoMD6FRotXrw4Lrvsspg4cWLMnDkzZs2aFRHtVUfvec97CrpBACKSfGjU/fqQXKWR09MAAIACq+7Pkz7+8Y/HqaeeGuvWrYtp06blr3/wgx+Mj370owXbHADtcplQz5lGKo0AAIBi6VdoFBHR2NgYjY2N3a7NmDFjwBsCoLfsbiqNzDQCAACKpV+h0bZt2+KLX/xiLF++PDZs2BDZHqf2/Pa3vy3I5gBol832PdPI6WkAAECx9Cs0+pM/+ZP4n//5nzjvvPNi3LhxvdolACis/Olp6Z7tae0/t6o0AgAACqxfodF///d/x/e///143/veV+j9ANCH3Z2elqs0yhiEDQAAFFi/Tk8bOXJkjBo1qtB7AWA38pVGu5lpZBA2AABQaP0Kja655ppYvHhxvPXWW4XeDwB9SHZTaVTVkSK1qTQCAAAKrF/tadddd108//zzMXbs2Jg4cWIMGTKk2+OrV68uyOYAaJdrT+s5Qm5IumMQtkojAACgwPoVGs2dO7fA2wBgTzrb03oMwq4yCBsAACiOfoVGS5YsKfQ+ANiDzkHY3a/nBmG3ZVUaAQAAhdWvmUYREZs3b45//dd/jUWLFsWmTZsior0t7ZVXXinY5gBol+yu0ig300ilEQAAUGD9qjR64oknoqmpKRoaGuLFF1+Miy66KEaNGhX33ntvrF27Nr71rW8Vep8AB7RsNjfTqGd7Wnv2rz0NAAAotH5VGi1cuDAuuOCC+M1vfhN1dXX56x/60Ifi4YcfLtjmAGjXOdOo+/UhVbnT07SnAQAAhdWv0OgXv/hFfOYzn+l1/bDDDovm5uYBbwqA7jL5mUY929NUGgEAAMXRr9CotrY2Wlpael3/v//7vzjkkEMGvCkAukt2Mwg7d3paW0alEQAAUFj9Co0+8pGPxN/+7d9Ga2trRLTP2Fi7dm187nOfi4997GMF3SAAXU5P65EadbanqTQCAAAKq1+h0XXXXRdvvvlmHHLIIbF9+/Y47bTT4qijjorhw4fH3//93xd6jwAHvOxuT0/LtaepNAIAAAqrX6enNTQ0xLJly+JnP/tZ/PKXv4w333wzTjjhhGhqair0/gCILpVGuxuEbaYRAABQYPscGmWz2bj99tvj3nvvjRdffDFSqVRMmjQpGhsbI0mSXsdBAzBwye4qjaraK420pwEAAIW2T+1pSZLERz7ykfiTP/mTeOWVV2Lq1Klx7LHHxksvvRQXXHBBfPSjHy3WPgEOaNmOUKhnMF+dzs000p4GAAAU1j5VGt1+++3x8MMPx/Lly+MDH/hAt8d+/OMfx9y5c+Nb3/pWzJ8/v6CbBDjQdc406n59SK7SSHsaAABQYPtUafTtb387rrjiil6BUUTEH/zBH8TnP//5+Pd///eCbQ6Adp0zjXq2p7X/bBA2AABQaPsUGj3xxBMxZ86c3T5+xhlnxC9/+csBbwqA7pLdDMLOnZ5mphEAAFBo+xQabdq0KcaOHbvbx8eOHRtvvPHGgDcFQHe5TKjnTKPO09NUGgEAAIW1T6FRJpOJ6urdj0GqqqqKtra2AW8KgO52357W/jHeaqYRAABQYPs0CDtJkrjggguitra2z8d37txZkE0B0F12N+1pQ5yeBgAAFMk+hUbnn3/+265xchpA4eUyoXSP1KgqFxqpNAIAAApsn0Kjb37zm8XaBwB78LbtaSqNAACAAtunmUYAlEZuEHav9rQqlUYAAEBxlEVodPPNN8fEiROjrq4uZs6cGY8++uge199zzz0xZcqUqKuri6lTp8YDDzyQf6y1tTU+97nPxdSpU2PYsGExfvz4mD9/frz66qvFvg2Aokl2V2mUNggbAAAojpKHRnfffXcsXLgwlixZEqtXr45p06bF7NmzY8OGDX2uX7FiRZx77rlx4YUXxpo1a2Lu3Lkxd+7cePLJJyMi4q233orVq1fHVVddFatXr4577703nn322fjIRz4ymLcFUFC59rTU7iqNtKcBAAAFlkpy//N1icycOTPe+973xk033RQREdlsNiZMmBCf/exn4/Of/3yv9fPmzYtt27bF/fffn7928sknx/Tp0+PWW2/t83f84he/iBkzZsRLL70Uhx9++NvuqaWlJRoaGmLLli1RX1/fzzsDKJy//Paa+N4vX43FHz4m/vjUSfnrL2zcFh/4x4fi4NrqePILs0u4QwAAoBLsS+ZR0kqjXbt2xapVq6KpqSl/LZ1OR1NTU6xcubLP56xcubLb+oiI2bNn73Z9RMSWLVsilUrFiBEj+nx8586d0dLS0u0LoJx0DsLufr2640JrRqURAABQWCUNjTZu3BiZTCbGjh3b7frYsWOjubm5z+c0Nzfv0/odO3bE5z73uTj33HN3m6AtXbo0Ghoa8l8TJkzox90AFE+uJjTdIzUa0nF6WiZrphEAAFBYJZ9pVEytra3xiU98IpIkiVtuuWW36xYtWhRbtmzJf7388suDuEuAt9c506jHIOz8TKMkStxtDAAA7GeqS/nLx4wZE1VVVbF+/fpu19evXx+NjY19PqexsXGv1ucCo5deeil+/OMf77FPr7a2Nmpra/t5FwDFt7v2tCHpzuy/LZvkB2MDAAAMVEkrjWpqauLEE0+M5cuX569ls9lYvnx5zJo1q8/nzJo1q9v6iIhly5Z1W58LjH7zm9/Ej370oxg9enRxbgBgkORGFqV3U2kUEdGWUWkEAAAUTkkrjSIiFi5cGOeff36cdNJJMWPGjLjhhhti27ZtsWDBgoiImD9/fhx22GGxdOnSiIi45JJL4rTTTovrrrsuzjzzzLjrrrvisccei9tuuy0i2gOjj3/847F69eq4//77I5PJ5OcdjRo1KmpqakpzowADkOxuEHaX0Kg1m42DomowtwUAAOzHSh4azZs3L1577bVYvHhxNDc3x/Tp0+PBBx/MD7teu3ZtpLu0X5xyyilx5513xpVXXhlXXHFFTJ48Oe6777447rjjIiLilVdeie9973sRETF9+vRuv+snP/lJ/P7v//6g3BdAIXW2p/UYhN21PU2lEQAAUEAlD40iIi6++OK4+OKL+3zsoYce6nXtnHPOiXPOOafP9RMnTjQMFtjv5A5H6xkapdOpSKfaH2/L9bABAAAUwH59ehrA/iJfadTHp3Z1VfvF1qzAHAAAKByhEUAFSHZTaRQRMaRj0JFKIwAAoJCERgAVIFdplOojNMpXGplpBAAAFJDQCKACZHdzelpERE11+0f5zrbMYG4JAADYzwmNACrA7gZhR0TUDWn/KN/Rqj0NAAAoHKERQAVI9lBpVFddFREqjQAAgMISGgFUgFylUV8zjeqGdIRGKo0AAIACEhoBVIDOmUZ7ak9TaQQAABSO0AigAmSzu29Pq+1oT9uhPQ0AACggoRFABcgPwu4jNcpVGmlPAwAACkloBFAB9tSeVtsx00h7GgAAUEhCI4AKkK802sPpaTvaVBoBAACFIzQCqADJHiuNDMIGAAAKT2gEUAFy7Wl9ZEb5SqOdKo0AAIACEhoBVIBMdveVRnUqjQAAgCIQGgFUgNxMo6o+T0/LDcJWaQQAABSO0AigAnSentb7sdrq9o/ynSqNAACAAhIaAVSAPbenmWkEAAAUntAIoAJkO0KjvtvTzDQCAAAKT2gEUAEyydtXGu1oExoBAACFIzQCqACZjs6zviqNcjONDMIGAAAKSWgEUAFyg7D7DI3yp6epNAIAAApHaARQAfY4CLvaIGwAAKDwhEYAFWBPlUYGYQMAAMUgNAKoANl8pVHvx2qrc+1pKo0AAIDCERoBVIA9n57W/lG+U6URAABQQEIjgAqQ3cPpaXVDzDQCAAAKT2gEUAEye5xp1B4a7cpk8wOzAQAABkpoBFAB9nR6Wm1150f5zjYtagAAQGEIjQDKXLZL9dCeKo0iDMMGAAAKR2gEUOZyrWkREVV9VBpVpVMxpKr9ukojAACgUIRGAGUu2yU0Su3mU7uuur3aaPsuoREAAFAYQiOAMpft0nHWV6VRRMSw2uqIiNi2U2gEAAAUhtAIoMx1a0/rY6ZRRMTwuvbQaOuO1kHZEwAAsP8TGgGUuUyXQdh9nZ4WEXFwLjTa2TYoewIAAPZ/QiOAMvd2p6dFRAyvGxIREVt3CI0AAIDCEBoBlLmu7Wm7yYxieMdMoze1pwEAAAUiNAIoc7lKo3QqIrWb9rTOmUYqjQAAgMIQGgGUuVyl0e5a0yI6Q6M3zTQCAAAKRGgEUOZyI412V2UUEXFwbftMoxaVRgAAQIEIjQDKXK49rWoPoZFKIwAAoNCERgBlLpN9+/a0g/MzjQzCBgAACkNoBFDmcjON9pAZRX2u0kh7GgAAUCBCI4Ayl92bSqOOmUZOTwMAAApFaARQ5pyeBgAAlILQCKDM5WYapfd0elpHaNRiphEAAFAgQiOAMtdRaLTXlUa5djYAAICBEBoBlLm9qTQa3jHTKEki3mrNDMq+AACA/ZvQCKDM5U9P28Mndt2QdFR3VCJt1aIGAAAUgNAIoMzlT0/bQ6VRKpWKhoPaq422bBcaAQAAAyc0Aihz+fa0Pcw0iogYMbQ9NHpjm9AIAAAYOKERQJnLtaftqdIoImLk0JqIiHjjrV1F3xMAALD/ExoBlLlstv37nk5Pi4gYOUxoBAAAFI7QCKDM5Qdhv22lUa49TWgEAAAMnNAIoMxl9+L0tIiulUZmGgEAAAMnNAIoc3tzelqEmUYAAEBhCY0Aytzenp6mPQ0AACgkoRFAmcvu8+lp2tMAAICBExoBlLlMx+lpb1tp5PQ0AACggIRGAGUus9eVRtrTAACAwhEaAZS5/CDst51p1F5p1LKjLdpy5UkAAAD9JDQCKHO5mUZv157WcNCQ/J83bzfXCAAAGBihEUCZy5+etufMKKqr0vngaLO5RgAAwAAJjQDK3N6enhbROddo0zaVRgAAwMAIjQDK3N6enhYRMWKoE9QAAIDCEBoBlLm9PT0tImLUsPbQSHsaAAAwUEIjgDK3t6enRUSM0J4GAAAUiNAIoMzlB2HvRWg0aqhKIwAAoDCERgBlrnMQ9tuvHdnRnrZpm9AIAAAYGKERQJnLhUbpvZhplGtPe+Mt7WkAAMDACI0Ayty+nJ6mPQ0AACgUoRFAmcvuw+lpIzpCo01CIwAAYICERgBlbl8GYY8c1t6etll7GgAAMEBCI4AylwuNqvbiE7tre1q243kAAAD9ITQCKHP9aU/LJhEtO1QbAQAA/Sc0Aihz+9KeVlOdjoNrqyMiYtM2c40AAID+ExoBlLnMPlQaRUSMGtYxDFtoBAAADEDJQ6Obb745Jk6cGHV1dTFz5sx49NFH97j+nnvuiSlTpkRdXV1MnTo1HnjggW6P33vvvXH66afH6NGjI5VKxeOPP17E3QMUX0dmtFeVRhGdodHrQiMAAGAAShoa3X333bFw4cJYsmRJrF69OqZNmxazZ8+ODRs29Ll+xYoVce6558aFF14Ya9asiblz58bcuXPjySefzK/Ztm1bnHrqqXHttdcO1m0AFFW+PU2lEQAAMIhKGhpdf/31cdFFF8WCBQvimGOOiVtvvTWGDh0a3/jGN/pcf+ONN8acOXPi8ssvj3e/+91xzTXXxAknnBA33XRTfs15550XixcvjqampsG6DYCi2pfT0yKERgAAQGGULDTatWtXrFq1qlu4k06no6mpKVauXNnnc1auXNkrDJo9e/Zu1++tnTt3RktLS7cvgHKxL6enRUSMFhoBAAAFULLQaOPGjZHJZGLs2LHdro8dOzaam5v7fE5zc/M+rd9bS5cujYaGhvzXhAkTBvR6AIW0L6enRag0AgAACqPkg7DLwaJFi2LLli35r5dffrnUWwLI29dKI4OwAQCAQqgu1S8eM2ZMVFVVxfr167tdX79+fTQ2Nvb5nMbGxn1av7dqa2ujtrZ2QK8BUCz9rTR6Q2gEAAAMQMkqjWpqauLEE0+M5cuX569ls9lYvnx5zJo1q8/nzJo1q9v6iIhly5btdj3A/qAjM4oq7WkAAMAgKlmlUUTEwoUL4/zzz4+TTjopZsyYETfccENs27YtFixYEBER8+fPj8MOOyyWLl0aERGXXHJJnHbaaXHdddfFmWeeGXfddVc89thjcdttt+Vfc9OmTbF27dp49dVXIyLi2WefjYj2KqWBViQBlEI2V2m0d5lRjB7WXjn5+radxdoSAABwAChpaDRv3rx47bXXYvHixdHc3BzTp0+PBx98MD/seu3atZFOdxZDnXLKKXHnnXfGlVdeGVdccUVMnjw57rvvvjjuuOPya773ve/lQ6eIiE9+8pMREbFkyZK4+uqrB+fGAAook+RCo72sNDq4vdJoR2s23trVFkNrSvpRDwAAVKhUknT81wh5LS0t0dDQEFu2bIn6+vpSbwc4wF185+q4/4l1seQPj4kF75v0tuuTJImjr3owdrVl43//5gMxYdTQQdglAABQCfYl83B6GkCZy5+etpf9aalUKkbnhmG/Za4RAADQP0IjgDKXPz1tL9vTIiJGDm0PjV43DBsAAOgnoRFAmctk27/vbaVRRMTojrlGm94UGgEAAP0jNAIoc/n2tH2oNBrV0Z62SaURAADQT0IjgDKXC432ITPKh0ba0wAAgP4SGgGUudxMo31qT8sNwhYaAQAA/SQ0Aihz+3p6WkTESJVGAADAAAmNAMpcf05PG52fabSzKHsCAAD2f0IjgDKX7cfpaaOG1UaEQdgAAED/CY0Aylwm2fdKI6enAQAAAyU0AihzAxmE3bKjLVoz2aLsCwAA2L8JjQDKXOcg7L1/TsNBQ/Ihk2ojAACgP4RGAGUuFxql9qE9LZ1O5auNXttqGDYAALDvhEYAZS7XXVa1D6FRRMSh9e3DsIVGAABAfwiNAMpcth8zjSIiDjm4PTTasHVHwfcEAADs/4RGAGUuN8h6yL4MNYqIQ4arNAIAAPpPaARQ5lqzudBoH9vThtdFRMQGoREAANAPQiOAMtfa1t6eptIIAAAYTEIjgDLX3/a0Q4VGAADAAAiNAMpcZ2i0j4Owh+cGYQuNAACAfSc0AihzrZn+taflZhq9tnVnJElS8H0BAAD7N6ERQJkb6Olp21szsXVnW8H3BQAA7N+ERgBlLEmSaMvmKo32rT3toJqqaDhoSERENG/ZUfC9AQAA+zehEUAZy7WmRURU72OlUUTE+BEHRUTEK5u3F2xPAADAgUFoBFDG2rLZ/J9r+hEaHTaifa7Rq0IjAABgHwmNAMpYa1vXSqN9a0+L6Kw0EhoBAAD7SmgEUMZ2ZTorjarTAwmNzDQCAAD2jdAIoIzl2tNqqtKRSvU/NDLTCAAA2FdCI4AylmtP609rWoSZRgAAQP8JjQDKWK49bUg/hmBHdFYarW/ZEZls8jarAQAAOgmNAMpYrj2tv6HRocProqYqHa2ZJNZtUW0EAADsPaERQBnLtacN6Wd7WlU6FYePHhoRES9s3FawfQEAAPs/oRFAGRtoe1pExKQxwyIi4revCY0AAIC9JzQCKGNt+dCof5VGERFHHtIeGqk0AgAA9oXQCKCMtWZy7Wn9/7g+sqPS6PnX3izIngAAgAOD0AigjLUWoD3tyEMOjgiVRgAAwL4RGgGUsVxoVD2A9rTcTKNXNm+P7bsyBdkXAACw/xMaAZSxQrSnjR5WE4cMr40kiXhqXUuhtgYAAOznhEYAZawt215pVDOA0CiVSsXUwxoiIuJXv9tciG0BAAAHAKERQBnb1Tbw9rSIyIdGT7yyZcB7AgAADgxCI4AyVoj2tIiI49/RHho9KTQCAAD2ktAIoIwVoj0tImJqR2j0mw1vxpbtrQPeFwAAsP8TGgGUsUK1px06vC7eeciwSJKIn/5mYyG2BgAA7OeERgBlrFDtaRERHzj60IiI+MmzGwb8WgAAwP5PaARQxtoy7ZVGBQmNprSHRg89+1pkssmAXw8AANi/CY0AylhrPjQaWHtaRMRJE0fGiKFDYuObO+PHz6g2AgAA9kxoBFDGdhWwPa22uirmvXdCRETcseLFAb8eAACwfxMaAZSxXHvaQAdh55x38hGRTkX89LmNseJ5A7EBAIDdExoBlLFce1pNASqNIiLeMXJofGrmERERseQ/fx07WjMFeV0AAGD/IzQCKGOFbE/LufT0d8XoYTXxmw1vxjX3P1Ww1wUAAPYvQiOAMlbo9rSIiBFDa+Ir86ZHKhXx74+sje/98tWCvTYAALD/EBoBlLFCt6fl/N67Dom/+P2jIiLic999Ih57cVNBXx8AAKh8QiOAMtaaLXx7Ws5fNU2O3z/6kNjemokF3/xFPPnKloL/DgAAoHIJjQDKWGtb4dvTcqqr0nHLp06MGZNGxdadbTH/G4/Gcxu2Fvz3AAAAlUloBFDGcu1pxag0iog4qKYqvn7+SXH8Oxpi07ZdMf/rj8Yb23YV5XcBAACVRWgEUMbaOtrTCj3TqKvhdUPijgUzYtKYYfHqlh3xN//vE5EkSdF+HwAAUBmERgBlbFcR29O6GjmsJm76o/fEkKpULHtqffzg181F/X0AAED5ExoBlLFit6d1dez4hvjM770zIiK+8F9PxbadbUX/nQAAQPkSGgGUsbb86WnFrTTKufgPjooJow6KdVt2xA0/+r9B+Z0AAEB5EhoBlLEdrZmIiKipqhqU31c3pCr+9iPHRUTEN372Yvz61S2D8nsBAIDyIzQCKGNbd7S3iNUfVD1ov/MDUw6NM6eOi0w2iUX3/ioyWUOxAQDgQCQ0AihjudBoeN2QQf29S/7wmBheVx1P/G5LfPNnLwzq7wYAAMqD0AigTGWySby5MxcaDV6lUUTEofV1seiMd0dExLUPPhM/e27joP5+AACg9IRGAGXqzR2dp5cNdmgUEfHJ906IM6eOi9ZMEvO/8Wj8zXd/GT/8dXN+zhIAALB/G/z/CgFgr7TsaI2IiNrqdNRWD84g7K7S6VRc94lpEamI7z+xLr7z2O/iO4/9LsYcXBuLzpgSHzvxHYO+JwAAYPCoNAIoU6WaZ9RV3ZCquPmPTog7L5oZF5wyMcY11MXGN3fGpff8Mq598JlIEkOyAQBgfyU0AihTuUqjwTw5bXdOeeeYuPojx8bDf/OB+KumyRERcctDz8c/P/zbEu8MAAAoFqERQJkqh0qjnoZUpeOvmt4VV57ZOST7J89uKPGuAACAYhAaAZSprblKoxIMwX47f/L+I+NTMw+PJIm45Ntr4sWN20q9JQAAoMCERgBlqmV7LjQqn0qjrpb84bFxwuEjomVHW5z/zUfj1c3bS70lAACggIRGAGWqsz2t/CqNIiJqqtNxy/9zYkwYdVC89PpbMeeGh+Nf//e38ebOtlJvDQAAKAChEUCZ2rqzvEOjiIix9XVx16dnxXGH1UfLjrb4u+8/HbOWLo9/eui5aM1kS709AABgAIRGAGWqc6ZReban5Rw24qC478/fF188e2ocOWZYbN3RFl968Nn48Fd/GqteeqPU2wMAAPpJaARQplq2l3+lUU51VTo+OePw+NHC0+K6c6bFqGE18ez6rfHxW1fEp7/1WPzkmQ2RySal3iYAALAPyv+/RAAOUC0dlUbDy7zSqKt0OhUfO/Ed8YEph8Y/PPB0fHfV7+KHT62PHz61Phrr6+Kck94R/79jxsb4EQdFJpvEjtZMtGaSOGR4bTQcVDn3CQAABwKhEUCZ2rI9FxpV3kf1qGE18Y/nTItP/96RcfcvXo57V/8umlt2xNd+/Fx87cfP9fmcY8fXxydnHB4fP+EdcVBN1SDvGAAA6CmVJIl+gR5aWlqioaEhtmzZEvX19aXeDnAAas1kY+rVP4gdrdn40cLfi6MOHV7qLQ3IzrZMLHtqfdy35tX4xYubYsv21kinIuqGVEVVOpU/KS4iYuTQIXHeyUfEebMmxiHDa2NXWzY2bN0Rm7btiqp0KsbW18XoYTWRSqVKeEcAAFCZ9iXzKIv/+frmm2+OL3/5y9Hc3BzTpk2Lr33tazFjxozdrr/nnnviqquuihdffDEmT54c1157bXzoQx/KP54kSSxZsiT+5V/+JTZv3hzve9/74pZbbonJkycPxu0ADNjT61piR2s26uuq48gxB5d6OwNWW10VHz5+fHz4+PEREZHJJpFORT74ef3NnfG9X74a3/jZC/Hypu3x1R8/F1/7yXNRXzckX3HVVU11OsY11MW4hroYPaw2WjPZ2JXJRnU6FZPHDo9jxtXHMePrY9LoYZFOC5cAAKA/Sh4a3X333bFw4cK49dZbY+bMmXHDDTfE7Nmz49lnn41DDz201/oVK1bEueeeG0uXLo0Pf/jDceedd8bcuXNj9erVcdxxx0VExJe+9KX46le/GnfccUdMmjQprrrqqpg9e3Y89dRTUVdXN9i3CLDP1qzdHBER7zl85H4ZelT1uKfRB9fGgvdNivmzJsYPft0ctz3823j85c35wGhIVSpGD6uNtmwSr2/bGbvasvHS62/FS6+/1eu1f/T0hvyfh1SlouGgmhg5dEiMHFoTI4YOiVHDauKQ4bVx+KihMXHMsDhi1NA4ZHityiUAAOih5O1pM2fOjPe+971x0003RURENpuNCRMmxGc/+9n4/Oc/32v9vHnzYtu2bXH//ffnr5188skxffr0uPXWWyNJkhg/fnxceumlcdlll0VExJYtW2Ls2LFx++23xyc/+cm33ZP2NKCUkiSJT///V8Wyp9bHXze9Ky5pOvCqJJMkiQ1bd0bL9tYYNawmRg6tyYdnu9qysb5lR6zbsiPWbdkem7btiprqdNRUpWN7ayaeXrc1nlrXEs82t1dr7a1UKqIqlYp0OhU1VemorkpFbXU6DhpSFXVDquKgmqoYWlMV1el0pFIRqYhIIiKbtO83k01iSFVufToOqul4Xu6r6881VfnXrR2SjrZMEm/tasvvtzqdiqoeX9Xp9r1Vp1ORTqWiuioVVane69rXptsf67Gma3VXX3/9C84AAPZ/FdOetmvXrli1alUsWrQofy2dTkdTU1OsXLmyz+esXLkyFi5c2O3a7Nmz47777ouIiBdeeCGam5ujqakp/3hDQ0PMnDkzVq5c2WdotHPnzti5c2f+55aWloHcVllY+t9Px2MvvlHqbQyaA20014F1txEH2P95Y9O2XbF2U3sFzamTx5R4N6WRSrXPLhpb37s6tKY6HRNGDY0Jo4bu8TUy2STWt+yIN97aFZvfao033toVb7zVGpu37Yrmlh2xdtNb8eLr2+KVN7Z3BD8RbUkSkU1iV9veh037m3QqOgKmVD6Mq6lORzqVimySRFs2iWw2iUySRCaT5D+PUvn/p/1bLoDKBWzRcS3VcS23MtXtOfmrvZ6Xf0Zqz+u6vPRuf2+qy+/t+vq5Ne2v2WP/XV57X7O1wf4MG2j2N9DocKDho+gSgHJ37Pj6+MJZx5V6G4OipKHRxo0bI5PJxNixY7tdHzt2bDzzzDN9Pqe5ubnP9c3NzfnHc9d2t6anpUuXxhe+8IV+3UO5en7Dm7HqpQMnNIL9TToVcdWHj4kTjxhZ6q1UrKp0KsaPOCjGjzhoj+t2tWVjy/bWSCKJJGkfQt6WSaI1k42dbdnY0ZqJ7a2Z2L6r/XtrJokkaQ9L0qn26p10qj2EaM0ksb01Ezs61m5vzcSOjq/t+WvZXo/XVKWjrqNCKSIik0RkstnIZHPf2yuZckFNpqOyKZPtDHHaskk+1BlISJFNIrKZJCKS2HkAh2cAALvTc9TC/qzkM43KwaJFi7pVL7W0tMSECRNKuKOB+7PfPyo+fmJl38O+OtC6Kg6w2z2g2mZqqtPxrrEHx7iGPYcdFEZNdToOGV5b6m0UVL4SqI+wqes7qev7KkmSzla7JMkHZ7sy2djV1h5cVafTvVrh0qn2Spqky+t0/jki90huTS7QyoV0nY8lXZ6zm3XRWVna+VrdXz//5x7r8rvqua6P10/y63rusfPxff1EGqzPsIFW3g60KGrgVVUHWGkpABVp5NCaUm9h0JQ0NBozZkxUVVXF+vXru11fv359NDY29vmcxsbGPa7PfV+/fn2MGzeu25rp06f3+Zq1tbVRW7t//QeD6gSAA1c6nYp0pGJIVal3AgBAJUuX8pfX1NTEiSeeGMuXL89fy2azsXz58pg1a1afz5k1a1a39RERy5Yty6+fNGlSNDY2dlvT0tISjzzyyG5fEwAAAIDuSt6etnDhwjj//PPjpJNOihkzZsQNN9wQ27ZtiwULFkRExPz58+Owww6LpUuXRkTEJZdcEqeddlpcd911ceaZZ8Zdd90Vjz32WNx2220R0V7+/Vd/9Vfxd3/3dzF58uSYNGlSXHXVVTF+/PiYO3duqW4TAAAAoKKUPDSaN29evPbaa7F48eJobm6O6dOnx4MPPpgfZL127dpIpzsLok455ZS4884748orr4wrrrgiJk+eHPfdd18cd1zn5PK/+Zu/iW3btsWnP/3p2Lx5c5x66qnx4IMPRl1d71N4AAAAAOgtlRxoZ5XvhZaWlmhoaIgtW7ZEfX19qbcDAAAAUBD7knmUdKYRAAAAAOVJaAQAAABAL0IjAAAAAHoRGgEAAADQi9AIAAAAgF6ERgAAAAD0IjQCAAAAoBehEQAAAAC9CI0AAAAA6EVoBAAAAEAvQiMAAAAAehEaAQAAANCL0AgAAACAXqpLvYFylCRJRES0tLSUeCcAAAAAhZPLOnLZx54IjfqwdevWiIiYMGFCiXcCAAAAUHhbt26NhoaGPa5JJXsTLR1gstlsvPrqqzF8+PBIpVKl3k5Za2lpiQkTJsTLL78c9fX1pd4O7Pe852Bwec/B4PKeg8Hj/XbgSpIktm7dGuPHj490es9Ti1Qa9SGdTsc73vGOUm+jotTX1/uggUHkPQeDy3sOBpf3HAwe77cD09tVGOUYhA0AAABAL0IjAAAAAHoRGjEgtbW1sWTJkqitrS31VuCA4D0Hg8t7DgaX9xwMHu839oZB2AAAAAD0otIIAAAAgF6ERgAAAAD0IjQCAAAAoBehEQAAAAC9CI0AAAAA6EVoxF6bOHFipFKpbl9f/OIXu6154okn4v3vf3/U1dXFhAkT4ktf+lKv17nnnntiypQpUVdXF1OnTo0HHnhgsG4BKtrNN98cEydOjLq6upg5c2Y8+uijpd4SVKSrr766199nU6ZMyT++Y8eO+Iu/+IsYPXp0HHzwwfGxj30s1q9f3+011q5dG2eeeWYMHTo0Dj300Lj88sujra1tsG8FytLDDz8cf/iHfxjjx4+PVCoV9913X7fHkySJxYsXx7hx4+Kggw6Kpqam+M1vftNtzaZNm+JTn/pU1NfXx4gRI+LCCy+MN998s9uavfl3J+zv3u79dsEFF/T6O2/OnDnd1ni/sSdCI/bJ3/7t38a6devyX5/97Gfzj7W0tMTpp58eRxxxRKxatSq+/OUvx9VXXx233XZbfs2KFSvi3HPPjQsvvDDWrFkTc+fOjblz58aTTz5ZituBinH33XfHwoULY8mSJbF69eqYNm1azJ49OzZs2FDqrUFFOvbYY7v9ffbTn/40/9hf//Vfx3/913/FPffcE//zP/8Tr776apx99tn5xzOZTJx55pmxa9euWLFiRdxxxx1x++23x+LFi0txK1B2tm3bFtOmTYubb765z8e/9KUvxVe/+tW49dZb45FHHolhw4bF7NmzY8eOHfk1n/rUp+LXv/51LFu2LO6///54+OGH49Of/nT+8b35dyccCN7u/RYRMWfOnG5/533729/u9rj3G3uUwF464ogjkq985Su7ffyf/umfkpEjRyY7d+7MX/vc5z6XHH300fmfP/GJTyRnnnlmt+fNnDkz+cxnPlPw/cL+ZMaMGclf/MVf5H/OZDLJ+PHjk6VLl5ZwV1CZlixZkkybNq3PxzZv3pwMGTIkueeee/LXnn766SQikpUrVyZJkiQPPPBAkk6nk+bm5vyaW265Jamvr+/2dyCQJBGR/Md//Ef+52w2mzQ2NiZf/vKX89c2b96c1NbWJt/+9reTJEmSp556KomI5Be/+EV+zX//938nqVQqeeWVV5Ik2bt/d8KBpuf7LUmS5Pzzz0/OOuus3T7H+423o9KIffLFL34xRo8eHe95z3viy1/+crdS/JUrV8bv/d7vRU1NTf7a7Nmz49lnn4033ngjv6apqanba86ePTtWrlw5ODcAFWjXrl2xatWqbu+ddDodTU1N3jvQT7/5zW9i/PjxceSRR8anPvWpWLt2bURErFq1KlpbW7u936ZMmRKHH354/v22cuXKmDp1aowdOza/Zvbs2dHS0hK//vWvB/dGoMK88MIL0dzc3O091tDQEDNnzuz2HhsxYkScdNJJ+TVNTU2RTqfjkUceya95u393Au0eeuihOPTQQ+Poo4+OP/uzP4vXX389/5j3G2+nutQboHL85V/+ZZxwwgkxatSoWLFiRSxatCjWrVsX119/fURENDc3x6RJk7o9J/cP6ubm5hg5cmQ0Nzd3+0d2bk1zc/Pg3ARUoI0bN0Ymk+nzvfPMM8+UaFdQuWbOnBm33357HH300bFu3br4whe+EO9///vjySefjObm5qipqYkRI0Z0e07Xv6t293dZ7jFg93LvkT39e7C5uTkOPfTQbo9XV1fHqFGjuq15u393Au2taWeffXZMmjQpnn/++bjiiivijDPOiJUrV0ZVVZX3G29LaHSA+/znPx/XXnvtHtc8/fTTMWXKlFi4cGH+2vHHHx81NTXxmc98JpYuXRq1tbXF3ioAFMQZZ5yR//Pxxx8fM2fOjCOOOCK+853vxEEHHVTCnQFAYX3yk5/M/3nq1Klx/PHHxzvf+c546KGH4oMf/GAJd0al0J52gLv00kvj6aef3uPXkUce2edzZ86cGW1tbfHiiy9GRERjY2Ov02VyPzc2Nu5xTe5xoLcxY8ZEVVWV9w4UyYgRI+Jd73pXPPfcc9HY2Bi7du2KzZs3d1vT9f22N3/fAX3LvUf29HdaY2Njr4Me2traYtOmTd6HMEBHHnlkjBkzJp577rmI8H7j7QmNDnCHHHJITJkyZY9fXXtXu3r88ccjnU7nyxlnzZoVDz/8cLS2tubXLFu2LI4++uh8yeKsWbNi+fLl3V5n2bJlMWvWrCLdIVS+mpqaOPHEE7u9d7LZbCxfvtx7BwrgzTffjOeffz7GjRsXJ554YgwZMqTb++3ZZ5+NtWvX5t9vs2bNil/96lfd/pG9bNmyqK+vj2OOOWbQ9w+VZNKkSdHY2NjtPdbS0hKPPPJIt/fY5s2bY9WqVfk1P/7xjyObzcbMmTPza97u351Ab7/73e/i9ddfj3HjxkWE9xt7odSTuKkMK1asSL7yla8kjz/+ePL8888n//Zv/5Yccsghyfz58/NrNm/enIwdOzY577zzkieffDK56667kqFDhyb//M//nF/zs5/9LKmurk7+8R//MXn66aeTJUuWJEOGDEl+9atfleK2oGLcddddSW1tbXL77bcnTz31VPLpT386GTFiRLfTm4C9c+mllyYPPfRQ8sILLyQ/+9nPkqampmTMmDHJhg0bkiRJkj/90z9NDj/88OTHP/5x8thjjyWzZs1KZs2alX9+W1tbctxxxyWnn3568vjjjycPPvhgcsghhySLFi0q1S1BWdm6dWuyZs2aZM2aNUlEJNdff32yZs2a5KWXXkqSJEm++MUvJiNGjEj+8z//M3niiSeSs846K5k0aVKyffv2/GvMmTMnec973pM88sgjyU9/+tNk8uTJybnnnpt/fG/+3QkHgj2937Zu3ZpcdtllycqVK5MXXngh+dGPfpSccMIJyeTJk5MdO3bkX8P7jT0RGrFXVq1alcycOTNpaGhI6urqkne/+93JP/zDP3T7sEmSJPnlL3+ZnHrqqUltbW1y2GGHJV/84hd7vdZ3vvOd5F3veldSU1OTHHvsscn3v//9wboNqGhf+9rXksMPPzypqalJZsyYkfz85z8v9ZagIs2bNy8ZN25cUlNTkxx22GHJvHnzkueeey7/+Pbt25M///M/T0aOHJkMHTo0+ehHP5qsW7eu22u8+OKLyRlnnJEcdNBByZgxY5JLL700aW1tHexbgbL0k5/8JImIXl/nn39+kiRJks1mk6uuuioZO3ZsUltbm3zwgx9Mnn322W6v8frrryfnnntucvDBByf19fXJggULkq1bt3Zbszf/7oT93Z7eb2+99VZy+umnJ4ccckgyZMiQ5IgjjkguuuiiXv+jo/cbe5JKkiQpTY0TAAAAAOXKTCMAAAAAehEaAQAAANCL0AgAAACAXoRGAAAAAPQiNAIAAACgF6ERAAAAAL0IjQAAAADoRWgEAAAAQC9CIwAAAAB6ERoBAAAA0IvQCAAAAIBe/j+XcyHfI9s9TwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "sales['Revenue_per_Age'].plot(kind='density', figsize=(14,6))" ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoIAAAGUCAYAAAChl0MOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzde3xdVZnw8d/TBhqlSKloEQpUBbWl4wB28EL1bahYQBHmHUeMjOJYwSJ29K1KkTrDoKaIAoowUKhhAC8BRcUqKFRoVJwBBUEtRMcOFymIKPcilF6e94+9U0/SNEmTJqfp/n0/n/PJ2Wvfnn3Oyj7PWXutfSIzkSRJUvWMqncAkiRJqg8TQUmSpIoyEZQkSaooE0FJkqSKMhGUJEmqKBNBSZKkijIRlDSsIuKSiPh0veOot95eh4h4T0TcONwxSaoeE0GpoiLinoh4OiJWRcSjEXF1ROxR77hqRURGxN71jmNbUCaeayPiRcO0v30i4vKI+FNEPBERv4uIcyNi4nDsX1L/mAhK1XZEZo4FXgT8ETi3zvEMmShU8pwXETsA/wA8DvzTMOxvb+Bm4AFg/8x8HnAQ8L/A9E2s0zDUcUnaWCVPipK6ysxngCuBKZ1lEbFTRFxWtujcGxGf6EykIuKCiPhmzbJnRMT1ZbI1IyJWRsQpEfHnsuXxmE3tOyKOi4gVEfFIRCyJiN3K8h+Xi/yybLU8uod1R0fEWeV+7o6ID5atiA3l/PaIaImInwJ/AV4SEbuV+3mk3O9xNdvrcrm281hqpu+JiI9HxJ1lK+p/RkRjzfy3RMTtEfFYRPxXRLyyZt7+EfGLiHgyIq4ANqy36ZcmzouIxyPiNxExsyz8x4i4tduC8yLiO71s6x+Ax4BPAsd2W/c5EXFpeTwdEXFSt2PeLSK+WdaDuyPiX/qIG+DfgZ9m5rzMXAmQmQ9l5hcy8/Jyu531ZH5EPAj8Z1m+qfowqfa9LcvaI+J95fP3RMRPe3rNJG2aiaAkIuK5wNHATTXF5wI7AS8B/g/wbuCfy3kfAf6m/PB9PTAbODb/+puVuwK7ALtTJB4XRcTLe9jvwcDpwNspWiXvBS4HyMw3lIv9bWaOzcwregj9OOAwYD/gAOCoHpZ5F3A8sGPN9lcCuwFvAxaWcfTXMcAs4KXAy4BPlMeyP3Ax8H7g+cCFwJKIGBMR2wNXAV8GxgPfoEjOevNqiha0XYBTgW9FxHhgCfDiiJjc7Rgv62VbxwJtFMf+ioh4Vc28U4FJFO/zIdS0GJaJ/3eBX1K8lzOBD0fErD5ifyPwzT6WgaKejAf2Ao7vrT7006ZeM0mbYCIoVdtVEfEYxSXDQ4DPQdHSBrwD+HhmPpmZ9wBnUSQcZOZfyudnA18B5na2/NT418xcnZk/Aq6m+HDv7hjg4sz8RWauBj4OvDYiJvUz/rcD52Tmysx8FPhMD8tckpl3ZOZaisTjIGB+Zj6TmbcDX6JIcvvrvMy8LzMfAVqA5rL8eODCzLw5M9dl5qXAauA15WM74AuZuSYzrwR+3sd+HqpZ/grgt8Cby9fpCsqELSL2pUjkvtfTRiJiT6AJ+Fpm/hG4vtvxvh1YmJmPlu/hF2vm/R3wgsz8ZGY+m5l3AYsp6kZvdgEerInhg2Ur6aqIWFyz3Hrg1LKePM3g60OPr1k/15UqyURQqrajMnMcxWXKDwI/iojO1rztKFpkOt1L0SoEQGbeDNwFBPD1btt9NDOf6rbubj3sf7fafWTmKuDh2v30YTfgvprp+3pYprZsN+CRzHyyW2z93V/37dUe117AR8qE57Eywd6jnL8bcH9Ni2nnur3pafnOfV0KvDMigiIh/3qZOPXkXUBHmfQCfLVcd7tyurfXcC9gt27HdAowoY/YH6Zo0QMgM88r69kXKOpVpz+V3RI6DbY+9PaaSeqBiaAkyhasbwHrKDrz/xlYQ5EIdNoTuL9zIiJOBMZQDAg4qdsmd45igELtug/0sOsHavdRrvP82v304Q9A7SjUnkY91yYGDwDjI2LHbrF17u8p4Lk183btYXu1+6g9rvuAlswcV/N4bma2lXHuXiZutev2pqflHwDIzJuAZ4HXA++kuOS8Ke+m6Bv5YNkX72yKRP/wcn5vr+F9wN3djmnHzDyc3l0P/N8+loGu7w30Xh86v1j09v5s8jWT1DMTQUmdI2qPBHamaD1aR9HK1xIRO0bEXsA8isvARMTLgE9TXJ58F3BSROzXbbOnRcT2ZR/Ct1D0i+uuDfjniNgvIsYAC4Gby0vRUIxkfkkvoX8d+FBE7B4R44D5vR1nZt4H/BdwekQ0loM5ZnceF3A7cHhEjC9bRj/cw2ZOjIiJZd+zBRSXaaG4ZDonIl5dvp47RMSby6Tzv4G1wL9ExHYR8X+BA3uLFXhhzfL/CEwGrqmZfxlwHrAmM3u852BEvJaiL+OBFP0o9wOmAl/jr5eHvw58PCJ2jojdKVqGO/0MeLIc0PGcKAbnTI2Iv+sj9n8HXh8RZ5fbJCJ2KY+hN5usD5n5J4qE8J/KON5bHlutvl4zSd2YCErV9t2IWAU8QdHf7djMvKOcN5eiFeYu4EaK5OHictTmV4AzMvOXmfk7isuFXy4/vKHoH/YoRWvMV4E5mfmb7jvPzB8C/0oxsOAPFB/stf3P/h24tLws2VMfw8XAdcCvgNsoPvTXUrRsbkozRZ+6B4BvU/RR+2E578sUAyPuKbfb0wCVr5Xz7qIYmPDp8lhuoRi8cl557CuA95TznqVoIXsP8AjFwJxv9RIjFLdf2YeidbYFeFtmPlwz/8sUSd1Xeli307HAdzLz15n5YOcDOAd4S5nMfpJi8MzdwA8pRo+vLuNeR5HE71fO/zNFn8qdegs8M/+HYuDGRIpR308CP6V4zf+1l/X6qg/HAR+juFy8L0VSX6uv10xSN9G1O4UkDU5EzAC+kpnDfuPgiDgMWJSZe/W58MC2fw/wvprEsW4i4jkUgyMOKJPxLbXdE4B3ZOb/2VLbHA4R8R6K96bH+xRK6pktgpJGrPJy5eER0VBegjyVopWvCk4Afj7YJDAiXhQRB0XEqPIWPx+hOq+hVHkmgpJGsgBOo7gUexvQAfxbXSMaBmXL5IcokrbB2p7inodPAjcA3wHO70cM3y9vB9P9ccoWiEnSMPHSsCRJUkXZIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpJUB+XP0P1nRDwaET+LiNdHxG/rHZekajERlKTNEBH3RMTT5T3z/hgRl0TE2AFsajpwCDAxMw/MzJ9k5su77eeNWyxwSeqBiaAkbb4jMnMscAAwDfhE7cyyta+v8+tewD2Z+dQQxShJfTIRlKQBysz7ge8DUyOiPSJaIuKnwF+Al0TEbhGxJCIeiYgVEXEcQETMBr4EvLZsWTwtImZExMpy/peBPYHvlvNPqs8RStrWNdQ7AEkaqSJiD+Bw4FvA64F3AYcBv6X4+bvrgeXAbsArgKUR8b+Z2RoR64D3Zeb0clszOrebme+KiNeX8384jIckqWJsEZSkzXdVRDwG3Aj8CFhYll+SmXdk5lpgV+AgYH5mPpOZt1O0Ar67LhFLUg9sEZSkzXdU95a6iAC4r6ZoN+CRzHyypuxeij6FkrRVsEVQkracrHn+ADA+InasKdsTuH8A25KkIWEiKElDIDPvA/4LOD0iGiPilcBs4Cv93MQfgZcMVXySBCaCkjSUmoFJFK2D3wZO3YzBH6cDn4iIxyLio0MUn6SKi0yvPkiSJFWRLYKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFGVu6H0LrvskpMmTap3GFutp556ih122KHeYWiEsv5oMKw/GgzrT+9uvfXWP2fmC7qXVy4RnDRpErfccku9w9hqtbe3M2PGjHqHoRHK+qPBsP5oMKw/vYuIe3sq99KwJElSRZkISpIkVZSJoCRJUkWZCEqSJFWUiaAkSVJFmQhKkiRVlImgJElSRZkISpIkVZSJoCRJUkWZCEqSJFWUiaAAaGtrY+rUqcycOZOpU6fS1tZW75AkSdIQq9xvDWtjbW1tLFiwgNbWVtatW8fo0aOZPXs2AM3NzXWOTpIkDRVbBEVLSwutra00NTXR0NBAU1MTra2ttLS01Ds0SZI0hEwERUdHB9OnT+9SNn36dDo6OuoUkSRJGg4mgmLy5MnceOONXcpuvPFGJk+eXKeIJEnScDARFAsWLGD27NksW7aMtWvXsmzZMmbPns2CBQvqHZokSRpCDhbRhgEhc+fOpaOjg8mTJ9PS0uJAEUmStnEmggKKZLC5uZn29nZmzJhR73AkSdIw8NKwJElSRZkISpIkVZSJoCRJUkWZCEqSJFWUiaAkSVJFmQhKkiRVlImgJElSRZkISpIkVZSJoCRJUkWZCEqSJFWUiaAkSVJFmQhKkiRVlImgAGhra2Pq1KnMnDmTqVOn0tbWVu+QJEnSEGsYqg1HxMXAW4CHMnNqt3kfAc4EXpCZf46IAM4BDgf+ArwnM39RLnss8Ily1U9n5qVl+auAS4DnANcAH8rMHKrj2Za1tbWxYMECWltbWbduHaNHj2b27NkANDc31zk6SZI0VIayRfAS4NDuhRGxB/Am4Pc1xYcB+5SP44ELymXHA6cCrwYOBE6NiJ3LdS4AjqtZb6N9qX9aWlpobW2lqamJhoYGmpqaaG1tpaWlpd6hSZKkITRkiWBm/hh4pIdZnwdOAmpb744ELsvCTcC4iHgRMAtYmpmPZOajwFLg0HLe8zLzprIV8DLgqKE6lm1dR0cH06dP71I2ffp0Ojo66hSRJEkaDkN2abgnEXEkcH9m/rK4GrzB7sB9NdMry7Leylf2UL6p/R5P0dLIhAkTaG9vH/hBbIP23HNPzjvvPPbff39WrVpFe3s7t912G3vuuaevlTZLZ/2RBsL6o8Gw/gzMsCWCEfFc4BSKy8LDKjMvAi4CmDZtWs6YMWO4Q9iqLVy4cEMfwcbGRjKTc889l4ULF+Jrpc3R3t5undGAWX80GNafgRnOFsGXAi8GOlsDJwK/iIgDgfuBPWqWnViW3Q/M6FbeXpZP7GF5DUDngJC5c+fS0dHB5MmTaWlpcaCIJEnbuGG7fUxm/jozX5iZkzJzEsXl3AMy80FgCfDuKLwGeDwz/wBcC7wpInYuB4m8Cbi2nPdERLymHHH8buA7w3Us26Lm5maWL1/O9ddfz/Lly00CJUmqgCFLBCOiDfhv4OURsTIiZvey+DXAXcAKYDHwAYDMfAT4FPDz8vHJsoxymS+V6/wv8P2hOA5JkqRt1ZBdGs7MXpuUylbBzucJnLiJ5S4GLu6h/BZg6sZrSJIkqT/8ZRFJkqSKMhGUJEmqKBNBSZKkijIRlCRJqigTQUmSpIoyEZQkSaooE0FJkqSKMhGUJEmqKBNBSZKkijIRlCRJqigTQUmSpIoyEZQkSaooE0FJkqSKMhGUJEmqKBNBSZKkijIRlCRJqigTQUmSpIoyEZQkSaooE0FJkqSKMhGUJEmqKBNBSZKkijIRlCRJqigTQUmSpIoyEZQkSaooE0FJkqSKMhGUJEmqKBNBSZKkijIRlCRJqigTQUmSpIoyEZQkSaqoIUsEI+LiiHgoIpbXlH0uIn4TEb+KiG9HxLiaeR+PiBUR8duImFVTfmhZtiIiTq4pf3FE3FyWXxER2w/VsUiSJG2LhrJF8BLg0G5lS4GpmflK4H+AjwNExBTgHcC+5TrnR8ToiBgN/AdwGDAFaC6XBTgD+Hxm7g08CswewmORJEna5gxZIpiZPwYe6VZ2XWauLSdvAiaWz48ELs/M1Zl5N7ACOLB8rMjMuzLzWeBy4MiICOBg4Mpy/UuBo4bqWCRJkrZFDXXc93uBK8rnu1Mkhp1WlmUA93UrfzXwfOCxmqSydvmNRMTxwPEAEyZMoL29fbCxb7NWrVrl66MBs/5oMKw/Ggzrz8DUJRGMiAXAWuCrw7G/zLwIuAhg2rRpOWPGjOHY7YjU3t6Or48GyvqjwbD+aDCsPwMz7IlgRLwHeAswMzOzLL4f2KNmsYllGZsofxgYFxENZatg7fKSJEnqh2G9fUxEHAqcBLw1M/9SM2sJ8I6IGBMRLwb2AX4G/BzYpxwhvD3FgJIlZQK5DHhbuf6xwHeG6zgkSZK2BUN5+5g24L+Bl0fEyoiYDZwH7AgsjYjbI2IRQGbeAXwduBP4AXBiZq4rW/s+CFwLdABfL5cFmA/Mi4gVFH0GW4fqWCRJkrZFQ3ZpODObeyjeZLKWmS1ASw/l1wDX9FB+F8WoYkmSJA2AvywiSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVNWSJYERcHBEPRcTymrLxEbE0In5X/t25LI+I+GJErIiIX0XEATXrHFsu/7uIOLam/FUR8etynS9GRAzVsUiSJG2LhrJF8BLg0G5lJwPXZ+Y+wPXlNMBhwD7l43jgAigSR+BU4NXAgcCpncljucxxNet135ckSZJ6MWSJYGb+GHikW/GRwKXl80uBo2rKL8vCTcC4iHgRMAtYmpmPZOajwFLg0HLe8zLzpsxM4LKabUmSJKkfGoZ5fxMy8w/l8weBCeXz3YH7apZbWZb1Vr6yh/IeRcTxFC2NTJgwgfb29oEfwTZu1apVvj4aMOuPBsP6o8Gw/gzMcCeCG2RmRkQO074uAi4CmDZtWs6YMWM4djsitbe34+ujgbL+aDCsPxoM68/ADPeo4T+Wl3Up/z5Ult8P7FGz3MSyrLfyiT2US5IkqZ+GOxFcAnSO/D0W+E5N+bvL0cOvAR4vLyFfC7wpInYuB4m8Cbi2nPdERLymHC387pptSZIkqR+G7NJwRLQBM4BdImIlxejfzwBfj4jZwL3A28vFrwEOB1YAfwH+GSAzH4mITwE/L5f7ZGZ2DkD5AMXI5OcA3y8fkiRJ6qchSwQzs3kTs2b2sGwCJ25iOxcDF/dQfgswdTAxSpIkVZm/LCJJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVVl0QwIv5fRNwREcsjoi0iGiPixRFxc0SsiIgrImL7ctkx5fSKcv6kmu18vCz/bUTMqsexSJIkjVT9SgQj4qD+lPVzW7sD/wJMy8ypwGjgHcAZwOczc2/gUWB2ucps4NGy/PPlckTElHK9fYFDgfMjYvRAYpIkSaqi/rYIntvPsv5qAJ4TEQ3Ac4E/AAcDV5bzLwWOKp8fWU5Tzp8ZEVGWX56ZqzPzbmAFcOAgYpIkSaqUht5mRsRrgdcBL4iIeTWznkfRkrfZMvP+iDgT+D3wNHAdcCvwWGauLRdbCexePt8duK9cd21EPA48vyy/qWbTtet0P47jgeMBJkyYQHt7+0BCr4RVq1b5+mjArD8aDOuPBsP6MzC9JoLA9sDYcrkda8qfAN42kB1GxM4UrXkvBh4DvkFxaXfIZOZFwEUA06ZNyxkzZgzl7ka09vZ2fH00UNYfDYb1R4Nh/RmYXhPBzPwR8KOIuCQz791C+3wjcHdm/gkgIr4FHASMi4iGslVwInB/ufz9wB7AyvJS8k7AwzXlnWrXkSRJUh967SMYEV8on54XEUu6Pwa4z98Dr4mI55Z9/WYCdwLL+Gsr47HAd8rnS8ppyvk3ZGaW5e8oRxW/GNgH+NkAY5IkSaqcvi4NX1b+PXNL7TAzb46IK4FfAGuB2ygu214NXB4Rny7LWstVWoEvR8QK4BGKkcJk5h0R8XWKJHItcGJmrttScUqSJG3r+koEP0fRYnd4Zs7fUjvNzFOBU7sV30UPo34z8xngHzexnRagZUvFJUmSVCV9JYIviojXAW+NiMuBqJ2Zmb8YssgkSZI0pPpKBP8N+FeKgRhnd5uXFPf+kyRJ0gjU16jhK4ErI+JfM/NTwxSTJEmShkFfLYIAZOanIuKtwBvKovbM/N7QhSVJkqSh1t/fGj4d+BDFCN07gQ9FxMKhDEySJElDq18tgsCbgf0ycz1ARFxKcYuXU4YqMEmSJA2tfrUIlsbVPN9pSwciSZKk4dXfFsHTgdsiYhnFLWTeAJw8ZFFJkiRpyPWZCJY/A3cj8Brg78ri+Zn54FAGJkmSpKHVZyKYmRkR12Tm31D8vq8kSZK2Af3tI/iLiPi7vheTJEnSSNHfPoKvBv4pIu4BnqLoJ5iZ+cqhCkySJElDq7+J4KwhjUKSJEnDrtdEMCIagTnA3sCvgdbMXDscgUmSJGlo9dVH8FJgGkUSeBhw1pBHJEmSpGHR16XhKeVoYSKiFfjZ0IckSZKk4dBXi+CazideEpYkSdq29NUi+LcR8UT5PIDnlNOdo4afN6TRSZIkacj0mghm5ujhCkSSJEnDq783lJYkSdI2xkRQkiSpokwEJUmSKspEUJIkqaJMBCVJkirKRFCSJKmiTAQlSZIqykRQkiSpokwEJUmSKspEUJIkqaJMBCVJkiqqLolgRIyLiCsj4jcR0RERr42I8RGxNCJ+V/7duVw2IuKLEbEiIn4VEQfUbOfYcvnfRcSx9TgWSZKkkapeLYLnAD/IzFcAfwt0ACcD12fmPsD15TTAYcA+5eN44AKAiBgPnAq8GjgQOLUzeZQkSVLfhj0RjIidgDcArQCZ+WxmPgYcCVxaLnYpcFT5/EjgsizcBIyLiBcBs4ClmflIZj4KLAUOHcZDkSRJGtEa6rDPFwN/Av4zIv4WuBX4EDAhM/9QLvMgMKF8vjtwX836K8uyTZVvJCKOp2hNZMKECbS3t2+RA9kWrVq1ytdHA2b90WBYfzQY1p+BqUci2AAcAMzNzJsj4hz+ehkYgMzMiMgttcPMvAi4CGDatGk5Y8aMLbXpbU57ezu+Phoo648Gw/qjwbD+DEw9+giuBFZm5s3l9JUUieEfy0u+lH8fKuffD+xRs/7EsmxT5ZIkSeqHYU8EM/NB4L6IeHlZNBO4E1gCdI78PRb4Tvl8CfDucvTwa4DHy0vI1wJvioidy0EibyrLJEmS1A/1GjU8F/hqRPwK2A9YCHwGOCQifge8sZwGuAa4C1gBLAY+AJCZjwCfAn5ePj5ZlkkaZm1tbUydOpWZM2cydepU2tra6h2SpIrw/DM49egjSGbeDkzrYdbMHpZN4MRNbOdi4OItG52kzdHW1saCBQtobW1l3bp1jB49mtmzZwPQ3Nxc5+gkbcs8/wyevywiaVBaWlpobW2lqamJhoYGmpqaaG1tpaWlpd6hSdrGef4ZPBNBATB37lwaGxtpamqisbGRuXPn1jskjRAdHR1Mnz69S9n06dPp6OioU0QaaWbNmsWoUaNoampi1KhRzJo1q94haYTo6OjgG9/4RpfPr2984xuefzZDXS4Na+syd+5cFi1axBlnnMGUKVO48847mT9/PgDnnntunaPT1m7y5MnceOONNDU1bSi78cYbmTx5ch2j0kgxa9YsrrvuOk444QQOP/xwrrnmGi644AJmzZrFtdc6/k+9GzduHBdeeCGf+9znNnx+fexjH2PcuHH1Dm3EsEVQLF68mDPOOIN58+bR2NjIvHnzOOOMM1i8eHG9Q9MIsGDBAmbPns2yZctYu3Yty5YtY/bs2SxYsKDeoWkEWLp0KSeccALnn38+Y8eO5fzzz+eEE05g6dKl9Q5NI8ATTzzBuHHj2H///WloaGD//fdn3LhxPPHEE/UObcSIYixGdUybNi1vueWWeoexVYkIRo0axfr16zeUdU5XrX5oYNra2mhpaaGjo4PJkyezYMECO2qrXyKCcePG8dhjj20o65z2/KO+RAQHH3wwy5YtIzOJCJqamrjhhhusP91ExK2ZudFAXVsEBcD69esZO3YsF1xwAWPHju2SFEp9aW5uZvny5Vx//fUsX77cJFCb5bHHHmPfffelra2Nfffdt0tSKPVm9OjRLFu2jDPPPJPvf//7nHnmmSxbtozRo0fXO7QRw0RQG5x22mlMmjSJ0047rd6hSKqYN7zhDYwdO5Y3vOEN9Q5FI0hnK2CtiLA1cDM4WEQAHH300ZxyyimsXr2aMWPGcPTRR3PFFVfUOyxJFXDQQQexaNEiLrjgAiKCgw46iJ/+9Kf1DksjwPr163n/+9/f5fPruOOO48ILL6x3aCOGLYIC4Oqrr+aZZ55h2bJlPPPMM1x99dX1DklSRTz22GOsX7+eZcuWsX79ei8Nq9/GjBnDy172si6fXy972csYM2ZMvUMbMWwRFKNGjWLVqlUbNa+PGuX3BElDa/z48dxxxx0bnX/Gjx9fp4g0khx33HF89KMfZf78+axdu5aGhgbWrVvHiSf2+INk6oGf9OIrX/nKZpVL0pbyzne+c7PKpZ509gm0b+DmMxEUJ510Ervuuis33HADS5cu5YYbbmDXXXflpJNOqndokrZxixcv5qyzziIzN9wC5KyzzvI+puqXxYsXc+aZZ264h+natWs588wzrT+bwURQrFy5kssuu6zLbzVedtllrFy5st6hSdrGrV69mjlz5nQpmzNnDqtXr65TRBpJrD+DZyIoSaqbMWPGsGjRoi5lixYtsrO/+sX6M3gOFhETJ07k2GOP5atf/Srr1q1j2bJlHHvssUycOLHeoUnaxh133HEbftt8ypQpnH322cyfP3+jVh6pJ9afwTMRFJ/97Gf50Ic+xHvf+15+//vfs+eee7J27VrOOuuseocmaRt37rnnAnS5D9ycOaGOH1kAAB8dSURBVHM2lEu9sf4MnpeGRXNzM+eccw477LADADvssAPnnHOOPxMmaVice+65Xe4D54e4Nof1Z3BsERRQJIPNzc20t7czY8aMeocjSZKGgS2CAqCtrY2pU6cyc+ZMpk6dSltbW71DklQRnn+k+rFFULS1tbFgwQJaW1tZt24do0ePZvbs2QBeHpY0pDz/SPVli6BoaWmhtbW1y30EW1tbaWlpqXdokrZxnn+k+jIRFB0dHUyfPr1L2fTp0+no6KhTRJKqwvOPVF8mgmLy5MnceOONXcpuvPFGJk+eXKeIJFWF5x+pvkwExYIFC5g9e/aG32lctmwZs2fPZsGCBfUOTdI2zvOPVF8OFtGGDtlz586lo6ODyZMn09LSYkdtSUPO849UXyaCkqS68j6mUv2YCMrbN0iSVFEmgqKlpYW7776bgw8+eKNyE0FJQ2277bZj7dq1G6YbGhpYs2ZNHSPSSDJr1iyWLl1KZhIRHHLIIVx77bX1DmvEcLCIuOOOOzarXJK2lO5JIMDatWvZbrvt6hSRRpJZs2Zx3XXXMWfOHL773e8yZ84crrvuOmbNmlXv0EYMWwQlSXXTPQnsq1yqtXTpUk444QTOP/982tvbOf/88wFYtGhRnSMbOerWIhgRoyPitoj4Xjn94oi4OSJWRMQVEbF9WT6mnF5Rzp9Us42Pl+W/jQjTf0mSKiQzWbNmDY2NjTQ1NdHY2MiaNWvIzHqHNmLU89Lwh4DaW8efAXw+M/cGHgVml+WzgUfL8s+XyxERU4B3APsChwLnR8ToYYpdkrSFfeADH6h3CBqBWltbWbhwId///vdZuHAhra2t9Q5pRKlLIhgRE4E3A18qpwM4GLiyXORS4Kjy+ZHlNOX8meXyRwKXZ+bqzLwbWAEcODxHsG1qbGzkvPPOo7Gxsd6hSKqYnXfemf3335+dd9653qFoBIkIMpMVK1awdu1aVqxYsWHQiPqnXn0EvwCcBOxYTj8feCwzOzuFrAR2L5/vDtwHkJlrI+LxcvndgZtqtlm7ThcRcTxwPMCECRNob2/fYgeyLXnmmWf44Ac/2KXM10qbY9WqVdYZDcijjz7Kcccd16XMuqS+ZCZ77bUXF1xwARdccAEAe+21F/fee6/1p5+GPRGMiLcAD2XmrRExYzj2mZkXARcBTJs2Lb1haf/5WmlzeENgbUnWJfWloaGBe++9t0vZvffeS0NDg/Wnn+pxafgg4K0RcQ9wOcUl4XOAcRHRmZhOBO4vn98P7AFQzt8JeLi2vId1JEnSNq5zdPno0aM5++yzGT16dJdy9W3YE8HM/HhmTszMSRSDPW7IzGOAZcDbysWOBb5TPl9STlPOvyGL4UBLgHeUo4pfDOwD/GyYDkOSJG0FRo8eTUNDA/PmzaOhoWFDMqj+2ZpuKD0fmBcRKyj6AHYO+2kFnl+WzwNOBsjMO4CvA3cCPwBOzMx1wx71NuKII45g3333ZdSoUey7774cccQR9Q5JUkW84hWv6HL+ecUrXlHvkDSCHHPMMey9996MGjWKvffem2OOOabeIY0oUbV77UybNi1vueWWeoexVeltdFXV6ocGxz6C2lyefzQYnfVnwoQJPPTQQ7zwhS/kj3/8I2D96S4ibs3Mad3L/WURSZI0onUmf51/1X9b06VhSZIkDSMTQW0wadIkvvzlLzNp0qR6hyKpYsaOHdvlr7Q53vrWt/Ltb3+bt771rfUOZcQxEdQG99xzD+9617u455576h2KpIpZvXp1l79Sf2233XZ8+MMfZuzYsXz4wx9mu+22q3dII4p9BCVJdTd69GjWrFmz4a/UX6NGjWLWrFmsWbOG7bbbjlGjbOPaHL5akqS62mGHHbq0CO6www51jkgjyerVqxk/fjwA48ePt1V5M5kIaoPOm3B6M05Jw+mpp57iiCOO4Nvf/jZHHHEETz31VL1D0ggxZswYgA11pvNvZ7n65qVhbbBu3boufyVpqI0ZM4bVq1ezZMkSlixZ0qVc6suaNWuYOHEiK1euBGDVqlVMnDiRBx54oM6RjRy2CEqS6mZTXzz9Qqr+2G233TZK+h544AF22223OkU08pgISpLqZu3atZtVLtV64IEHWL9+fZey9evX2yK4GUwEJUnSiNQ9CeyrXBszEZQkSaooE0FJkqSKMhGUJEmqKBNBSYM2d+5cGhsbaWpqorGxkblz59Y7JElSP3gfQUmDMnfuXBYtWsQZZ5zBlClTuPPOO5k/fz4A5557bp2jkyT1xhZBSYOyePFizjjjDObNm0djYyPz5s3jjDPOYPHixfUOTZLUBxNBSYOyevVq5syZ06Vszpw5/t6nJI0AJoKSBmXMmDEsWrSoS9miRYv8iTBJGgHsIyhpUI477rgNfQKnTJnC2Wefzfz58zdqJZQkbX1MBCUNSueAkFNOOYXVq1czZswY5syZ40ARSRoBIjPrHcOwmjZtWt5yyy31DmOrEhGbnFe1+qHBaW9vZ8aMGfUOQyOI5x8NhvWn/yLi1syc1r3cPoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJkka07bffvstf9Z+JoCRJGtGeffbZLn/VfyaCkgatra2NqVOnMnPmTKZOnUpbW1u9Q5Ik9cOw/7JIROwBXAZMABK4KDPPiYjxwBXAJOAe4O2Z+WgUd4s8Bzgc+Avwnsz8RbmtY4FPlJv+dGZeOpzHIqlIAhcsWEBrayvr1q1j9OjRzJ49G4Dm5uY6RydJ6k09WgTXAh/JzCnAa4ATI2IKcDJwfWbuA1xfTgMcBuxTPo4HLgAoE8dTgVcDBwKnRsTOw3kgkqClpYXW1laamppoaGigqamJ1tZWWlpa6h2aJKkPw54IZuYfOlv0MvNJoAPYHTgS6GzRuxQ4qnx+JHBZFm4CxkXEi4BZwNLMfCQzHwWWAocO46FIAjo6Opg+fXqXsunTp9PR0VGniCRJ/TXsl4ZrRcQkYH/gZmBCZv6hnPUgxaVjKJLE+2pWW1mWbaq8p/0cT9GayIQJE2hvb98i8VeBr5X6sueee3Leeeex//77s2rVKtrb27ntttvYc889rT8aFOuPBsP60z91SwQjYizwTeDDmflE7Q9HZ2ZGxBb7tejMvAi4CGDatGk5Y8aMLbXpbZ6vlfqycOHCDX0EGxsbyUzOPfdcFi5caP3RoFh/NBjWn/6pSyIYEdtRJIFfzcxvlcV/jIgXZeYfyku/D5Xl9wN71Kw+sSy7H5jRrbx9KOOWtLHOASFz586lo6ODyZMn09LS4kARSRoBhr2PYDkKuBXoyMyza2YtAY4tnx8LfKem/N1ReA3weHkJ+VrgTRGxczlI5E1lmaRh1tzczPLly7n++utZvny5SaAkjRD1GDV8EPAu4OCIuL18HA58BjgkIn4HvLGcBrgGuAtYASwGPgCQmY8AnwJ+Xj4+WZZJGmbeR1CSRqbI3GJd8UaEadOm5S233FLvMLYqtf0zu6ta/dDma2tr4/3vfz/PPPMMa9asYbvttqOxsZELL7zQlkH1yfOPBsP6038RcWtmTtuovGovlIngxvxH0mA8//nP5/HHH+ezn/0sU6ZM4c477+Skk05ip5124uGHH653eNrKef7RYFh/+m9TiaA/MSdpUB555BFOP/105s2bR2NjI/PmzeP000/nkUfsqSFJWzsTQUmDNnXq1F6nJUlbJxNBSYPS0NDAMcccw7Jly1i7di3Lli3jmGOOoaGhrverlyT1g2dqSYMyZ84c/uM//oNDDjmEdevWMXr0aNavX8+JJ55Y79AkSX2wRVDSoLzuda9jxx13ZNSo4nQyatQodtxxR173utfVOTJJUl9MBCUNSktLC1dddRXPPvssy5Yt49lnn+Wqq66ipaWl3qFJkvpgIihpUDo6Opg+fXqXsunTp9PR0VGniCRJ/WUfQUmDMnnyZN7+9rfz/e9/n9WrVzNmzBgOO+wwJk+eXO/QJEl9sEVQ0qDsvvvuXHXVVbz3ve/lu9/9Lu9973u56qqr2H333esdmiSpD/6yiLwzuwalsbGR1atXb1Q+ZswYnnnmmTpEpJHE848Gw/rTf/6yiKQh0VMS2Fu5JGnrYSIoaYvYeeedu/yVJG39TAQlbRGPPvpol7+SpK2fiaAkSVJFefuYbUxvHWeHa3t20JUkaWQwEdzGDCQJc9SVpC3BL6LSyGMiKEnaIvwiKo089hHUJk+2noQlDbWvfe1rm1UuacsyERRQJH2ZyV7zv7fhuSQNtebmZr72ta+x7777Qoxi33335Wtf+xrNzc31Dk3DLCI2+zGc29tWeWlYklRXzc3NNDc3M+nkq1n+mTfXOxzViV0L6sNEUNIGdvaXpGrx0rCkDTq7BWzOo9Ouu+4KMar4uwW2J0l9sY/74JkIShqU8ePHA/Dggw9Cri/+1pRL0lCyj/vgmAhKGpSHH354o6Rv/PjxPPzww3WKSJLUX/YR3Ir87WnX8fjTa+odBpNOvrpu+97pOdvxy1PfVLf9a2A6k75JJ1/NPXb2H5E8/3j+UTWZCG5FHn96Td0/RNvb25kxY0bd9l/PDwGpyjz/eP5RNZkISpKkQbFFeeS2KJsIStsIT8Qj90QsjXS2KI/cFuURnwhGxKHAOcBo4EuZ+Zk6hyTVhSfikXsilqR6GdGJYESMBv4DOARYCfw8IpZk5p31jWxgdpx8Mn9z6cn1DgMurd+ud5wM4GADabh5/vH8o2oa0YkgcCCwIjPvAoiIy4EjgRGZCD7Z8RlbdGzRGTA/yP0gHwzPP55/BsPzz8g9/4z0RHB34L6a6ZXAq+sUyxaxVZyIflDfPl4amCc77BVh/Rkczz/Wn4Hy/DNy60+M5DtwR8TbgEMz833l9LuAV2fmB7stdzxwPMCECRNedfnllw97rMOlqamp3iGwbNmyeoegAbL+aDCsPxoM68/QampqujUzp3UvH+ktgvcDe9RMTyzLusjMi4CLAKZNm5b1vPQw1Aab2Nf70ozqy/qjwbD+aDCsP/Ux0n9i7ufAPhHx4ojYHngHsKTOMUmSJI0II7pFMDPXRsQHgWspbh9zcWbeUeewJEmSRoQRnQgCZOY1wDX1jkOSJGmkGemXhiVJkjRAJoKSJEkVZSIoSZJUUSaCkiRJFWUiKEmSVFEmgpIkSRVlIihJklRRJoKSJEkVZSIoSZJUUSaCkiRJFRWZWe8YhlVE/Am4t95xbMV2Af5c7yA0Yll/NBjWHw2G9ad3e2XmC7oXVi4RVO8i4pbMnFbvODQyWX80GNYfDYb1Z2C8NCxJklRRJoKSJEkVZSKo7i6qdwAa0aw/GgzrjwbD+jMA9hGUJEmqKFsEJUmSKspEUJIkqaJMBLcSEXFURGREvKKXZS6JiLf1sZ33RMR5Nducsplx7B8RreXzIyPiVxFxe0TcEhHTa5ZbV5bfHhFLetnenhFxXUR0RMSdETGp2/wvRsSqmukPRsR7NydmQUQsiIg7at6vVw9wO9Mi4otDEF9ExA0R8bxyelxEXBkRvynrxmu7Lf+R8v9hl35uf/uI+HFENGzp2LdW5Wt6Y0QcVlP2jxHxgzrFMyEi1kbE+3pZ5n0R8YU+trN3RNxePj8gIg7dzDh2iIj2iBgVEa+KiJsiYnn5v/G2muW+EhF315zH/mYT27s0In4ZEb+OiK9HxA7d5h9d1tX9yun9Os+hVbQl62VEvDcidq2ZXhkR4/qx3rSIuLCf+9jsOlJ+tv7b5h7PViszfWwFD+AK4CfAab0scwnwtj628x7gvP4u38P63wD+tnw+lr/2I30l8Jua5Vb1c3vtwCE123tuzbxpwJdrtwU8F7it3u/HSHoArwX+GxhTTu8C7DZM+27o53JvBj5fM30p8L7y+fbAuJp5ewDXUtz4fZcetnUJMKOH8lOBY+r9fgzzez8V6AAay/+v3wEvrVMsc8tz2PW9LPM+4At9bGdv4Pb+Lt/D+h8CTiyfv7zz9QAmAg8CO5bTXwGO6sf2nlfz/IvAR2vnAT8Cfg7sV1O+DNi93vWjXo8tVS+BG7u9ritrzxW9rPdtYN8+lhk/0DoCBHA70Fjv13pLPGwR3ApExFhgOjAbeEdNeUTEeRHx24j4IfDCmnn3dLaWlN9+2rtt83XAW4HPld9kXhoR/1K2yv0qIi7vIY4dgVdm5i8BMnNVlrUe2AHYrJFFUbRGNmTm0prt/aWcNxr4HHBS7Trl/Hsi4sDN2VfFvQj4c2auBsjMP2fmA7Dh2+6PIuLWiLg2Il5UlrdHxBkR8bOI+J+IeH1ZPiMivlc+Hx8RV5X15aaIeGVZ/u8R8eWI+Cnw5YjYt9zO7eWy+/QQ4zHAd8r1dwLeALSW8T6bmY/VLPt5inqxuSPZrir3UxmZuRz4LjAf+Dfgssz834g4qWzhWB4Rc6FrS1s5fXJEfKJ8fmNEfKZ8H39bnj86W9e+WZ43roziysB+mwinGfgw8JLOelZu431lHfsZ8Jqa8q9ExFE106tqNxYRzymP6Ziybr0tIg4uW+duj4hfdG+dK22oa5n528z83/L5SuBhii9K/ZaZT5TxjKJIbGrr5cLysbrbat8Djt6c/WxLtkS9jIijgf2AK8r3e/tykQ9HxG3lueZl3fddnl9enpl39DCvoWzN+x5wZRnrZteR8nPxJ8Dhm/nSbJVMBLcORwI/yMz/AR6OiFeV5X9P8W1lCvBu4HX93WBm/hewBPhYZu5XVvSTgf0z85XAnB5WmwYsry2IiL+PiN8AVwO1l2wbyw+Fm2pP5t28DHgsIr5V/uN+rkwAAT4ILMnMP/Sw3i3A6/t7rOI6YI/yw/b8iPg/ABGxHXAuRavwq4CLgZaa9Roy80CKD+9Te9juaRSts68ETgEuq5k3BXhjZjZT1KVzMnM/ijq0sodtHQTcWj5/MfAn4D/LevGlzg/0iDgSuL/zy8hmWg783QDWG+lOA94JHAZ8NopuAcdQvBavBT4Qm7js2U2U9eFjFB/eULTyPZiZU4BPAfv3uGLR5WN8Zt5KcVXh7WX5ROBfyzimU7QU9UtmPg18EvhqeQ67sozt+LKuvQF4plscjcDE8gO9e4yd5897aoo/UyYUZ9YkGj0d32UULUUvAc4vy/4OeGFmXtvDKp7DBlkvM/MKila3o8v3/9ly1h8zc3/gS8C8HlY9EPh1bUFE7BMRn6FopTwSOCMzD+6+4mbWkW3mPTYR3Do0A50tdJeX01Cc6Noyc13ZwnPDIPfzK+CrEfFPwNoe5r+I4gN6g8z8dma+AjiK4oOg015Z/JTPO4EvRMRLe9heA8U/ykcp/vlfArwnInYD/pEiSenJQ8Bu/T6qisvMVcCrgOMp3r8rIuI9FF8ipgJLy2/cn6C49NHpW+XfW4FJPWx6OsWlezLzBuD5Ufbxo0jiny6f/zdwSkTMp6gXT2+8KcZn5pPl8wbgAOCC8oT+FHByRDyXIuHcqO9NRMwqWwVup2jp/lI5fXPN67AOeDaKlu3KyMynKLqWfLlsFZ4OfDMzny5f86vo3wdWT/VhOuW5qUzON2plKb2jjAG6nsNeQ3Gp+OHyg/zr/T2uTfgpcE7ZmvS88j2v9ULgke4rRcTuFF0K3lNzleMkYDLFuWlXivNUjzLz3RTnx/8F3la2Dp4FfGQTq1T+HLYF62V3fZ23unyOlS2LHRRfGvbPzH/OzJ90X2kAdWSbeY9NBOssIsYDB1N8sN1D8Y337RERfay6lr++f4393N2bgf+g+BD+eWzcsf7pTW0rM39Mcclnl3L6/vLvXRT9APePiFfHXzvVvpWiZej2zLwrM9dS/OMfQNGqsDewojzm50bEiprdNZaxqJ/KLwvtmXkqRWvrP1D0Y7mj/Da9X2b+TWa+qWa1zstZ6yiSs83xVM2+v0aRnD0NXBMRG33TBtaWH55Q1IuVmdmZxF1JUS9eStFa+MuyXkwEfhERu2bmtZ3HQdHS/b5yuvugmDF0ayWqiPXloze15wzY+H99MPWhGXhf+b59CzggIl7S33jKKwV97jMzP03xhWcscFNs3A1ho3NYeanwamB+Zv68ZlsPZGE1RQJwYLn8D8tz2KJu+15Hkdj8AzCOolX8J+UxT6Oo+50tpp7DCluiXnbXVz3tXgd+QHHV4wjgmxHxjrLleIPNrSM1cW4T77GJYP29jeIb016ZOSkz9wDupvim9GPg6IgYXfa5aapZ7x6KViAoTkw9eRLYETb0b9kjM5dR9NvYieJkWquDIkGjXGfvzoQ0Ig6g+JB9OCJ2jogxZfkuFJf97szMm2uSjiUUHajHRcQLyk0eXC53dWbuWh7vJOAvmblhvxSXlLtcotamRcTLu30g7kcx0OK3wAuiHJEbEdtFxL6bsemfUPa5i4gZFP0Qn+hh/y8B7srML1L0zXplD9v6LUWLMJn5IHBfRLy8nDeTol78OjNfWFMvVgIHlMv3KSKeX8a4ZjOOcVv0E+DvI+I5UfQ/PrIsexDYrfz/baT4YtiXn/LXy7x/Q5H8dBF/7Qu8e8179zmKVsKbgIOj6G+6PcX5rtM9/PUc9vfAaDa24RxW7uulmfmrzDwd+AVFq/cGmfkn4Dmdl/DK89R3gC9l5re7xd3ZXzYoXqPl5TbeWJ7D5kQx8vglNcu9lWLQ3COZuUvN8d4CHJ6Zt5Wb9xy2sYHUyy7vfz91+RzLzMcz87yye8wpFFfaOiLidBhYHSltM+9xZW61sBVrBs7oVvbNsvwDlMkT8HuKS3CdTgNaI+JTFC1yPbkcWBwR/0JxUm4tv/kE8MXs2kGfzPxNROwUETuWTff/ALw7ItZQfPM5OjMzIiYDF0bEeoovE5/JzDu77zwz10XER4Hry3+kW4HF/XhNDgL+vR/LqTAWODeK2yqsBVZQ9KN6NopbIXyxfN8bgC+w6ct73f07cHFE/Ar4C3DsJpZ7O/Cusp48SNF5vrurgRllbFD0Pftq+YF9F/DP/YypN03lfiotM38WEW0UX8SguAT/a4CIWEiRtNxPcV7py7nAZRFxZ7n8ncDj3ZZpphilWeubwKWZuTAiPk2RED5K175bFwLfiYi3UAyu6D7gAoruMB+LiNso+rfOjGJg03qKri7X9bDODyn6U7eXsb2O4gtp521t3lW+HpdHxM4U57BbKfpQdzca+EpNd4PbgBN7WK67JsoBKyoMsF7+J8XVsqfp2hrXmzsovgDvUF6ero3hVuDWKAYizSiLB1pHmoD/18+Ytmr+xJy6iIj/BzyZmV+q0/73B+Zl5rvqsX8NjfKb9WWZecgQ7uNbwMlZDLrSFlB2H2nIzGfKVufrgH3Krh5bpSgGcXwgM7fEl4uB7P85FLePOaiHPowaBhHxMeBPmXnJEG1/N+CSbl1tRiwvDau7C+j5m/lw2YVilKG2IVmMDl8cfx1sskWVLYtXmQRucWOBn0bELyla+d6/NSeBAGUfrxtr+qQOtz2Bk0wC6+o8YCi7iOxBL4OLRhpbBCVJkirKFkFJkqSKMhGUJEmqKBNBSZKkijIRlCRJqigTQUmVEhH/v737CbGyisM4/n0qxHBAKcJN4Q2FhJxa1KLxTwRBLY10MwsXEkFu2xZhuKigBBelK01sJyLCEA0SJChlf9SUIomYWURU1KK4oEj6tDjn1fHOv4vMOKPv84Fh7j33fd9z3ln95pxz36cj6ZJuDrp/SZIlrZ2nPl+X9JOkC5K+l7RbJQt63khaXRMyuvPZT0Tc2VIIRkQb/VLj6hrDwEluZOTOGUmvAS8Az9gepOSW/gncP8WxU6Vr3BLbvfcYETFJCsGIaLUad7UReIWSwNO03yPpozqTd1zSpzWpBUlPSToh6TtJo00U1TTeAHY0ST62r9h+t4nrk9SV9EF9Vt+QpOclna2zh/snxDmO10hHJD0t6Yv6eqekQ5K+lPSzpFfn/I8UEXetFIIR0Xabgc/qw6j/ltTk374MdCj5utuA65nNlOi1rTW/dD8l/myS+gDtAdtjM/S/DDht+0lKzNbHlDjHQUos4I4+7uEJShzlEPBWTT6IiJhVCsGIaLthSi439XezPLwROGz7mu3fKbFhAI8B64DjdZ/hm8DD/XQk6cW6b29c0vrafJWS2tFce2xCQspB4Nk+Ln3M9iXbf9Vx9pvLGhEtd99CDyAiYqFIeoAykzYoycC9gGtW6bSnAT/YHprt+rb/rUu/j9oesz0KjEoaAZbUwy73GUf2Hzf+eV/a29Us7yMippQZwYhos63AIdurbHdsPwKMAZuAU8CWuldwJfBcPeci8JCk60vFkh6foY93gL2SVtTjxeRCrnER6EhaU99vA07U1+NAs2y9pee8zZKWSnqwjvObmW87IqJIIRgRbTYMHO1pO1LbjwC/Aj8CnwBngH9sX6EUkO/VL3icA9Yzvb3A58BpSecpBebZ+nMT25eB7cBhSReAa8C++vHbwB5J31KWkyc6T1kS/grYZfu32W89IgJkZwUhItpDUgcYsb2uj2MHbHfrTNvXwIa6X3DRkLQT6Np+f5rPu7YHbu+oIuJOkT2CEdE2V4Hlks718Zy9kbqku4Qy07aoisCZSFpNmdX8Y6HHEhGLV2YEIyLmgKQPgQ09zXtsH1iI8URE9COFYERERERL5csiERERES2VQjAiIiKipVIIRkRERLRUCsGIiIiIlvofZajhy7vooToAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "jGqaXBjoqTzB", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 302 + }, + "outputId": "4a02cb6f-5bdc-49ab-fbf5-717a8816831f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKIAAAH5CAYAAACyFZYZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5DElEQVR4nO3df5RXdb3v8dcAzoDmDP5iBhKFUx5/HExTFMcfdb2yHBNboZ6uKBYZR04FhaIpVmIdLRSv5m/Je0pspfnjnvQYJMWB0lMSKv42Re9JQ4MBO8iMUAIy+/5RfI9zQMVp3APj47HWd62+e3++3+97T3uVPtf+7m9VURRFAAAAAOBd1qOrBwAAAADgvUGIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQil5dPcB7SVtbW5YsWZLtt98+VVVVXT0OAAAAQKcoiiKvvvpqBgwYkB493vy6JyGqREuWLMnAgQO7egwAAACAd8WLL76YXXfd9U33C1El2n777ZP8+b+U2traLp4GAAAAoHO0trZm4MCBlfbxZoSoEm34Ol5tba0QBQAAAHQ7b3crIjcrBwAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAoRa+uHoCtz6DJs7p6BP7ihYtHdPUIAAAAsNlcEQUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRdGqLuu+++fPzjH8+AAQNSVVWVu+66q93+oigyZcqU9O/fP3369Mnw4cPz3HPPtVuzYsWKjB49OrW1tenbt2/Gjh2bVatWtVvz+OOP54gjjkjv3r0zcODATJs2baNZ7rjjjuy1117p3bt39t133/zkJz95x7MAAAAA8Oa6NEStXr06++23X6699tpN7p82bVquuuqqTJ8+PQsWLMh2222XpqamvPbaa5U1o0ePzlNPPZU5c+Zk5syZue+++zJu3LjK/tbW1hx99NHZfffds3Dhwlx66aX5+te/nhtuuKGy5v7778/JJ5+csWPH5pFHHsnIkSMzcuTIPPnkk+9oFgAAAADeXFVRFEVXD5EkVVVVufPOOzNy5Mgkf74CacCAATnrrLNy9tlnJ0laWlpSX1+fGTNmZNSoUXn66aezzz775MEHH8zQoUOTJLNnz86xxx6bl156KQMGDMj111+fr371q2lubk51dXWSZPLkybnrrrvyzDPPJElOOumkrF69OjNnzqzMc8ghh2T//ffP9OnTN2uWTVmzZk3WrFlTed7a2pqBAwempaUltbW1nfsHLNGgybO6egT+4oWLR3T1CAAAAJDW1tbU1dW9bfPYYu8R9fzzz6e5uTnDhw+vbKurq8uwYcMyf/78JMn8+fPTt2/fSoRKkuHDh6dHjx5ZsGBBZc1HPvKRSoRKkqampixatCivvPJKZc0bP2fDmg2fszmzbMrUqVNTV1dXeQwcOLCjfw4AAACArd4WG6Kam5uTJPX19e2219fXV/Y1NzenX79+7fb36tUrO+64Y7s1m3qPN37Gm6154/63m2VTzjvvvLS0tFQeL7744tscNQAAAED31aurB+jOampqUlNT09VjAAAAAGwRttgrohoaGpIky5Yta7d92bJllX0NDQ1Zvnx5u/2vv/56VqxY0W7Npt7jjZ/xZmveuP/tZgEAAADgrW2xIWrw4MFpaGjI3LlzK9taW1uzYMGCNDY2JkkaGxuzcuXKLFy4sLJm3rx5aWtry7Bhwypr7rvvvqxbt66yZs6cOdlzzz2zww47VNa88XM2rNnwOZszCwAAAABvrUtD1KpVq/Loo4/m0UcfTfLnm4I/+uijWbx4caqqqnLGGWfkoosuyt13350nnngin/70pzNgwIDKL+vtvffeOeaYY3L66afngQceyK9+9atMmDAho0aNyoABA5Ikp5xySqqrqzN27Ng89dRTue2223LllVdm0qRJlTkmTpyY2bNn57LLLsszzzyTr3/963nooYcyYcKEJNmsWQAAAAB4a116j6iHHnooRx55ZOX5hjg0ZsyYzJgxI+ecc05Wr16dcePGZeXKlTn88MMze/bs9O7du/Kam2++ORMmTMhRRx2VHj165MQTT8xVV11V2V9XV5ef/exnGT9+fA488MDsvPPOmTJlSsaNG1dZc+ihh+aWW27J1772tXzlK1/JHnvskbvuuitDhgyprNmcWQAAAAB4c1VFURRdPcR7RWtra+rq6tLS0pLa2tquHqfDBk2e1dUj8BcvXDyiq0cAAACAzW4eW+w9ogAAAADoXoQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUW3SIWr9+fc4///wMHjw4ffr0yQc+8IFceOGFKYqisqYoikyZMiX9+/dPnz59Mnz48Dz33HPt3mfFihUZPXp0amtr07dv34wdOzarVq1qt+bxxx/PEUcckd69e2fgwIGZNm3aRvPccccd2WuvvdK7d+/su++++clPfvLuHDgAAABAN7RFh6hLLrkk119/fa655po8/fTTueSSSzJt2rRcffXVlTXTpk3LVVddlenTp2fBggXZbrvt0tTUlNdee62yZvTo0XnqqacyZ86czJw5M/fdd1/GjRtX2d/a2pqjjz46u+++exYuXJhLL700X//613PDDTdU1tx///05+eSTM3bs2DzyyCMZOXJkRo4cmSeffLKcPwYAAADAVq6qeOPlRVuY4447LvX19fnud79b2XbiiSemT58++cEPfpCiKDJgwICcddZZOfvss5MkLS0tqa+vz4wZMzJq1Kg8/fTT2WefffLggw9m6NChSZLZs2fn2GOPzUsvvZQBAwbk+uuvz1e/+tU0Nzenuro6STJ58uTcddddeeaZZ5IkJ510UlavXp2ZM2dWZjnkkEOy//77Z/r06Zt1PK2tramrq0tLS0tqa2s75W/UFQZNntXVI/AXL1w8oqtHAAAAgM1uHlv0FVGHHnpo5s6dm2effTZJ8thjj+WXv/xlPvaxjyVJnn/++TQ3N2f48OGV19TV1WXYsGGZP39+kmT+/Pnp27dvJUIlyfDhw9OjR48sWLCgsuYjH/lIJUIlSVNTUxYtWpRXXnmlsuaNn7NhzYbP2ZQ1a9aktbW13QMAAADgvapXVw/wViZPnpzW1tbstdde6dmzZ9avX59vfvObGT16dJKkubk5SVJfX9/udfX19ZV9zc3N6devX7v9vXr1yo477thuzeDBgzd6jw37dthhhzQ3N7/l52zK1KlT841vfOOdHjYAAABAt7RFXxF1++235+abb84tt9yShx9+ODfddFP+9//+37npppu6erTNct5556WlpaXyePHFF7t6JAAAAIAus0VfEfXlL385kydPzqhRo5Ik++67b373u99l6tSpGTNmTBoaGpIky5YtS//+/SuvW7ZsWfbff/8kSUNDQ5YvX97ufV9//fWsWLGi8vqGhoYsW7as3ZoNz99uzYb9m1JTU5Oampp3etgAAAAA3dIWfUXUH//4x/To0X7Enj17pq2tLUkyePDgNDQ0ZO7cuZX9ra2tWbBgQRobG5MkjY2NWblyZRYuXFhZM2/evLS1tWXYsGGVNffdd1/WrVtXWTNnzpzsueee2WGHHSpr3vg5G9Zs+BwAAAAA3toWHaI+/vGP55vf/GZmzZqVF154IXfeeWcuv/zyHH/88UmSqqqqnHHGGbnoooty991354knnsinP/3pDBgwICNHjkyS7L333jnmmGNy+umn54EHHsivfvWrTJgwIaNGjcqAAQOSJKecckqqq6szduzYPPXUU7ntttty5ZVXZtKkSZVZJk6cmNmzZ+eyyy7LM888k69//et56KGHMmHChNL/LgAAAABboy36q3lXX311zj///HzhC1/I8uXLM2DAgPzjP/5jpkyZUllzzjnnZPXq1Rk3blxWrlyZww8/PLNnz07v3r0ra26++eZMmDAhRx11VHr06JETTzwxV111VWV/XV1dfvazn2X8+PE58MADs/POO2fKlCkZN25cZc2hhx6aW265JV/72tfyla98JXvssUfuuuuuDBkypJw/BgAAAMBWrqooiqKrh3ivaG1tTV1dXVpaWlJbW9vV43TYoMmzunoE/uKFi0d09QgAAACw2c1ji/5qHgAAAADdhxAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlKJDIeq3v/1tZ88BAAAAQDfXoRD1wQ9+MEceeWR+8IMf5LXXXuvsmQAAAADohjoUoh5++OF86EMfyqRJk9LQ0JB//Md/zAMPPNDZswEAAADQjXQoRO2///658sors2TJknzve9/L0qVLc/jhh2fIkCG5/PLL8/LLL3f2nAAAAABs5f6qm5X36tUrJ5xwQu64445ccskl+X//7//l7LPPzsCBA/PpT386S5cu7aw5AQAAANjK/VUh6qGHHsoXvvCF9O/fP5dffnnOPvvs/Md//EfmzJmTJUuW5BOf+ERnzQkAAADAVq5XR150+eWX58Ybb8yiRYty7LHH5vvf/36OPfbY9Ojx5641ePDgzJgxI4MGDerMWQEAAADYinUoRF1//fX57Gc/m8985jPp37//Jtf069cv3/3ud/+q4QAAAADoPjoUop577rm3XVNdXZ0xY8Z05O0BAAAA6IY6dI+oG2+8MXfcccdG2++4447cdNNNf/VQAAAAAHQ/HQpRU6dOzc4777zR9n79+uVb3/rWXz0UAAAAAN1Ph0LU4sWLM3jw4I2277777lm8ePFfPRQAAAAA3U+HQlS/fv3y+OOPb7T9sccey0477fRXDwUAAABA99OhEHXyySfnS1/6Un7+859n/fr1Wb9+febNm5eJEydm1KhRnT0jAAAAAN1Ah34178ILL8wLL7yQo446Kr16/fkt2tra8ulPf9o9ogAAAADYpA6FqOrq6tx222258MIL89hjj6VPnz7Zd999s/vuu3f2fAAAAAB0Ex36at4Gf/u3f5tPfvKTOe644961CPX73/8+p556anbaaadK8HrooYcq+4uiyJQpU9K/f//06dMnw4cPz3PPPdfuPVasWJHRo0entrY2ffv2zdixY7Nq1ap2ax5//PEcccQR6d27dwYOHJhp06ZtNMsdd9yRvfbaK717986+++6bn/zkJ+/KMQMAAAB0Rx26Imr9+vWZMWNG5s6dm+XLl6etra3d/nnz5nXKcK+88koOO+ywHHnkkbnnnnuyyy675LnnnssOO+xQWTNt2rRcddVVuemmmzJ48OCcf/75aWpqym9+85v07t07STJ69OgsXbo0c+bMybp163Laaadl3LhxueWWW5Ikra2tOfroozN8+PBMnz49TzzxRD772c+mb9++GTduXJLk/vvvz8knn5ypU6fmuOOOyy233JKRI0fm4YcfzpAhQzrleAEAAAC6s6qiKIp3+qIJEyZkxowZGTFiRPr375+qqqp2+7/97W93ynCTJ0/Or371q/z7v//7JvcXRZEBAwbkrLPOytlnn50kaWlpSX19fWbMmJFRo0bl6aefzj777JMHH3wwQ4cOTZLMnj07xx57bF566aUMGDAg119/fb761a+mubk51dXVlc++66678swzzyRJTjrppKxevTozZ86sfP4hhxyS/fffP9OnT9+s42ltbU1dXV1aWlpSW1vb4b9LVxs0eVZXj8BfvHDxiK4eAQAAADa7eXToiqhbb701t99+e4499tgOD7g57r777jQ1NeWTn/xk7r333rz//e/PF77whZx++ulJkueffz7Nzc0ZPnx45TV1dXUZNmxY5s+fn1GjRmX+/Pnp27dvJUIlyfDhw9OjR48sWLAgxx9/fObPn5+PfOQjlQiVJE1NTbnkkkvyyiuvZIcddsj8+fMzadKkdvM1NTXlrrvuetP516xZkzVr1lSet7a2/rV/EgAAAICtVofuEVVdXZ0PfvCDnT3LRn7729/m+uuvzx577JGf/vSn+fznP58vfelLuemmm5Ikzc3NSZL6+vp2r6uvr6/sa25uTr9+/drt79WrV3bcccd2azb1Hm/8jDdbs2H/pkydOjV1dXWVx8CBA9/R8QMAAAB0Jx0KUWeddVauvPLKdOBbfe9IW1tbDjjggHzrW9/Khz/84YwbNy6nn376Zn8Vrqudd955aWlpqTxefPHFrh4JAAAAoMt06Kt5v/zlL/Pzn/8899xzT/7u7/4u22yzTbv9P/rRjzpluP79+2efffZpt23vvffOv/zLvyRJGhoakiTLli1L//79K2uWLVuW/fffv7Jm+fLl7d7j9ddfz4oVKyqvb2hoyLJly9qt2fD87dZs2L8pNTU1qamp2axjBQAAAOjuOnRFVN++fXP88cfnox/9aHbeeed2Xz+rq6vrtOEOO+ywLFq0qN22Z599NrvvvnuSZPDgwWloaMjcuXMr+1tbW7NgwYI0NjYmSRobG7Ny5cosXLiwsmbevHlpa2vLsGHDKmvuu+++rFu3rrJmzpw52XPPPSu/0NfY2Njuczas2fA5AAAAALy1Dl0RdeONN3b2HJt05pln5tBDD823vvWt/K//9b/ywAMP5IYbbsgNN9yQJKmqqsoZZ5yRiy66KHvssUcGDx6c888/PwMGDMjIkSOT/PkKqmOOOabylb5169ZlwoQJGTVqVAYMGJAkOeWUU/KNb3wjY8eOzbnnnpsnn3wyV155Zbtf/5s4cWI++tGP5rLLLsuIESNy66235qGHHqrMAgAAAMBb69AVUcmfv972b//2b/nOd76TV199NUmyZMmSrFq1qtOGO+igg3LnnXfmhz/8YYYMGZILL7wwV1xxRUaPHl1Zc8455+SLX/xixo0bl4MOOiirVq3K7Nmz07t378qam2++OXvttVeOOuqoHHvssTn88MPbBaS6urr87Gc/y/PPP58DDzwwZ511VqZMmZJx48ZV1hx66KG55ZZbcsMNN2S//fbL//2//zd33XVXhgwZ0mnHCwAAANCdVRUduOP47373uxxzzDFZvHhx1qxZk2effTZ/8zd/k4kTJ2bNmjVbzc3Ey9ba2pq6urq0tLSktra2q8fpsEGTZ3X1CPzFCxeP6OoRAAAAYLObR4euiJo4cWKGDh2aV155JX369KlsP/744ze6jxIAAAAAJB28R9S///u/5/777091dXW77YMGDcrvf//7ThkMAAAAgO6lQ1dEtbW1Zf369Rttf+mll7L99tv/1UMBAAAA0P10KEQdffTRueKKKyrPq6qqsmrVqlxwwQU59thjO2s2AAAAALqRDn0177LLLktTU1P22WefvPbaaznllFPy3HPPZeedd84Pf/jDzp4RAAAAgG6gQyFq1113zWOPPZZbb701jz/+eFatWpWxY8dm9OjR7W5eDgAAAAAbdChEJUmvXr1y6qmnduYsAAAAAHRjHQpR3//+999y/6c//ekODQMAAABA99WhEDVx4sR2z9etW5c//vGPqa6uzrbbbitEAQAAALCRDv1q3iuvvNLusWrVqixatCiHH364m5UDAAAAsEkdClGbsscee+Tiiy/e6GopAAAAAEg6MUQlf76B+ZIlSzrzLQEAAADoJjp0j6i777673fOiKLJ06dJcc801OeywwzplMAAAAAC6lw6FqJEjR7Z7XlVVlV122SX/83/+z1x22WWdMRcAAAAA3UyHQlRbW1tnzwEAAABAN9ep94gCAAAAgDfToSuiJk2atNlrL7/88o58BAAAAADdTIdC1COPPJJHHnkk69aty5577pkkefbZZ9OzZ88ccMABlXVVVVWdMyUAAAAAW70OhaiPf/zj2X777XPTTTdlhx12SJK88sorOe2003LEEUfkrLPO6tQhAQAAANj6degeUZdddlmmTp1aiVBJssMOO+Siiy7yq3kAAAAAbFKHQlRra2tefvnljba//PLLefXVV//qoQAAAADofjoUoo4//vicdtpp+dGPfpSXXnopL730Uv7lX/4lY8eOzQknnNDZMwIAAADQDXToHlHTp0/P2WefnVNOOSXr1q378xv16pWxY8fm0ksv7dQBAQAAAOgeOhSitt1221x33XW59NJL8x//8R9Jkg984APZbrvtOnU4AAAAALqPDn01b4OlS5dm6dKl2WOPPbLddtulKIrOmgsAAACAbqZDIeo///M/c9RRR+Vv//Zvc+yxx2bp0qVJkrFjx+ass87q1AEBAAAA6B46FKLOPPPMbLPNNlm8eHG23XbbyvaTTjops2fP7rThAAAAAOg+OnSPqJ/97Gf56U9/ml133bXd9j322CO/+93vOmUwAAAAALqXDl0RtXr16nZXQm2wYsWK1NTU/NVDAQAAAND9dChEHXHEEfn+979feV5VVZW2trZMmzYtRx55ZKcNBwAAAED30aGv5k2bNi1HHXVUHnrooaxduzbnnHNOnnrqqaxYsSK/+tWvOntGAAAAALqBDl0RNWTIkDz77LM5/PDD84lPfCKrV6/OCSeckEceeSQf+MAHOntGAAAAALqBd3xF1Lp163LMMcdk+vTp+epXv/puzAQAAABAN/SOr4jaZptt8vjjj78bswAAAADQjXXoq3mnnnpqvvvd73b2LAAAAAB0Yx26Wfnrr7+e733ve/m3f/u3HHjggdluu+3a7b/88ss7ZTgAAAAAuo93FKJ++9vfZtCgQXnyySdzwAEHJEmeffbZdmuqqqo6bzoAAAAAuo13FKL22GOPLF26ND//+c+TJCeddFKuuuqq1NfXvyvDAQAAANB9vKN7RBVF0e75Pffck9WrV3fqQAAAAAB0Tx26WfkG/z1MAQAAAMCbeUchqqqqaqN7QLknFAAAAACb4x3dI6ooinzmM59JTU1NkuS1117L5z73uY1+Ne9HP/pR500IAAAAQLfwjkLUmDFj2j0/9dRTO3UYAAAAALqvdxSibrzxxndrDgAAAAC6ub/qZuUAAAAAsLmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKsVWFqIsvvjhVVVU544wzKttee+21jB8/PjvttFPe97735cQTT8yyZcvavW7x4sUZMWJEtt122/Tr1y9f/vKX8/rrr7db84tf/CIHHHBAampq8sEPfjAzZszY6POvvfbaDBo0KL17986wYcPywAMPvBuHCQAAANAtbTUh6sEHH8x3vvOdfOhDH2q3/cwzz8yPf/zj3HHHHbn33nuzZMmSnHDCCZX969evz4gRI7J27drcf//9uemmmzJjxoxMmTKlsub555/PiBEjcuSRR+bRRx/NGWeckX/4h3/IT3/608qa2267LZMmTcoFF1yQhx9+OPvtt1+ampqyfPnyd//gAQAAALqBqqIoiq4e4u2sWrUqBxxwQK677rpcdNFF2X///XPFFVekpaUlu+yyS2655Zb8/d//fZLkmWeeyd5775358+fnkEMOyT333JPjjjsuS5YsSX19fZJk+vTpOffcc/Pyyy+nuro65557bmbNmpUnn3yy8pmjRo3KypUrM3v27CTJsGHDctBBB+Waa65JkrS1tWXgwIH54he/mMmTJ2/WcbS2tqauri4tLS2pra3tzD9RqQZNntXVI/AXL1w8oqtHAAAAgM1uHlvFFVHjx4/PiBEjMnz48HbbFy5cmHXr1rXbvtdee2W33XbL/PnzkyTz58/PvvvuW4lQSdLU1JTW1tY89dRTlTX//b2bmpoq77F27dosXLiw3ZoePXpk+PDhlTWbsmbNmrS2trZ7AAAAALxX9erqAd7OrbfemocffjgPPvjgRvuam5tTXV2dvn37ttteX1+f5ubmypo3RqgN+zfse6s1ra2t+dOf/pRXXnkl69ev3+SaZ5555k1nnzp1ar7xjW9s3oECAAAAdHNb9BVRL774YiZOnJibb745vXv37upx3rHzzjsvLS0tlceLL77Y1SMBAAAAdJktOkQtXLgwy5cvzwEHHJBevXqlV69euffee3PVVVelV69eqa+vz9q1a7Ny5cp2r1u2bFkaGhqSJA0NDRv9it6G52+3pra2Nn369MnOO++cnj17bnLNhvfYlJqamtTW1rZ7AAAAALxXbdEh6qijjsoTTzyRRx99tPIYOnRoRo8eXfnP22yzTebOnVt5zaJFi7J48eI0NjYmSRobG/PEE0+0+3W7OXPmpLa2Nvvss09lzRvfY8OaDe9RXV2dAw88sN2atra2zJ07t7IGAAAAgLe2Rd8javvtt8+QIUPabdtuu+2y0047VbaPHTs2kyZNyo477pja2tp88YtfTGNjYw455JAkydFHH5199tknn/rUpzJt2rQ0Nzfna1/7WsaPH5+ampokyec+97lcc801Oeecc/LZz3428+bNy+23355Zs/7r1+EmTZqUMWPGZOjQoTn44INzxRVXZPXq1TnttNNK+msAAAAAbN226BC1Ob797W+nR48eOfHEE7NmzZo0NTXluuuuq+zv2bNnZs6cmc9//vNpbGzMdtttlzFjxuSf/umfKmsGDx6cWbNm5cwzz8yVV16ZXXfdNf/8z/+cpqamypqTTjopL7/8cqZMmZLm5ubsv//+mT179kY3MAcAAABg06qKoii6eoj3itbW1tTV1aWlpWWrvl/UoMmz3n4RpXjh4hFdPQIAAABsdvPYou8RBQAAAED3IUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKXYokPU1KlTc9BBB2X77bdPv379MnLkyCxatKjdmtdeey3jx4/PTjvtlPe973058cQTs2zZsnZrFi9enBEjRmTbbbdNv3798uUvfzmvv/56uzW/+MUvcsABB6SmpiYf/OAHM2PGjI3mufbaazNo0KD07t07w4YNywMPPNDpxwwAAADQXW3RIeree+/N+PHj8+tf/zpz5szJunXrcvTRR2f16tWVNWeeeWZ+/OMf54477si9996bJUuW5IQTTqjsX79+fUaMGJG1a9fm/vvvz0033ZQZM2ZkypQplTXPP/98RowYkSOPPDKPPvpozjjjjPzDP/xDfvrTn1bW3HbbbZk0aVIuuOCCPPzww9lvv/3S1NSU5cuXl/PHAAAAANjKVRVFUXT1EJvr5ZdfTr9+/XLvvffmIx/5SFpaWrLLLrvklltuyd///d8nSZ555pnsvffemT9/fg455JDcc889Oe6447JkyZLU19cnSaZPn55zzz03L7/8cqqrq3Puuedm1qxZefLJJyufNWrUqKxcuTKzZ89OkgwbNiwHHXRQrrnmmiRJW1tbBg4cmC9+8YuZPHnyZs3f2tqaurq6tLS0pLa2tjP/NKUaNHlWV4/AX7xw8YiuHgEAAAA2u3ls0VdE/XctLS1Jkh133DFJsnDhwqxbty7Dhw+vrNlrr72y2267Zf78+UmS+fPnZ999961EqCRpampKa2trnnrqqcqaN77HhjUb3mPt2rVZuHBhuzU9evTI8OHDK2s2Zc2aNWltbW33AAAAAHiv2mpCVFtbW84444wcdthhGTJkSJKkubk51dXV6du3b7u19fX1aW5urqx5Y4TasH/Dvrda09ramj/96U/5wx/+kPXr129yzYb32JSpU6emrq6u8hg4cOA7P3AAAACAbmKrCVHjx4/Pk08+mVtvvbWrR9ls5513XlpaWiqPF198satHAgAAAOgyvbp6gM0xYcKEzJw5M/fdd1923XXXyvaGhoasXbs2K1eubHdV1LJly9LQ0FBZ899/3W7Dr+q9cc1//6W9ZcuWpba2Nn369EnPnj3Ts2fPTa7Z8B6bUlNTk5qamnd+wAAAAADd0BZ9RVRRFJkwYULuvPPOzJs3L4MHD263/8ADD8w222yTuXPnVrYtWrQoixcvTmNjY5KksbExTzzxRLtft5szZ05qa2uzzz77VNa88T02rNnwHtXV1TnwwAPbrWlra8vcuXMrawAAAAB4a1v0FVHjx4/PLbfckn/913/N9ttvX7kfU11dXfr06ZO6urqMHTs2kyZNyo477pja2tp88YtfTGNjYw455JAkydFHH5199tknn/rUpzJt2rQ0Nzfna1/7WsaPH1+5Wulzn/tcrrnmmpxzzjn57Gc/m3nz5uX222/PrFn/9etwkyZNypgxYzJ06NAcfPDBueKKK7J69eqcdtpp5f9hAAAAALZCW3SIuv7665Mk/+N//I9222+88cZ85jOfSZJ8+9vfTo8ePXLiiSdmzZo1aWpqynXXXVdZ27Nnz8ycOTOf//zn09jYmO222y5jxozJP/3TP1XWDB48OLNmzcqZZ56ZK6+8Mrvuumv++Z//OU1NTZU1J510Ul5++eVMmTIlzc3N2X///TN79uyNbmAOAAAAwKZVFUVRdPUQ7xWtra2pq6tLS0tLamtru3qcDhs0edbbL6IUL1w8oqtHAAAAgM1uHlv0PaIAAAAA6D6EKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQCiEKAAAAgFIIUQAAAACUQogCAAAAoBRCFAAAAAClEKIAAAAAKIUQBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAEohRAEAAABQil5dPQDQcYMmz+rqEUjywsUjunoEAACArYIrogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhQAAAAApRCiAAAAACiFEAUAAABAKYQoAAAAAErRq6sH2Npce+21ufTSS9Pc3Jz99tsvV199dQ4++OCuHgvoQoMmz+rqEfiLFy4e0dUjAAAAb8EVUe/AbbfdlkmTJuWCCy7Iww8/nP322y9NTU1Zvnx5V48GAAAAsMVzRdQ7cPnll+f000/PaaedliSZPn16Zs2ale9973uZPHnyRuvXrFmTNWvWVJ63tLQkSVpbW8sZ+F3StuaPXT0CwCZt7f/7CgAAW6sN/yxeFMVbrhOiNtPatWuzcOHCnHfeeZVtPXr0yPDhwzN//vxNvmbq1Kn5xje+sdH2gQMHvmtzAryX1V3R1RMAAMB726uvvpq6uro33S9EbaY//OEPWb9+ferr69ttr6+vzzPPPLPJ15x33nmZNGlS5XlbW1tWrFiRnXbaKVVVVe/qvO+W1tbWDBw4MC+++GJqa2u7ehx4x5zDbM2cv2ztnMNs7ZzDbM2cv7zbiqLIq6++mgEDBrzlOiHqXVRTU5Oampp22/r27ds1w3Sy2tpa/+PFVs05zNbM+cvWzjnM1s45zNbM+cu76a2uhNrAzco3084775yePXtm2bJl7bYvW7YsDQ0NXTQVAAAAwNZDiNpM1dXVOfDAAzN37tzKtra2tsydOzeNjY1dOBkAAADA1sFX896BSZMmZcyYMRk6dGgOPvjgXHHFFVm9enXlV/TeC2pqanLBBRds9JVD2Fo4h9maOX/Z2jmH2do5h9maOX/ZUlQVb/e7erRzzTXX5NJLL01zc3P233//XHXVVRk2bFhXjwUAAACwxROiAAAAACiFe0QBAAAAUAohCgAAAIBSCFEAAAAAlEKIAgAAAKAUQhTvyLXXXptBgwald+/eGTZsWB544IGuHgkyderUHHTQQdl+++3Tr1+/jBw5MosWLWq35rXXXsv48eOz00475X3ve19OPPHELFu2rN2axYsXZ8SIEdl2223Tr1+/fPnLX87rr79e5qFALr744lRVVeWMM86obHP+sqX7/e9/n1NPPTU77bRT+vTpk3333TcPPfRQZX9RFJkyZUr69++fPn36ZPjw4XnuuefavceKFSsyevTo1NbWpm/fvhk7dmxWrVpV9qHwHrR+/fqcf/75GTx4cPr06ZMPfOADufDCC/PG33RyDrOluO+++/Lxj388AwYMSFVVVe666652+zvrXH388cdzxBFHpHfv3hk4cGCmTZv2bh8a7yFCFJvttttuy6RJk3LBBRfk4Ycfzn777ZempqYsX768q0fjPe7ee+/N+PHj8+tf/zpz5szJunXrcvTRR2f16tWVNWeeeWZ+/OMf54477si9996bJUuW5IQTTqjsX79+fUaMGJG1a9fm/vvvz0033ZQZM2ZkypQpXXFIvEc9+OCD+c53vpMPfehD7bY7f9mSvfLKKznssMOyzTbb5J577slvfvObXHbZZdlhhx0qa6ZNm5arrroq06dPz4IFC7Lddtulqakpr732WmXN6NGj89RTT2XOnDmZOXNm7rvvvowbN64rDon3mEsuuSTXX399rrnmmjz99NO55JJLMm3atFx99dWVNc5hthSrV6/Ofvvtl2uvvXaT+zvjXG1tbc3RRx+d3XffPQsXLsyll16ar3/967nhhhve9ePjPaKAzXTwwQcX48ePrzxfv359MWDAgGLq1KldOBVsbPny5UWS4t577y2KoihWrlxZbLPNNsUdd9xRWfP0008XSYr58+cXRVEUP/nJT4oePXoUzc3NlTXXX399UVtbW6xZs6bcA+A96dVXXy322GOPYs6cOcVHP/rRYuLEiUVROH/Z8p177rnF4Ycf/qb729raioaGhuLSSy+tbFu5cmVRU1NT/PCHPyyKoih+85vfFEmKBx98sLLmnnvuKaqqqorf//73797wUBTFiBEjis9+9rPttp1wwgnF6NGji6JwDrPlSlLceeedleedda5ed911xQ477NDunyHOPffcYs8993yXj4j3CldEsVnWrl2bhQsXZvjw4ZVtPXr0yPDhwzN//vwunAw21tLSkiTZcccdkyQLFy7MunXr2p2/e+21V3bbbbfK+Tt//vzsu+++qa+vr6xpampKa2trnnrqqRKn571q/PjxGTFiRLvzNHH+suW7++67M3To0Hzyk59Mv3798uEPfzj/5//8n8r+559/Ps3Nze3O4bq6ugwbNqzdOdy3b98MHTq0smb48OHp0aNHFixYUN7B8J506KGHZu7cuXn22WeTJI899lh++ctf5mMf+1gS5zBbj846V+fPn5+PfOQjqa6urqxpamrKokWL8sorr5R0NHRnvbp6ALYOf/jDH7J+/fp2/5KTJPX19XnmmWe6aCrYWFtbW84444wcdthhGTJkSJKkubk51dXV6du3b7u19fX1aW5urqzZ1Pm9YR+8m2699dY8/PDDefDBBzfa5/xlS/fb3/42119/fSZNmpSvfOUrefDBB/OlL30p1dXVGTNmTOUc3NQ5+sZzuF+/fu329+rVKzvuuKNzmHfd5MmT09ramr322is9e/bM+vXr881vfjOjR49OEucwW43OOlebm5szePDgjd5jw743fvUaOkKIArqV8ePH58knn8wvf/nLrh4FNsuLL76YiRMnZs6cOendu3dXjwPvWFtbW4YOHZpvfetbSZIPf/jDefLJJzN9+vSMGTOmi6eDt3f77bfn5ptvzi233JK/+7u/y6OPPpozzjgjAwYMcA4DvAt8NY/NsvPOO6dnz54b/UrTsmXL0tDQ0EVTQXsTJkzIzJkz8/Of/zy77rprZXtDQ0PWrl2blStXtlv/xvO3oaFhk+f3hn3wblm4cGGWL1+eAw44IL169UqvXr1y77335qqrrkqvXr1SX1/v/GWL1r9//+yzzz7ttu29995ZvHhxkv86B9/qnyEaGho2+vGT119/PStWrHAO86778pe/nMmTJ2fUqFHZd99986lPfSpnnnlmpk6dmsQ5zNajs85V/1zBu02IYrNUV1fnwAMPzNy5cyvb2traMnfu3DQ2NnbhZPDnn6mdMGFC7rzzzsybN2+jS4kPPPDAbLPNNu3O30WLFmXx4sWV87exsTFPPPFEu/9jnjNnTmprazf6FyzoTEcddVSeeOKJPProo5XH0KFDM3r06Mp/dv6yJTvssMOyaNGidtueffbZ7L777kmSwYMHp6Ghod053NramgULFrQ7h1euXJmFCxdW1sybNy9tbW0ZNmxYCUfBe9kf//jH9OjR/l+Levbsmba2tiTOYbYenXWuNjY25r777su6desqa+bMmZM999zT1/LoHF19t3S2HrfeemtRU1NTzJgxo/jNb35TjBs3rujbt2+7X2mCrvD5z3++qKurK37xi18US5curTz++Mc/VtZ87nOfK3bbbbdi3rx5xUMPPVQ0NjYWjY2Nlf2vv/56MWTIkOLoo48uHn300WL27NnFLrvsUpx33nldcUi8x73xV/OKwvnLlu2BBx4oevXqVXzzm98snnvuueLmm28utt122+IHP/hBZc3FF19c9O3bt/jXf/3X4vHHHy8+8YlPFIMHDy7+9Kc/VdYcc8wxxYc//OFiwYIFxS9/+ctijz32KE4++eSuOCTeY8aMGVO8//3vL2bOnFk8//zzxY9+9KNi5513Ls4555zKGucwW4pXX321eOSRR4pHHnmkSFJcfvnlxSOPPFL87ne/K4qic87VlStXFvX19cWnPvWp4sknnyxuvfXWYtttty2+853vlH68dE9CFO/I1VdfXey2225FdXV1cfDBBxe//vWvu3okKJJs8nHjjTdW1vzpT38qvvCFLxQ77LBDse222xbHH398sXTp0nbv88ILLxQf+9jHij59+hQ777xzcdZZZxXr1q0r+Whg4xDl/GVL9+Mf/7gYMmRIUVNTU+y1117FDTfc0G5/W1tbcf755xf19fVFTU1NcdRRRxWLFi1qt+Y///M/i5NPPrl43/veV9TW1hannXZa8eqrr5Z5GLxHtba2FhMnTix22223onfv3sXf/M3fFF/96lfb/XS9c5gtxc9//vNN/nPvmDFjiqLovHP1scceKw4//PCipqameP/7319cfPHFZR0i7wFVRVEUXXMtFgAAAADvJe4RBQAAAEAphCgAAAAASiFEAQAAAFAKIQoAAACAUghRAAAAAJRCiAIAAACgFEIUAAAAAKUQogAAAAAohRAFAAAAQCmEKAAAAABKIUQBAAAAUIr/D7qE8jITUsCHAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "sales['Revenue_per_Age'].plot(kind='hist', figsize=(14,6))" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = sales[['Profit', 'Age_Group']].boxplot(by='Age_Group', figsize=(10,6))\n", - "ax.set_ylabel('Profit')" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Year AxesSubplot(0.125,0.536818;0.227941x0.343182)\n", - "Customer_Age AxesSubplot(0.398529,0.536818;0.227941x0.343182)\n", - "Order_Quantity AxesSubplot(0.672059,0.536818;0.227941x0.343182)\n", - "Unit_Cost AxesSubplot(0.125,0.125;0.227941x0.343182)\n", - "Unit_Price AxesSubplot(0.398529,0.125;0.227941x0.343182)\n", - "Profit AxesSubplot(0.672059,0.125;0.227941x0.343182)\n", - "dtype: object" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EwwZPEgyqTzB" + }, + "source": [ + "### Add and calculate a new `Calculated_Cost` column\n", + "\n", + "Use this formula\n", + "\n", + "$$ Calculated\\_Cost = Order\\_Quantity * Unit\\_Cost $$" ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzsAAAHVCAYAAADW/uX0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdf7idVX3n/fenIRQqvzGNFEjDUxlJpAX1DMVCO/wQispTcMZaMh2lbWbSuYoKlbZEmdbaTmZiR6XWts6kBo3P0CBVHHiQqmkM9cqMIgH5EYgWpFDhCSQtv6tCwO/zx14nbsI5OeeQc87eZ5/367r2tfde97rv/d16crO/91r3d6WqkCRJkqRB80O9DkCSJEmSpoLJjiRJkqSBZLIjSZIkaSCZ7EiSJEkaSCY7kiRJkgaSyY4kSZKkgWSyI6mvJbkwyeYkdya5qLUdkmRdkrvb88G9jlOSJPUfkx1JfSvJscB/AE4AjgPOTvJyYDmwvqqOBta395IkSc+zV68DGMtLX/rSWrhwYa/DkNTcfPPN/1hV86bp4xYBN1bVdwCS/C3wr4FzgFNanzXADcAluzuQ5xKp/0zz+WTSeD6R+s9o55O+T3YWLlzIpk2beh2GpCbJ/dP4cZuBFUkOBb4LvAHYBMyvqq2tz0PA/JF2TrIMWAawYMECzyVSn5nm88mk8beJ1H9GO584jU1S36qqLcD7gS8CnwduBZ7bpU8BNcr+q6pqqKqG5s2bcRePJUnSHjLZkdTXqmp1Vb2mqn4OeBT4O+DhJIcBtOdtvYxRkiT1J5MdSX0tyY+25wV07tf5S+Ba4PzW5Xzgmt5EJ0mS+lnf37Mjadb7TLtnZwdwQVU9lmQlcFWSpcD9wFt6GqEkSepLY47sJDkyyYYkd7V1Li5s7SOuc5HkmCRfSfJ0kt/a5VgHJfl0km8k2ZLktVPztSQNiqr62apaXFXHVdX61vZPVXV6VR1dVa+rqkd6Haem3qGHHkqSnY9DDz201yFJkvrceKaxPQtcXFWLgROBC5IsZvR1Lh4B3gl8YIRjfRj4fFUdQ2fNjC17GL8kaRY49NBDeeSRR3jlK1/J/fffzytf+UoeeeQREx5J0m6NmexU1daquqW9fpJOgnI4nXUu1rRua4BzW59tVXUTnSknOyU5EPg5YHXr90xVPTZJ30OSNMCGE53NmzezYMECNm/evDPhkSRpNBO6ZyfJQuBVwI2Mc52LLkcB24GPJzkOuBm4sKr+eYTPed7aGOqt4973RR7/7o7d9rn//WdPymf9+CXX7Xb7gfvO5bb3njkpnyVpZrn77rtJsvP93nvv3cNoJPW77vPFnuqscqCZaNzJTpL9gM8AF1XVE91/QFVVScb6K9gLeDXwjqq6McmH6Ux9+91dO1bVKmAVwNDQkH9dPfb4d3dw38o37r7Tyun5v2nh8s9Ny+dI6j/PPPMM8+fP54YbbuCUU07h4Ycf7nVIkvrYeBKUhcs/N/ZvHM1o4yo9nWQunUTniqq6ujVPdJ2LB4AHqurG9v7TdJIfSZLG5eGHH2bRokUmOpKkcRlPNbbQuc9mS1V9qGvThNa5qKqHgG8neUVrOh24a8IRS5IkSdI4jGca20nAW4E7ktza2t4DjLjORZKXAZuAA4DvJ7kIWFxVTwDvAK5IsjdwL/Crk/llJEmDrXtaymTOx5ckDaYxk52q2giM9l+U00fo/xBwxCjHuhUYmkiAkiQNM8GRJE3EuO7ZkSRJkqSZxmRHkjSjXHfd7kvUS5I0zGRHkjSjnH325KzrpdklyT5JvpbktiR3Jnlfaz8qyY1J7knyqXZfsaQBYbIjSZoxqmrnQ5qgp4HTquo44HjgrCQnAu8HLquqlwOPAkt7GKOkSWayI0maMZLsfEgTUR1Ptbdz26OA0+is/QewBji3B+FJmiImO5KkvveTP/mTE2qXRpJkTltGYxuwDvgW8FhVPdu6PAAc3qv4JE0+kx1JUt+74447JtQujaSqnquq4+kskXECcMx4902yLMmmJJu2b98+ZTFKmlwmO5KkGWPu3Lls3LiRuXPn9joUzWBV9RiwAXgtcFCS4XUHjwAeHGWfVVU1VFVD8+bNm6ZIJe2pMRcVlSSpXzzzzDM7n71vRxORZB6wo6oeS7IvcAad4gQbgDcDVwLnA9f0LkpJk82RHUl9LclvtjKxm5OsbeVjLRU7S1mgQHvgMGBDktuBm4B1VXUdcAnwriT3AIcCq3sYo6RJ5siOpL6V5HDgncDiqvpukquA84A30CkVe2WS/06nVOxHexiqpD5XVbcDrxqh/V469+9IGkCO7Ejqd3sB+7Y59T8CbMVSsbOW9+xIkibCZEdS36qqB4EPAP9AJ8l5HLiZcZaKtXrS4NmxYwcnn3wyO3bs6HUokqQZwGRHUt9KcjBwDnAU8GPAS4Czxru/1ZMGz3777cfNN9/Mfvvt1+tQJEkzgPfsSOpnrwP+vqq2AyS5GjiJViq2je6MWipWg+epp57iNa95Ta/DkCTNEI7sSOpn/wCcmORH0im/dTpwFz8oFQuWipUkSaMw2ZHUt6rqRjqFCG4B7qBzzlqFpWJnrara+ZAkaSxOY5PU16rqvcB7d2m2VOws5fo6kqSJcGRHkiRJ0kAy2ZEkSZI0kEx2JEmSJA0k79mRJM0Y3YUJvH9HkjQWkx1J0oxhgiNJmginsUmSJEkaSCY7kiRJkgaSyY4kSZKkgeQ9O5KkGcMCBZKkiRhzZCfJkUk2JLkryZ1JLmzthyRZl+Tu9nxwaz8myVeSPJ3kt3Y51n1J7khya5JNU/OVJEmDKsnOhyRJYxnPNLZngYurajFwInBBksXAcmB9VR0NrG/vAR4B3gl8YJTjnVpVx1fV0J6FLkmSJEmjGzPZqaqtVXVLe/0ksAU4HDgHWNO6rQHObX22VdVNwI4piViSNKtdd911vQ5BkjRDTKhAQZKFwKuAG4H5VbW1bXoImD+OQxTwxSQ3J1m2m89ZlmRTkk3bt2+fSIiSpAF39tln9zoESdIMMe5kJ8l+wGeAi6rqie5t1bljtEbc8flOrqpXA6+nMx3u50bqVFWrqmqoqobmzZs33hAlSbPAxz72sV6HoBloN/cg/36SB9v9xLcmeUOvY5U0ecZVjS3JXDqJzhVVdXVrfjjJYVW1NclhwLaxjlNVD7bnbUk+C5wAfPnFhS5Jmo3+/b//970OQTPT8D3ItyTZH7g5ybq27bKqGu1eY0kz2HiqsQVYDWypqg91bboWOL+9Ph+4ZozjvKSdXEjyEuBMYPOLCVqSJGkidnMPsqQBNp6RnZOAtwJ3JLm1tb0HWAlclWQpcD/wFoAkLwM2AQcA309yEbAYeCnw2VYudC/gL6vq85P4XSRJA851djQZdrkH+STg7UneRuf3y8VV9WjvopM0mcZMdqpqIzDaf1FOH6H/Q8ARI/R9AjhuQtFJmtWSvAL4VFfT/wX8HvDJ1r4QuA94iz9OZgcTHO2pXe9BTvJR4A/p3Hv8h8AHgV8bYb9lwDKABQsWTF/AkvbIhKqxSdJ0qqpvtnW5jgdeA3wH+Cyjr/MlSaMa6R7kqnq4qp6rqu8Df0HnfuIXsHiSNDOZ7EiaKU4HvlVV9zPKOl+SNJrR7kFuRZaGvQnvJ5YGyriqsUlSHzgPWNtej2udL6edSOoy2j3IS5IcT2ca233Ar/cmPElTwWRHUt9LsjfwC8C7d91WVZVkxHW+qmoVsApgaGhoPGuBqc9ZoEAv1m7uQb5+umORNH2cxiZpJng9cEtVPdzePzw89WS863xpMCTZ+ZAkaSwmO5JmgiX8YAobTHCdL0mSNDuZ7Ejqa20R4jOAq7uaVwJnJLkbeF17L0mS9DzesyOpr1XVPwOH7tL2T4ywzpckSVI3kx1J0oxhgQJJ0kSY7EiSZgwTHEnSRHjPjiRJkqSBZLIjSZpRzjjjjF6HIEmaIUx2JEkzyrp163odgiRphvCeHUnSjGGBAknSRJjsSJL6yu6SmJG2jda/OzGSJM1OJjuSpL4yWpIyUlJjQiNJ2h3v2ZEkzQhVRVXx45dct/O1JEm7Y7IjSZIkaSCZ7EiSJEkaSCY7kiRJkgaSyY4kSZKkgWSyI0mSJGkgmexIkiRJGkgmO5IkSZIGksmOpL6W5KAkn07yjSRbkrw2ySFJ1iW5uz0f3Os4JfW3JEcm2ZDkriR3JrmwtXs+kQaYyY6kfvdh4PNVdQxwHLAFWA6sr6qjgfXtvSTtzrPAxVW1GDgRuCDJYjyfSAPNZEdS30pyIPBzwGqAqnqmqh4DzgHWtG5rgHN7E6GkmaKqtlbVLe31k3QunByO5xNpoI2Z7Ex02DfJMUm+kuTpJL81wvHmJPl6kusm/+tIGjBHAduBj7fzxseSvASYX1VbW5+HgPkj7ZxkWZJNSTZt3759mkKW1O+SLAReBdzIOM8nkmamvcbRZ3jY95Yk+wM3J1kH/AqdYd+VSZbTGfa9BHgEeCejXxm5kM7VlAP2NHhJA28v4NXAO6rqxiQfZpcpJlVVSWqknatqFbAKYGhoaMQ+kmaXJPsBnwEuqqonkuzctrvzSZJlwDKABQsWTEeoGsNx7/sij393xx4fZ+Hyz+3R/gfuO5fb3nvmHsehqTFmstOudmxtr59M0j3se0rrtga4AbikqrYB25K8cddjJTkCeCOwAnjXJMQvabA9ADxQVTe295+mk+w8nOSwqtqa5DBgW88ilDRjJJlLJ9G5oqqubs3jOp948aT/PP7dHdy38gU/N6fdniZLmlrjGdnZaRKGff8Y+B1g/zE+x6snfWT/Rcv5yTX9cb/m/ougky9rNqiqh5J8O8krquqbwOnAXe1xPrCyPV/TwzAlzQDpDOGsBrZU1Ye6Nl2L5xNpYI072Xmxw75d+58NbKuqm5Ocsru+Xj3pL09uWdkXV07Aqyez1DuAK5LsDdwL/Cqd+w2vSrIUuB94Sw/jkzQznAS8Fbgjya2t7T10khzPJ9KAGleysyfDvl1OAn4hyRuAfYADkvzPqvp3LzZ4SYOvqm4FhkbYdPp0xyJp5qqqjUBG2ez5RBpQ46nGNtawL4xj2Leq3l1VR1TVQuA84EsmOpIkSZKmynhGdiY07JvkZcAmOtXWvp/kImBxVT0x2cFLkiRJ0mjGU41tQsO+VfUQcMQYx7yBTvU2SZIkSZoSY05jkyRJkqSZyGRHkiRJ0kAy2ZEkSZI0kEx2JEmSJA0kkx1JkiRJA8lkR5IkSdJAMtmRJEmSNJBMdiRJkiQNJJMdSZIkSQPJZEeSJEnSQDLZkSRJkjSQTHYkSZIkDSSTHUmSJEkDyWRHkiRJ0kDaq9cBSNLuJLkPeBJ4Dni2qoaSHAJ8ClgI3Ae8paoe7VWMkiSpPzmyI2kmOLWqjq+qofZ+ObC+qo4G1rf3kiRJz2OyI2kmOgdY016vAc7tYSySJKlPmexI6ncFfDHJzUmWtbb5VbW1vX4ImD/SjkmWJdmUZNP27dunI1ZJfSrJ5Um2Jdnc1fb7SR5Mcmt7vKGXMUqafCY7kvrdyVX1auD1wAVJfq57Y1UVnYToBapqVVUNVdXQvHnzpiFUSX3sE8BZI7Rf1qbJHl9V109zTJKmmMmOpL5WVQ+2523AZ4ETgIeTHAbQnrf1LkJJM0FVfRl4pNdxSJpeJjuS+laSlyTZf/g1cCawGbgWOL91Ox+4pjcRShoAb09ye5vmdnCvg5E0uUx2JPWz+cDGJLcBXwM+V1WfB1YCZyS5G3hdey9JE/VR4CeA44GtwAdH6+g9gNLM5Do7kvpWVd0LHDdC+z8Bp09/RJIGSVU9PPw6yV8A1+2m7ypgFcDQ0NCI9wlK6j+O7EiSpFlp+N6/5k10pslKGiCO7EiSpIGXZC1wCvDSJA8A7wVOSXI8nYqO9wG/3rMAJU0Jkx1JkjTwqmrJCM2rpz0QSdPKaWySJEmSBtKYyU6SI5NsSHJXkjuTXNjaD0myLsnd7fng1n5Mkq8keTrJb3UdZ58kX0tyWzvO+6bua0mSJEma7cYzsvMscHFVLQZOpLOC+WJgObC+qo4G1rf30Fmw653AB3Y5ztPAaVV1HJ0Sj2clOXESvoMkSZIkvcCYyU5Vba2qW9rrJ4EtwOHAOcCa1m0NcG7rs62qbgJ27HKcqqqn2tu57WHpRkmSJElTYkIFCpIsBF4F3AjMr6qtbdNDdBb/G2v/OcDNwMuBP6uqG0fptwxYBrBgwYKJhKgpsnD553odAgAH7ju31yFIkiRphhh3spNkP+AzwEVV9USSnduqqpKMOUpTVc8Bxyc5CPhskmOr6gU17V24q7/ct/KNe3yMhcs/NynHkSRJksZrXNXYksylk+hcUVVXt+aHhxfjas/bxvuhVfUYsAE4a2LhSpIkSdL4jKcaW+jUod9SVR/q2nQtcH57fT5wzRjHmddGdEiyL3AG8I0XE7QkSZIkjWU809hOAt4K3JHk1tb2HmAlcFWSpcD9wFsAkrwM2AQcAHw/yUXAYuAwYE27b+eHgKuq6rrJ/DKSJEmSNGzMZKeqNgIZZfPpI/R/CDhihL630yluIEmapY573xd5/Ls7xu44hj0tmnLgvnO57b1n7nEckqT+NqFqbJIk7YnHv7ujL4qV9EuFSUnS1BpXgQJJkiRJmmlMdiRJkiQNJJMdSZIkSQPJZEdS30syJ8nXk1zX3h+V5MYk9yT5VJK9ex2jJEnqPyY7kmaCC4EtXe/fD1xWVS8HHgWW9iQqSZLU10x2JPW1JEcAbwQ+1t4HOA34dOuyBji3N9FJkqR+ZrIjqd/9MfA7wPfb+0OBx6rq2fb+AeDwkXZMsizJpiSbtm/fPvWRSpKkvmKyI6lvJTkb2FZVN7+Y/atqVVUNVdXQvHnzJjk6SZLU71xUVFI/Own4hSRvAPYBDgA+DByUZK82unME8GAPY5QkSX3KkR1Jfauq3l1VR1TVQuA84EtV9cvABuDNrdv5wDU9ClHSDJLk8iTbkmzuajskybokd7fng3sZo6TJZbIjaSa6BHhXknvo3MOzusfxSJoZPgGctUvbcmB9VR0NrG/vJQ0Ip7FJmhGq6gbghvb6XuCEXsYjaeapqi8nWbhL8znAKe31GjrnmUumLShJU8qRHUmSNJvNr6qt7fVDwPxeBiNpcjmyI0mSBFRVJamRtiVZBiwDWLBgwbTGpZHtv2g5P7mm97MO918EneXg1I9MdiRJ0mz2cJLDqmprksOAbSN1qqpVwCqAoaGhERMiTa8nt6zkvpW9TzIWLv9cr0PQbjiNTZIkzWbX0qnqCFZ3lAaOyY4kSZoVkqwFvgK8IskDSZYCK4EzktwNvK69lzQgnMYmSZJmhapaMsqm06c1EEnTxmRHkjRtvKFYkjSdTHYkSdPGG4olSdPJe3YkSZIkDSSTHUmSJEkDyWRHkiRJ0kAy2ZEkSZI0kEx2JEmSJA0kkx1JkiRJA2nMZCfJkUk2JLkryZ1JLmzthyRZl+Tu9nxwaz8myVeSPJ3kt8Y6jiRJkiRNhfGM7DwLXFxVi4ETgQuSLAaWA+ur6mhgfXsP8AjwTuAD4zyOJEmSJE26MZOdqtpaVbe0108CW4DDgXOANa3bGuDc1mdbVd0E7BjncSRpVEn2SfK1JLe1UeH3tfajktyY5J4kn0qyd69jlSRJ/WVC9+wkWQi8CrgRmF9VW9umh4D5L/I4I21flmRTkk3bt2+fSIiSBs/TwGlVdRxwPHBWkhOB9wOXVdXLgUeBpT2MUZIk9aFxJztJ9gM+A1xUVU90b6uqAmpPj9N1vFVVNVRVQ/PmzRtviJIGUHU81d7ObY8CTgM+3dp3ji5LkiQNG1eyk2QunQTliqq6ujU/nOSwtv0wYNuLPI4k7VaSOUlupXOeWQd8C3isqp5tXR5ghGmxjhJLkjS7jacaW4DVwJaq+lDXpmuB89vr84FrXuRxJGm3quq5qjoeOAI4AThmnPs5SixJ0iy21zj6nAS8FbijXVkFeA+wErgqyVLgfuAtAEleBmwCDgC+n+QiYDHwUyMdp6qun6wvI2mwVdVjSTYArwUOSrJXG905Aniwt9FJkqR+M2ayU1UbgYyy+fQR+j9E54fHrnZ3HEkaUZJ5wI6W6OwLnEGnOMEG4M3AlYxjdFmSJM0+4xnZkaReOgxYk2QOnam3V1XVdUnuAq5M8p+Br9OZJitJkrSTyY6kvlZVt9MpVb9r+7107t/RDLNw+ed6HQIH7ju31yFIkqaByY4kadrct/KNe3yMhcs/NynHkSQNPpMdSZI0qyW5D3gSeA54tqqGehuRpMlisiNJkgSnVtU/9joISZNrXIuKSpIkSdJMY7IjSZJmuwK+mOTmJMt6HYykyeM0NkmSNNudXFUPJvlRYF2Sb1TVl7s7tCRoGcCCBQt6EaOkF8GRHUmSNKtV1YPteRvwWUYoa19Vq6pqqKqG5s2bN90hSnqRTHYkSdKsleQlSfYffg2cCWzubVSSJovT2CRJ0mw2H/hsEuj8LvrLqvp8b0OSNFlMdiRJ0qxVVfcCx/U6DklTw2lskiRJkgaSyY4kSZKkgWSyI0mSJGkgmexIkiRJGkgmO5IkSZIGksmOJEmSpIFksiNJkiRpIJnsSOpbSY5MsiHJXUnuTHJhaz8kybokd7fng3sdqyRJ6j8mO5L62bPAxVW1GDgRuCDJYmA5sL6qjgbWt/eSJEnPY7IjqW9V1daquqW9fhLYAhwOnAOsad3WAOf2JkJJktTPTHYkzQhJFgKvAm4E5lfV1rbpIWD+KPssS7Ipyabt27dPS5ySJKl/mOxI6ntJ9gM+A1xUVU90b6uqAmqk/apqVVUNVdXQvHnzpiFSSZLUT/bqdQCStDtJ5tJJdK6oqqtb88NJDquqrUkOA7b1LkJJUq8sXP65XofAgfvO7XUI2g2THUl9K0mA1cCWqvpQ16ZrgfOBle35mh6EJ0nqoftWvnGPj7Fw+ecm5TjqXyY7kvrZScBbgTuS3Nra3kMnybkqyVLgfuAtPYpPkiT1sTGTnSRHAp+kcwNwAauq6sNJDgE+BSwE7gPeUlWPJjkG+DjwauDSqvpA17EuB84GtlXVsZP8XSQNmKraCGSUzadPZyySJGnmGU+Bgomuc/EI8E7gAyMc6xPAWXsatCRJkiSNZcxkZ6LrXFTVtqq6CdgxwrG+TCcZkiRJkqQpNaF7dl7MOhcvRpJlwDKABQsWTNZhNYU695GP0ef9Yx+nU0VY0mzm+UTSZBjPuQQ8nwy6cSc7u65z0f0HVFWVZNL+CqpqFbAKYGhoyL+uGcCTgKTJ4vlE0mTwXCIY56Kiu1vnom13nQtJkjQjJTkryTeT3JNk+dh7SJopxkx2xrHOBbjOhSRJmoGSzAH+DHg9sBhY0goxSRoA4xnZGV7n4rQkt7bHG+isc3FGkruB17X3JHlZkgeAdwH/KckDSQ5o29YCXwFe0dqXTsF3kiRJGq8TgHuq6t6qega4kk4RJkkDYMx7dia6zkVVPQQcMcqxlkwoOkmSpKl1OPDtrvcPAD+9ayeLJ0kz07ju2ZEkSZrNqmpVVQ1V1dC8efN6HY6kcTLZkSRJs9mDwJFd749obZIGgMmOJEmazW4Cjk5yVJK9gfPoFGGSNADS7zXIk2wH7u91HNpjLwX+sddBaFL8eFXNuDkcnksGiueTwdEX55NWeOmPgTnA5VW1Yoz+nk8Gh+eTwTHi+aTvkx0NhiSbqmqo13FImvk8n0iaLJ5PBp/T2CRJkiQNJJMdSZIkSQPJZEfTZVWvA5A0MDyfSJosnk8GnPfsSJIkSRpIjuxIkiRJGkgmO5IkSZIGksmOXrR0bEzy+q62X0zy+V7GJWnyJXlZkiuTfCvJzUmuT/IvJniMc5MsnqoYJyrJS5PsSPIfex2LNBskOSLJNUnubueSD7eFXMfa7xNJ3jxJMSxL8o322JTklMk47gif855d3v+f9rwwyb+dis/UyEx29KJV54av/wh8KMk+SfYD/gtwwZ4cN8lekxGfpMmRJMBngRuq6ieq6jXAu4H5EzzUucC0JjtJ5uxm8y8CXwWWTFM40qzVziNXA/+rqo4G/gWwH7Bil357/BtgtGMkORv4deDkqjoGWAb8zySH7+lnjuB5yU5V/Ux7uRAw2ZlGJjvaI1W1Gfh/gUuA3wM+WVXfSnJ+kq8luTXJnyf5IYAkq9qVlDuT/N7wcZI8kGRlkq8Db+rJl5E0mlOBHVX134cbquo2YE6S64bbkvxpkl9pr1cmuSvJ7Uk+kORngF8A/ls7L/xEkuOTfLX1+WySg9u+NyS5rJ0rtiT5l0mubleD/3PX5/27rvPM/xhObJI8leSDSW4DXrub77UEuBg4PMkRXcddmuTv2rH/IsmftvZ5ST6T5Kb2OGmP/5eVZo/TgO9V1ccBquo54DeBX0vyG0muTfIlYH2bOfKnSb6Z5G+AHx0+SJLXJPnbNsL8hSSHtfYbkvxxkk3AhaPEcAnw21X1jy2GW4CP0y7SJrkvyUvb66EkN7TXJyT5SpKvJ/k/SV7R2n+lnZs+385Pf9TaVwL7tnPTFa3tqRbDSuBn27bfTPLlJMd3fb+NSY7bs/+p1c0r6JoM7wNuAZ4BhpIcSydh+ZmqejbJKuA84C+B5VX1SLvqsiHJp6vqrnacbVX1ql58AUm7dSxw83g7JzmUzjngmKqqJAdV1WNJrgWuq6pPt363A++oqr9N8gfAe4GL2mGeqaqhJBcC1wCvAR4BvpXkMjo/fn4JOKmqdiT5c+CXgU8CLwFurKqLdxPjkcBhVfW1JFe1Y30wyY8Bvwu8GngS+BJwW9vtw8BlVbUxyQLgC8Ci8f7vIs1yr2SX80hVPZHkH+j8Hn018FPtN8K/Bl5BZyR4PnAXcHmSucBHgHOqanuSX6IzMvRr7ZB7V9XQRGIANgG/Okbs3wB+tv2meR2dWSz/pm07HngV8DTwzSQfqarlSd5eVcePcKzlwG9V1dkASR4BfgW4KJ2pwfu0i0maJCY72mNV9c9JPgU8VVVPtxPBvwQ2JQHYF/h2674kyVI6f3s/RudENpzsfGp6I5c0RR4HvgesbiM/1+3aIcmBwEFV9betaQ3wV11drm3PdwB3VtXWtt+9wJHAyXQSoJu6zjPb2j7PAZ8ZI3wGiUEAACAASURBVMZfAq5qr68ELgc+CJwA/G1VPdI+76/oTLcBeB2wuH0ewAFJ9quqp5C0p9YN/7sDfg5Y20Z//r824gOdBOhYYF37dzgH2Np1jKn6HXEgsCbJ0UABc7u2ra+qxwGS3AX8OD/4zTMefwX8bpLfppO0fWJSItZOJjuaLN9vD4AAl1fV73Z3aCeJC4ET2lXe/wns09Xln6clUkkTdScw0s3Bz/L86dD7ALSrnycAp7f93k5nCstEPN2ev9/1evj9XnTOM2uq6t0j7Pu99iNpd5YAL0vyy+39j7Vz1O78EHBiVX1vjH6SXugudjmPJDkAWEDnXDKe3wChc/FjtOmpYx3jLjoXSb7U1fYaOqM78PxzWvfvkz8ENlTVm5IsBG7o2tZ9fnqOCf62rqrvJFkHnAO8pcWjSeQ9O5oKfwO8pWve66FtyscBdKaFPNHm2P58D2OUNH5fAn44ybLhhiQ/ReeHx+IkP5zkIDrJDekUKzmwqq6nMyd/eP75k8D+AO1K6KNJfrZteyswPMozHuuBNyf50faZhyT58fHs2KaK7FdVh1fVwqpaCPxXOgnQTcC/SnJwm277b7p2/SLwjq7jjDRFRdLI1gM/kuRtsLN4yAfpjGR8Z5e+XwZ+Kcmc9nvh1Nb+TWBekte2Y8xN8soJxPBHwPvbVNvhf8NvAv5H234fP0g2uv/tHwg82F7/yjg/a0ebdrernefBLh8D/gS4qaoeHefxNU4mO5p0VXUHnft4/qbNyf8inTm3t9C5qvINOvPq/3fPgpQ0bq3y4puA16VTLvZOOsnBQ3Smgm1uz19vu+wPXNf+/W8E3tXarwR+u93k+xPA+XQKFtxOZ977H0wgpruA/wR8se2/DjhsnLsvoVNdrttngCVV9SCd+fhfo3OOuo/OtDyAd9K5L/H2Nl3FktXSOHWdR34xyd3A39GZ7vqeEbp/Fribzm+GTwJfacd4hs7o0PvTKUByK/AzI+w/WgzXAquB/53kHjrnp3Oranvr8j7gw63IQffo8B8B/zWdIkrjHblZBdw+XKCgy+3Ac0luS/KbLa6bgSfoFEvQJEvnb0+SJEFnZKqqnmojO5+lMy131+RI0gzW/n1/nM6F/39XPfxB3Aqj3ECnqMv3x+iuCfKeHUmSnu/3W6GVfeiMTP+vHscjaZJV1bN0ps/2VJvWtwJ4l4nO1HBkR5I0sJJ8Fjhql+ZLquoLvYhH0tRLcimdRYO7/VVVrRipvwabyY4kSZKkgWSBAkmSJEkDyWRHkiRJ0kAy2ZEkSZI0kEx2JEmSJA0kkx1JkiRJA8lkR5IkSdJAMtmRJEmSNJBMdiRJkiQNJJMdSZIkSQPJZEeSJEnSQDLZkSRJkjSQTHYkSZIkDSSTHUmSJEkDyWRHkiRJ0kAy2ZEkSZI0kEx2JEmSJA0kkx1JkiRJA8lkR5IkSdJAMtmRJEmSNJD26nUAY3npS19aCxcu7HUYkpqbb775H6tqXq/jmCjPJVL/8XwiabKMdj7p+2Rn4cKFbNq0qddhSGqS3N/rGF4MzyVS//F8ImmyjHY+cRqbJEmSpIFksiNJkiRpIJnsSJIkSRpIJjuSJEmSBpLJjqZUkhc8JOnF8HwiabKsXbuWY489ljlz5nDssceydu3aXoekKdL31dg0c432QyQJVTXN0UiayTyfSJosa9eu5dJLL2X16tWcfPLJbNy4kaVLlwKwZMmSHkenyebIjqZcVe18SNKe8HwiaU+tWLGC1atXc+qppzJ37lxOPfVUVq9ezYoVK3odmqaAyY4kSZJmjS1btnDyySc/r+3kk09my5YtPYpIU8lkR9K0SbJPkq8luS3JnUne19o/keTvk9zaHse39iT5kyT3JLk9yau7jnV+krvb4/xefSdJ0syyaNEiNm7c+Ly2jRs3smjRoh5FpKlksqMp583E6vI0cFpVHQccD5yV5MS27ber6vj2uLW1vR44uj2WAR8FSHII8F7gp4ETgPcmOXgav4d6xPOJpD116aWXsnTpUjZs2MCOHTvYsGEDS5cu5dJLL+11aJoCFijQlKmqEX+QONd+9qrO//lPtbdz22N3fxDnAJ9s+301yUFJDgNOAdZV1SMASdYBZwGW0xlQnk8kTZbhIgTveMc72LJlC4sWLWLFihUWJxhQjuxoSnXfTOxNxQJIMifJrcA2OgnLjW3TijZV7bIkP9zaDge+3bX7A61ttPZdP2tZkk1JNm3fvn3Sv4uml+cTSZNlyZIlbN68meeee47Nmzeb6Awwkx1J06qqnquq44EjgBOSHAu8GzgG+JfAIcAlk/RZq6pqqKqG5s2bNxmHlCRJM4jJjqSeqKrHgA3AWVW1tTqeBj5O5z4cgAeBI7t2O6K1jdauAeaiopKkiTLZkTRtksxLclB7vS9wBvCNdh8O6fx6PRfY3Ha5Fnhbq8p2IvB4VW0FvgCcmeTgVpjgzNamAbW7RUUlSRqNBQokTafDgDVJ5tC52HJVVV2X5EtJ5gEBbgX+Y+t/PfAG4B7gO8CvAlTVI0n+ELip9fuD4WIFkiRJw0x2JE2bqrodeNUI7aeN0r+AC0bZdjlw+aQGqL7XXZTAUR1J0licxiZJkvpWksuTbEuyeYRtFyepJC9t7ye8EHGS1yS5o+3zJzGLnhXWrl3Lsccey5w5czj22GNZu9aVCwbVmMlOkiOTbEhyV1vx/MLWfkiSde2ksW54QT9XPJckTRWLE8xKn6CzjtbzJDmSzv16/9DV/GIWIv4o8B+69nvBZ2mwrF27lksvvZSPfOQjfO973+MjH/kIl156qQnPgBrPyM6zwMVVtRg4EbggyWJgObC+qo4G1rf34IrnkiRpklTVl4GR7sm7DPgdnr8w8c6FiKvqq8DwQsQ/T1uIuKoeBdYBZ7VtB1TVV9u02U/SKZKiAbZixQpWr17Nqaeeyty5czn11FNZvXo1K1as6HVomgJjJjutJOwt7fWTwBY6i/edA6xp3dbwg5PDhE40k/ptJEkDabQFRF1YdHZKcg7wYFXdtsumiS5EfHh7vWv7SJ/pIsUDYsuWLZx88snPazv55JPZsmVLjyLSVJrQPTtJFtK5ufhGYH4rAQvwEDC/vd6jFc/b53hCkSQ9T1W94KHZJ8mPAO8Bfm86P9dFigfHokWL2Lhx4/PaNm7cyKJFi3oUkabSuJOdJPsBnwEuqqonure1od9J+6+OJxRJkjSKnwCOAm5Lch+dRYVvSfIyJr4Q8YPt9a7tGmCXXnopS5cuZcOGDezYsYMNGzawdOlSLr300l6HpikwrtLTSebSSXSuqKqrW/PDSQ6rqq1tmtq21r67E8opu7Tf8OJDlyRJs01V3QH86PD7lvAMVdU/JrkWeHuSK+ncI/x4+53yBeC/dN0rfCbw7rZm1xNt0eIbgbcBH5nO76Ppt2TJEgDe8Y53sGXLFhYtWsSKFSt2tmuwjKcaW4DVwJaq+lDXpmuB4Ypq5wPXdLW74rkkSdpjSdYCXwFekeSBJEt30/164F46CxH/BfAb0FmIGBheiPgmnr8Q8W8AH2v7fAv466n4HuovS5YsYfPmzTz33HNs3rzZRGeAjWdk5yTgrcAdSW5tbe8BVgJXtZPO/cBb2jZXPJckSZOiqnb7K7SqFna9nvBCxFW1CTh2z6KU1K/GTHaqaiMw2oIGp4/Q3xXPtdNIa2F4U7EkSZKmw4SqsUkTMdqify4GKEmSpOlgsiNJkiRpII2rGpu0J7qnrTmqI0mSpOniyI4kSZKkgeTIjqacozmSJEnqBUd2JEmSJA0kkx1NmdFKTFt6evZKsk+SryW5LcmdSd7X2o9KcmOSe5J8Ksnerf2H2/t72vaFXcd6d2v/ZpKf7803kiRJ/cxkR1Oqql7w0Kz2NHBaVR0HHA+cleRE4P3AZVX1cuBRYHiF9KXAo639staPJIuB84BXAmcBf55kzrR+E0mS1PdMdiRNm+p4qr2d2x4FnAZ8urWvAc5tr89p72nbT0/nJrBzgCur6umq+nvgHuCEafgKkiRpBjHZkTStksxJciuwDVgHfAt4rKqebV0eAA5vrw8Hvg3Qtj8OHNrdPsI+3Z+1LMmmJJu2b98+FV9HkiT1MZMdSdOqqp6rquOBI+iMxhwzhZ+1qqqGqmpo3rx5U/UxkiSpT5nsSOqJqnoM2AC8FjgoyXAp/COAB9vrB4EjAdr2A4F/6m4fYR9JkiTAZEfSNEoyL8lB7fW+wBnAFjpJz5tbt/OBa9rra9t72vYvVafKxbXAea1a21HA0cDXpudbSJKkmcJFRSVNp8OANa1y2g8BV1XVdUnuAq5M8p+BrwOrW//VwP+T5B7gEToV2KiqO5NcBdwFPAtcUFXPTfN3kSRJfc5kR9K0qarbgVeN0H4vI1RTq6rvAb84yrFWACsmO0ZJ/SXJ5cDZwLaqOra1/Tfg/waeoVPk5Ffb1FiSvJtO2frngHdW1Rda+1nAh4E5wMeqamVrPwq4kk7xk5uBt1bVM9P3DSVNJaexSZKkfvYJOutpdVsHHFtVPwX8HfBuGH0Nrjaa/GfA64HFwJLWF0Zf50vSADDZkSRJfauqvkxnGmt32xe7ytV/lU6REhh9Da4TgHuq6t42anMlcE5bt2u0db4kDQCTHUmSNJP9GvDX7fVoa3CN1n4oo6/z9Tyu2yXNTCY7kiRpRkpyKZ0iJVdM9We5bpc0M1mgQJIkzThJfoVO4YLTW0l62P0aXCO1/xNtna82uuOaXdKAcWRHkiTNKK2y2u8Av1BV3+naNNoaXDcBRyc5KsnedIoYXNuSpNHW+ZI0AEx2JElS30qyFvgK8IokDyRZCvwpsD+wLsmtSf47dNbgAobX4Po8bQ2uNmrzduALdBYyvqr1BbgEeFdbz+tQfrDOl6QB4DQ2SZLUt6pqyQjNoyYko63BVVXXA9eP0D7iOl+SBoMjO5IkSZIGksmOJEmSpIFksiNJkiRpIJnsSJIkSRpIJjuSJEmSBpLV2DSlkryg7Qdrv0mSJElTx5EdTZmREp3dtUuSJEmTyZEdTbnukRwTHUmSJE0XR3Y05ZLsfGh2S3Jkkg1J7kpyZ5ILW/vvJ3mwrYR+a5I3dO3z7iT3JPlmkp/vaj+rtd2TZHkvvo8kSepvjuxImk7PAhdX1S1J9gduTrKubbusqj7Q3TnJYuA84JXAjwF/k+RftM1/BpwBPADclOTaqrprWr6FJEmaEcYc2UlyeZJtSTZ3tXkVVtKEVdXWqrqlvX4S2AIcvptdzgGurKqnq+rvgXuAE9rjnqq6t6qeAa5sfSVJknYazzS2TwBnjdB+WVUd3x7Xwwuuwp4F/HmSOUnm0LkK+3pgMbCk9ZU0SyVZCLwKuLE1vT3J7e0Cy8Gt7XDg2127PdDaRmvf9TOWJdmUZNP27dsn+RtounVPiXVqrCRpPMZMdqrqy8Aj4zyeV2EljSnJfsBngIuq6gngo8BPAMcDW4EPTsbnVNWqqhqqqqF58+ZNxiHVI1Z3lCS9GHtSoGDSr8IO82qsNLiSzKWT6FxRVVcDVNXDVfVcVX0f+As6F0gAHgSO7Nr9iNY2WrsGXFXtfEiSNJYXm+xMyVXYYV6NlQZTOpfhVwNbqupDXe2HdXV7EzB8j+C1wHlJfjjJUcDRwNeAm4CjkxyVZG8602evnY7voN5yCpskaSJeVLLjVVhNhFdi1eUk4K3AabsUOPmjJHckuR04FfhNgKq6E7gKuAv4PHBBO/c8C7wd+AKdIgdXtb6SBswohZIOSbIuyd3t+eDWniR/0ooh3Z7k1V37nN/6353k/K7217Tzzz1tXzNpaYC8qNLTSQ6rqq3t7a5XYf8yyYfolIkdvgob2lVYOknOecC/3ZPANXP43w0Nq6qNdM4Hu7p+N/usAFaM0H797vaTNDA+Afwp8MmutuXA+qpa2Sq8LgcuoVMI6ej2+Gk6M1F+OskhwHuBIaDolL2/tqoebX3+A51iKdfTKbD019PwvSRNgzGTnSRrgVOAlyZ5gM7J4pQkx9M5YdwH/Dp0rsImGb4K+yztKmw7zvBV2DnA5V6FHXxVNWKi4wiPJGm8qurLrXpjt3Po/DYBWAPcQCfZOQf4ZHX+Q/PVJAe1abKnAOuq6hGAtr7XWUluAA6oqq+29k8C52KyIw2MMZOdqloyQvPq3fT3Kqx2MrGRJE2B+V0zTB4C5rfXEy2UdHh7vWv7CyRZBiwDWLBgwR6GL2m67Ek1NkmSpJ5qozhTfmXN4knSzGSyI0mSZpqHh6s4tudtrX2ihZIebK93bZc0IEx2JEkzhtUd1VwLDFdUOx+4pqv9ba0q24nA42262xeAM5Mc3Cq3nQl8oW17IsmJrQrb27qOJWkAvKhqbJIk9YLVHWefUQolrQSuSrIUuB94S+t+PfAG4B7gO8CvAlTVI0n+kM4aXQB/MFysAPgNOhXf9qVTmMDiBNIAMdmRJEl9a5RCSQCnj9C3gAtGOc7lwOUjtG8Cjt2TGCX1L6exSZIkSRpIJjuSpL432j063rsjSdodp7FJkmYEExtJ0kQ5siNJkiRpIJnsSJIkSRpITmPTlBqpTKxTUSRJkjQdHNnRlBltPQzXyZAkSdJ0MNmRJEmSNJCcxqYp1z1tzVEdSZIkTRdHdiRNmyRHJtmQ5K4kdya5sLUfkmRdkrvb88GtPUn+JMk9SW5P8uquY53f+t+d5PxefSdJktS/THY05ZLsfGjWexa4uKoWAycCFyRZDCwH1lfV0cD69h7g9cDR7bEM+Ch0kiPgvcBPAycA7x1OkCRJkoaZ7EiaNlW1tapuaa+fBLYAhwPnAGtatzXAue31OcAnq+OrwEFJDgN+HlhXVY9U1aPAOuCsafwqkiRpBjDZ0ZQZrcS0pacFkGQh8CrgRmB+VW1tmx4C5rfXhwPf7trtgdY2WrskSdJOJjuaUlX1goeUZD/gM8BFVfVE97bq/JFMyh9KkmVJNiXZtH379sk4pCRJmkFMdiRNqyRz6SQ6V1TV1a354TY9jfa8rbU/CBzZtfsRrW209uepqlVVNVRVQ/PmzZvcLyKp55L8Zit2sjnJ2iT7JDkqyY2tsMmnkuzd+v5we39P276w6zjvbu3fTPLzvfo+kiafyY6kaZNOlYrVwJaq+lDXpmuB4Ypq5wPXdLW/rVVlOxF4vE13+wJwZpKDW2GCM1ubpFkiyeHAO4GhqjoWmAOcB7wfuKyqXg48CixtuywFHm3tl7V+tCIp5wGvpHPv358nmTOd30XS1DHZkTSdTgLeCpyW5Nb2eAOwEjgjyd3A69p7gOuBe4F7gL8AfgOgqh4B/hC4qT3+oLVJml32AvZNshfwI8BW4DTg0237rgVPhguhfBo4vV2AOQe4sqqerqq/p3O+OWGa4pc0xVxUVNK0qaqNwGg1yE8foX8BF4xyrMuByycvOkkzSVU9mOQDwD8A3wW+CNwMPFZVz7Zu3cVLdhY2qapnkzwOHNrav9p1aAueSAPEkR1JkjTjtCms5wBHAT8GvIQpLEFvwRNpZjLZkSRJM9HrgL+vqu1VtQO4ms5U2YPatDZ4fvGSnYVN2vYDgX/CgifSQDPZ0ZRK8oKHJEmT4B+AE5P8SLv35nTgLmAD8ObWZ9eCJ8OFUN4MfKlNlb0WOK9VazsKOBr42jR9B0lTzHt2NGVGS2ySuN6O/v/27j/Y7rrO7/jzRaJglfJjxVQFDLOmFn9m6V1JxQWUNYo64s6sLowrWYduyi5Gd8UW3HaKi6WFMmhhUGyQ1NCyskjXNatUTKnoOmwQUERi3CVloZASkzVIbXWzgu/+cT43niT3Jvfmnl/38HzMnDnf8/5+z/d8zuTmPd/35/M5n68kzUlV3ZnkZuCbwJPAt4DVwBeBG5P8mxa7rr3lOuA/J9kM7KCzAhtVtTHJTXQKpSeB86rqqYF+GUl9Y7GjvusubBzZkST1SlVdBFy0R/hBplhNrar+FnjHNOe5BLik5w2UNHROY5MkSZI0lix2JEmSJI0lp7Gp75y6JqkXpsol/v5PkrQvjuyob6a7CPHiRNJs7WvBE0mSpjOjYifJmiTbktzfFTsyyfokD7TnI1o8Sa5KsjnJfUlO6HrPinb8A0lWTPVZGi9VtddDkg6UuUSSNBszHdn5NHvflfhC4LaqWgLc1l4DnE5njfolwErgGugUR3RWTDmRziopF00WSJIkSZLUazMqdqrqa3TWpO92BrC2ba8F3t4Vv746NtC5k/HzgTcC66tqR1U9Dqxn7wJKkiRJknpiLr/ZWVRVj7XtrcCitv1C4JGu4x5tsenie0myMsndSe7evn37HJooSRonSXY9JEnan54sUFCdydM9m0BdVauraqKqJo466qhenVaSNE+54Ikk6UDMpdj5fpueRnve1uJbgGO6jju6xaaLS5K0Xy54IkmarbkUO+uAyRXVVgCf74qf3VZlWwY80aa73QosT3JEW5hgeYtJkiRJUs/N6KaiST4DnAo8N8mjdFZVuxS4Kck5wMPAO9vhtwBvBjYDPwbeA1BVO5J8BLirHXdxVe256IEkSZIk9cSMip2qOmuaXadNcWwB501znjXAmhm3TtJYSbIGeCuwrape3mIfBn4bmFyN5A+q6pa270PAOcBTwPuq6tYWfxNwJbAA+FRVXTrI7yFJkuaHnixQIEkz9GmmXnL+Y1W1tD0mC52XAmcCL2vv+USSBUkWAB+nc0+vlwJntWMlSZJ2M6ORHUnqhar6WpLFMzz8DODGqtoJ/HWSzXRuSAywuaoeBEhyYzv2uz1uriRJmucc2ZE0Ct6b5L4ka9oCJuA9uyTtR5LDk9yc5HtJNiX5J0mOTLI+yQPt+Yh2bJJclWRzyzcndJ1nRTv+gSQrpv9ESfONxY6kYbsG+EVgKfAYcEWvTuw9u6SxdyXwpar6R8CrgE3AhcBtVbUEuK29hs7U1yXtsZJO7iHJkXQWXjqRzujxRV2dLpLmOYsdSUNVVd+vqqeq6mfAtfx8qpr37JI0rSSHAScD1wFU1d9V1Q/pTGtd2w5bC7y9bZ8BXF8dG4DD230C3wisr6odVfU4sJ6pf1soaR6y2JE0VJM3J25+Dbi/ba8DzkxycJLj6PTGfoPO8vVLkhyX5Jl0FjFYN8g2SxoJx9FZxfE/JflWkk8leTawqN3fD2ArsKhtz2lqrNNipfnJBQokDcw09+w6NclSoICHgH8GUFUbk9xEZ+GBJ4Hzquqpdp730rkp8QJgTVVtHPBXkTR8C4ETgFVVdWeSK/n5lDWgczuMJNWLD6uq1cBqgImJiZ6cU1L/ObIjaWCq6qyqen5VPaOqjq6q66rq3VX1iqp6ZVW9ratHlqq6pKp+sapeUlX/rSt+S1X9w7bvkuF8G0lD9ijwaFXd2V7fTKf4+f7kiHF73tb2OzVWu6xatYpDDjmEJBxyyCGsWrVq2E1Sn1jsSJKkeaeqtgKPJHlJC51GZyR4HTC5otoK4PNtex1wdluVbRnwROtcuRVYnuSItjDB8hbTmFq1ahVXX301O3fuBGDnzp1cffXVFjxjymJHkiTNV6uAG5LcR2dFx38LXAq8IckDwK+21wC3AA8Cm+kshvK7AFW1A/gInd8D3gVc3GIaU1dffTUAixcvZvPmzSxevHi3uMaLv9mRJEnzUlXdC0xMseu0KY4t4LxpzrMGWNPb1mnUPfTQQ7z4xS8edjPUZ47sqK+S7PWQJEkaBTfffPOwm6A+s9hR30xX2FjwSJKkYbviiis4/fTTueKKnt3LWiPIaWzqu87MgQ4LHUkHaqr80Z1fJGk2zj//fM4///xhN0N95siOJGnkOVIsSToQFjvqO3+vI6lXqmrXQ5Lm6sYbbxx2E9RnFjuSJEl6WjrzzDOH3QT1mcWOJEmSnlaWLVu220jxsmXLht0k9YnFjvrOaSeSesVpsZLmauHChWzYsIGTTjqJxx57jJNOOokNGzawcKHrdo0jix1JkiQ9bVx//fUA3HHHHbzgBS/gjjvu2C2u8WKxo76zJ1ZSrzhSLGmu7rjjDg466CAWLVoEwKJFizjooIN2FT0aLxY76pvpLka8SJEkScNy7bXXcvnll7N161aqiq1bt3L55Zdz7bXXDrtp6gOLHfVVdy+svbGSJGnYdu7cybnnnrtb7Nxzz2Xnzp1DapH6yV9iSZLmDafDSpqrgw8+mJUrV3LvvfeyadMmjj/+eJYuXcrBBx887KapDxzZkTQwSdYk2Zbk/q7YkUnWJ3mgPR/R4klyVZLNSe5LckLXe1a04x9IsmIY30WD5bRYSb1yyimncMMNN3DyySezY8cOTj75ZG644QZOOeWUYTdNfWCxI2mQPg28aY/YhcBtVbUEuK29BjgdWNIeK4FroFMcARcBJwKvBi6aLJA03pwWK6kXtmzZAsA111zD4YcfzjXXXLNbXOPFYkfSwFTV14Ade4TPANa27bXA27vi11fHBuDwJM8H3gisr6odVfU4sJ69CyhJTwNJFiT5VpIvtNfHJbmzjQj/cZJntvjB7fXmtn9x1zk+1OJ/meSNw/kmGqSNGzfOKq75zWJH0rAtqqrH2vZWYFHbfiHwSNdxj7bYdPG9JFmZ5O4kd2/fvr23rZY0Ct4PbOp6fRnwsap6MfA4cE6LnwM83uIfa8eR5KXAmcDL6HSafCLJggG1XSPghBNO2P9BmtcsdiSNjOrMS+rZ3KSqWl1VE1U1cdRRR/XqtJJGQJKjgbcAn2qvA7weuLkdsudI8eQI8s3Aae34M4Abq2pnVf01sJnO9Fg9TXzzm98cdhPUZxY7kobt+216Gu15W4tvAY7pOu7oFpsuLunp5T8A/wL4WXv9C8APq+rJ9rp71HfXiHDb/0Q73pFiacxZ7EgatnXA5IpqK4DPd8XPbquyLQOeaNPdbgWWJzmiLUywvMUkPU0keSuwraruGdRnOlIszU/eZ0fSwCT5DHAq8Nwkj9JZVe1S4KYk5wAPA+9sh98CvJnOtJIfvstt+wAADFZJREFUA+8BqKodST4C3NWOu7iq9lz0QNJ4Owl4W5I3A4cAfx+4ks5CJgvb6E33qO/kiPCjSRYChwE/wJFiaezNudhJ8hDwI+Ap4MmqmmhLw/4xsBh4CHhnVT3e5sdeSecC5sfAb1WVkyWlp4mqOmuaXadNcWwB501znjXAmh42TdI8UlUfAj4EkORU4INV9a4knwV+HbiRvUeKVwB/0fb/j6qqJOuAP0ryUeAFdJa6/8Ygv4uk/urVNLbXVdXSqppor2d13wxJkqQeuAD4QJLNdH6Tc12LXwf8Qot/gHZdUlUbgZuA7wJfAs6rqqcG3mpJfdOvaWxn0JmqAp3VT26nk4B23TcD2JDk8CTP71p2VmOmM5i3O28EKEnqlaq6nc51BlX1IFOsplZVfwu8Y5r3XwJc0r8WShqmXozsFPDlJPckWdlis71vhsbQVIXOvuKStC9J9npIkrQvvRjZeW1VbUnyPGB9ku9172xzYmfVld+KppUAxx57bA+aKEmaz/bVeeJosSRpOnMe2amqLe15G/A5OsPHs71vxp7ndHlHSZIkSXMyp2InybOTHDq5Ted+F/cz+/tmaIxV1a6HJEmSNChznca2CPhcm16wEPijqvpSkruYxX0zNN6cVy+pV7o7TcwtkqT9mVOx01Y9edUU8R8wy/tmSJK0PxY4kqTZ6NV9diRJkiRppFjsSJIkSRpLFjvqOxcokDRX0+UP84okaV96cZ8daZ+cYy+pFyxsJEmz5ciO+saeWEmSJA2TIzuSpHlhqlFiO08kSfviyI76Zrrpa05rkzRb5hNJ0oGw2JEkSZI0lix2JI2EJA8l+U6Se5Pc3WJHJlmf5IH2fESLJ8lVSTYnuS/JCcNtvQbF1R0lSbNhsSNplLyuqpZW1UR7fSFwW1UtAW5rrwFOB5a0x0rgmoG3VNJQJTkmyVeSfDfJxiTvb/FZd5IkWdGOfyDJimF9J0m9Z7EjaZSdAaxt22uBt3fFr6+ODcDhSZ4/jAZqsJLseuhp70ng/Kp6KbAMOC/JS5llJ0mSI4GLgBOBVwMXTRZIkuY/ix1Jo6KALye5J8nKFltUVY+17a3Aorb9QuCRrvc+2mK7SbIyyd1J7t6+fXu/2i1pCKrqsar6Ztv+EbCJTh6YbSfJG4H1VbWjqh4H1gNvGuBXkdRHLj0taVS8tqq2JHkesD7J97p3VlUlmdUPNapqNbAaYGJiwh95zGNV5dLTmlaSxcAvAXcy+06SGXee0BkR4thjj+1d4yX1lSM7kkZCVW1pz9uAz9GZTvL9yelp7XlbO3wLcEzX249uMY2x7sUJXKRAk5I8B/ivwO9V1f/p3ledP5Ke/KFU1eqqmqiqiaOOOqoXp5Q0ABY7koYuybOTHDq5DSwH7gfWAZM/Fl4BfL5trwPObj84XgY80dWTK+lpIskz6BQ6N1TVn7TwbDtJ7DyRxpjFjvpmul5Xe2M1hUXA15N8G/gG8MWq+hJwKfCGJA8Av9peA9wCPAhsBq4FfnfwTZY0TOnMa7wO2FRVH+3aNdtOkluB5UmOaAsTLG8xSWPA3+yoryxsNBNV9SDwqiniPwBOmyJewHkDaJqk0XUS8G7gO0nubbE/oNMpclOSc4CHgXe2fbcAb6bTSfJj4D0AVbUjyUeAu9pxF1fVjsF8BUn9ZrEjSZLmnar6OjDdGuSz6iSpqjXAmt61TtKocBqbJEmSpLFksSNJkiRpLFnsSJIkSRpLFjuSJEmSxpLFjiRJkqSxZLEjSZIkaSxZ7EiSJEkaS95nR5IkSWMnme42TLN/jzdJn78sdiRJkjR2pitQ9lUEWdSMH6exSZIkSRpLjuxIkkbKgUw9mYo9tJKmUlVT5hlzxnhyZEeSNFKqap+PF13whf0e40WLpH2ZKp9oPFnsSJIkSRpLTmNTTzjtRJIkDdKr/vDLPPGTn875PIsv/OKc3n/Ys57Bty9aPud2qD8sdtQT+ytSFl/4RR669C0Dao2kUeXFiUZRkjcBVwILgE9V1aVDbpJm4Imf/HQkri3mmo/UXwMvdkwo88+oXJyAFyjanflk/vHiRKMmyQLg48AbgEeBu5Ksq6rvDrdlknphoMWOCWV+GpWLE/ACRT9nPpHUI68GNlfVgwBJbgTOAMwlI+7Q4y/kFWsvHHYzOPR4gNG4TtLeBj2yY0KZh0YlmYAJRbsxn8xDo5JPzCXq8kLgka7XjwInDqktmoUfbRqNwfzDnvWMYTdB+zDoYmdGCSXJSmAlwLHHHjuYlmlaM0kmD1/21p581osu+MI+95tQ1GW/+cRcMnpGJZ+YSzRb5pPRs79ZJ71aPAlcQGk+G8kFCqpqNbAaYGJiwr+uIZvRFLZL/WfS6DGXjB7ziUbQFuCYrtdHt9huzCfzjwWKYPD32ZlRQpGkGTCfSOqFu4AlSY5L8kzgTGDdkNskqUcGXeyYUCT1ivlE0pxV1ZPAe4FbgU3ATVW1cbitktQrA53GVlVPJplMKAuANSYUSQfCfCKpV6rqFuCWYbdDUu8N/Dc7JhRJvWI+kSRJ+zLoaWySJEmSNBAWO5IkSZLGksWOJEmSpLGUUV+DPMl24OFht0Nz9lzgb4bdCPXEi6rqqGE3YrbMJWPFfDI+zCcaNvPJ+Jgyn4x8saPxkOTuqpoYdjskzX/mE0m9Yj4Zf05jkyRJkjSWLHYkSZIkjSWLHQ3K6mE3QNLYMJ9I6hXzyZjzNzuSJEmSxpIjO5IkSZLGksWOJEmSpLFksSNJkqSxkOSpJPcmuT/JZ5P8vVm+/x1JNiX5SpKJJFe1+KlJXtOfVqufLHa0mySLk9y/R+zDST64j/fMOhkkObslou8k+da+zr+Pc5h4pBE0iDzSzrel66LmbdMc97YkFx7I95A0L/2kqpZW1cuBvwPO7d6Zjn1d/54D/HZVva6q7q6q97X4qYDXHPOQxY7mbLbJIMnpwO8By6vqFcAy4IkD+Oj9fpak+eEALyo+VlVLgXcAa/a8gEmysKrWVdWlvW2tpHniz4EXtw6Yv0xyPXA/cEySs1qH6/1JLgNI8q+B1wLXJbm8dbx8IcliOkXT77cOll8Z0vfRAbDY0YwluT3JZUm+keSvJv+zH0Ay+BDwwar63wBVtbOqrm3nWppkQ5L7knwuyREt/r4k323xG0080vzUwzyyS1VtAp4Enpvk00k+meRO4N8n+a0kV7fPWNTyyrfb4zUt/putPfcm+Y9JFvTp60sakCQLgdOB77TQEuATVfUy4KfAZcDrgaXALyd5e1VdDNwNvKuq/vnkuarqIeCTtA6WqvrzwX0TzZXFjmZrYVW9ms7IzEXdO2aRDF4O3DPNvuuBC6rqlXQS1ORnXAj8Uoufa+KR5rVe5JFdkpwI/AzY3kJHA6+pqg/scehVwFer6lXACcDGJMcDvwGc1EaJngLedcDfTNKwPSvJvXSKlv8FXNfiD1fVhrb9y8DtVbW9qp4EbgBOHnxTNQgLh90AjZzpbrw0Gf+T9nwPsLiXH5zkMODwqvpqC60FPtu27wNuSPKnwJ/28nMl9dyg8sjvJ/lN4EfAb1RVJQH4bFU9NcXxrwfOBmj7n0jybuAfA3e19z4L2DaHNkkarp+0jotd2v/t/zec5mjYHNnRnn4AHLFH7Ejgb9r2zvb8FAdeLG+kc3ExG28BPk6nN/auNjwtaTQNIo/Az0d/fmWPEaDZXNQEWNvOs7SqXlJVH55DmySNvm8ApyR5bpu2ehbw1f2850fAoX1vmXrOYke7qar/CzyW5PUASY4E3gR8fYanmEky+HfA5Un+QfuMZyb5p1X1BPB41xz9dwNfbT86PqaqvgJcABwGPGeGnyVpwAaURw7EbcDvtDYtaKPJtwG/nuR5k21N8qI+fLakEVFVj9GZHv8V4NvAPVX1+f287c+AX/N3wvOPveOaytnAx5N8tL3+w6r6n20YeH/+DLg5yRnAqqnm21fVLUkWAf89nZMWsKbtXgF8Mp118R8E3gMsAP5LuzAJcFVV/TDJfj9L0tD0NY8coPcDq5OcQ2dU6Xeq6i+S/Cvgy61j5afAecDDPfpMSQNUVc+ZIvYQnd8Ld8c+A3xmimNP7dq+Hbi9bf8V8MpetlWDkarpplZLkiRJ0vzlNDZJkiRJY8lpbOqbJP+Szs3+un22qi4ZRnskzT/mEUnSXDiNTZIkSdJYchqbJEmSpLFksSNJkiRpLFnsSJIkSRpLFjuSJEmSxtL/BxQ0sjKAXQTqAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "LZG5rcHyqTzB", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "outputId": "a04d89c6-a574-41df-e243-dd182bcc942c" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 360\n", + "1 360\n", + "2 1035\n", + "3 900\n", + "4 180\n", + "Name: Calculated_Cost, dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Calculated_Cost
0360
1360
21035
3900
4180
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "sales['Calculated_Cost'] = sales['Order_Quantity'] * sales['Unit_Cost']\n", + "\n", + "sales['Calculated_Cost'].head()" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "boxplot_cols = ['Year', 'Customer_Age', 'Order_Quantity', 'Unit_Cost', 'Unit_Price', 'Profit']\n", - "\n", - "sales[boxplot_cols].plot(kind='box', subplots=True, layout=(2,3), figsize=(14,8))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "## Column wrangling\n", - "\n", - "We can also create new columns or modify existing ones.\n", - "\n", - "### Add and calculate a new `Revenue_per_Age` column" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 50.000000\n", - "1 50.000000\n", - "2 49.000000\n", - "3 42.612245\n", - "4 8.893617\n", - "Name: Revenue_per_Age, dtype: float64" + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "uWbOPGYLqTzC", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 400 + }, + "outputId": "8c0d4dd9-df15-462a-8d6e-b939f9e2d2e9" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Day Month Year Customer_Age Age_Group \\\n", + "0 2013-11-26 26 November 2013 19 Youth (<25) \n", + "1 2015-11-26 26 November 2015 19 Youth (<25) \n", + "2 2014-03-23 23 March 2014 49 Adults (35-64) \n", + "3 2016-03-23 23 March 2016 49 Adults (35-64) \n", + "4 2014-05-15 15 May 2014 47 Adults (35-64) \n", + "\n", + " Customer_Gender Country State Product_Category Sub_Category \\\n", + "0 M Canada British Columbia Accessories Bike Racks \n", + "1 M Canada British Columbia Accessories Bike Racks \n", + "2 M Australia New South Wales Accessories Bike Racks \n", + "3 M Australia New South Wales Accessories Bike Racks \n", + "4 F Australia New South Wales Accessories Bike Racks \n", + "\n", + " Product Order_Quantity Unit_Cost Unit_Price Profit Cost \\\n", + "0 Hitch Rack - 4-Bike 8 45 120 590 360 \n", + "1 Hitch Rack - 4-Bike 8 45 120 590 360 \n", + "2 Hitch Rack - 4-Bike 23 45 120 1366 1035 \n", + "3 Hitch Rack - 4-Bike 20 45 120 1188 900 \n", + "4 Hitch Rack - 4-Bike 4 45 120 238 180 \n", + "\n", + " Revenue Calculated_Cost \n", + "0 950 360 \n", + "1 950 360 \n", + "2 2401 1035 \n", + "3 2088 900 \n", + "4 418 180 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateDayMonthYearCustomer_AgeAge_GroupCustomer_GenderCountryStateProduct_CategorySub_CategoryProductOrder_QuantityUnit_CostUnit_PriceProfitCostRevenueCalculated_Cost
02013-11-2626November201319Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950360
12015-11-2626November201519Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950360
22014-03-2323March201449Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike23451201366103524011035
32016-03-2323March201649Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike204512011889002088900
42014-05-1515May201447Adults (35-64)FAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike445120238180418180
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "sales" + } + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "(sales['Calculated_Cost'] != sales['Cost']).sum()\n", + "sales.head()" ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales['Revenue_per_Age'] = sales['Revenue'] / sales['Customer_Age']\n", - "\n", - "sales['Revenue_per_Age'].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8JIfVwXUqTzC" + }, + "source": [ + "We can see the relationship between `Cost` and `Profit` using a scatter plot:" ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAFpCAYAAAC4QTjSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dfZRkdX3n8fe3qnp6ZmBmEBhBBxAUlAwhoo6wmwdPEp8wD45GjBgTSZYsJsrJiTnuCclmjXGzWXXPxk0i2Q1ZWZG4AcNGM0mIxqdkT1wfGHwCjB5HhDCIOswMAwwz0911v/tH3aqp6qru6cG+XTO33q9z+lTVrVvVv4Z7eurT39/v+4vMRJIkSZImWWPcA5AkSZKkcTMYSZIkSZp4BiNJkiRJE89gJEmSJGniGYwkSZIkTTyDkSRJkqSJV2kwiohLI+KrEbEjIq4Z8fx0RNxcPv+ZiDi7PH52RByIiC+UX/+jynFKkiRJmmytqt44IprAtcALgZ3AbRGxLTO/3HfalcDezDw3Ii4H3g68qnzu65l5UVXjkyRJkqSuKitGFwM7MvPuzJwBbgK2zjtnK3BDef8W4PkRERWOSZIkSZKGVBmMNgH39T3eWR4beU5mzgH7gFPK586JiM9HxD9GxA9VOE5JkiRJE66yqXTfpQeAszJzd0Q8B/hgRFyQmQ/3nxQRVwFXAZxwwgnPOf/888cwVEmSJEnHi9tvv/3BzNw4/3iVweh+4My+x2eUx0adszMiWsAGYHdmJnAIIDNvj4ivA08Htve/ODOvA64D2LJlS27fPvC0JEmSJA2IiHtHHa9yKt1twHkRcU5ErAIuB7bNO2cbcEV5/zLg45mZEbGxbN5ARDwVOA+4u8KxSpIkSZpglVWMMnMuIq4GPgw0gesz866IeCuwPTO3Ae8GboyIHcAeOuEJ4HnAWyNiFiiAX8rMPVWNVZIkSdJki86steOfU+kkSZIkHUlE3J6ZW+Yfr3SDV0mSJEk6HhiMJEmSJE08g5EkSZKkiWcwkiRJkjTxDEaSJEmSJp7BSJIkSdLEMxhJkiRJmngGI0mSJEkTz2AkaaSDs23+Zfdj4x6GJEnSijAYSRrpjTd/gef9l08wM1eMeyiSJEmVMxhJGuljX/kOALNtg5EkSao/g5Gk0bJzM9fO8Y5DkiRpBRiMJI2UZTKasWIkSZImgMFI0khZFoqcSidJkiaBwUjSSN0JdAYjSZI0CQxGkkbKsmRkMJIkSZPAYCRppG7F6JDtuiVJ0gQwGEka6fAaI7vSSZKk+jMYSVqUU+kkSdIkMBhJWtSsU+kkSdIEMBhJWpT7GEmSpElgMJK0KNcYSZKkSWAwkrQo1xhJkqRJYDCStCiDkSRJmgQGI0mLmrH5giRJmgAGI0mLco2RJEmaBAYjSYuamWuPewiSJEmVMxhJWpQVI0mSNAkMRpKGZB4OQ+5jJEmSJoHBSNKQ/iqRXekkSdIkMBhJGtJfJTIYSZKkSWAwkjSkv0W3a4wkSdIkMBhJGtIfjNzHSJIkTQKDkaQhgxUjg5EkSao/g5GkITPtw3sXGYwkSdIkMBhJGnLINUaSJGnCGIwkDSn6ikSuMZIkSZPAYCRpSOEGr5IkacIYjCQNaacbvEqSpMliMJI0JA1GkiRpwhiMJA0p+vottAubL0iSpPozGEkaUvSFocKCkSRJmgAGI0lDumuMWo0YWG8kSZJUVwYjSUO6WWiq2XAqnSRJmggGI0lDuu26W80wGEmSpIlgMJI0pBuGrBhJkqRJYTCSNOTwVLoY2OxVkiSprgxGkob0ptI1rBhJkqTJYDCSNKSbhVa1DEaSJGkyGIwkDTm8xsh23ZIkaTIYjCQNSafSSZKkCWMwkjSk6G++YDCSJEkTwGAkaUi3+cJUs+FUOkmSNBEqDUYRcWlEfDUidkTENSOen46Im8vnPxMRZ897/qyIeDQi3lTlOCUNGghGVowkSdIEqCwYRUQTuBZ4CbAZeHVEbJ532pXA3sw8F3gn8PZ5z/8+8HdVjVHSaL123c0wGEmSpIlQZcXoYmBHZt6dmTPATcDWeedsBW4o798CPD8iAiAiXgZ8A7irwjFKGqEoOrdWjCRJ0qSoMhhtAu7re7yzPDbynMycA/YBp0TEicCvA79T4fgkLeDwBq+BuUiSJE2CY7X5wluAd2bmo4udFBFXRcT2iNi+a9eulRmZNAF6a4xaDea65SNJkqQaa1X43vcDZ/Y9PqM8NuqcnRHRAjYAu4FLgMsi4h3ASUAREQcz8139L87M64DrALZs2eLftaVl0q0SrWo2MBdJkqRJUGUwug04LyLOoROALgd+Zt4524ArgE8BlwEfz87Okj/UPSEi3gI8Oj8USapO/1Q623VLkqRJUFkwysy5iLga+DDQBK7PzLsi4q3A9szcBrwbuDEidgB76IQnSWPW3dS1ZfMFSZI0IaqsGJGZtwK3zjv25r77B4FXHuE93lLJ4CQt6PBUuug8LpJGI8Y4IkmSpGodq80XJI1R/wavAHNWjSRJUs0ZjCQN6eagVhmMCtcZSZKkmjMYSRrSXWPUnUrnOiNJklR3BiNJQ3pd6cqKkZ3pJElS3RmMJA3pFoi6a4zabYORJEmqN4ORpCGHmy+UU+msGEmSpJozGEka0l1j1K0YFa4xkiRJNWcwkjTkcFc6K0aSJGkyGIwkDelNpWuUa4ysGEmSpJozGEkakplEQLNhu25JkjQZDEaShrQzaUQYjCRJ0sQwGEkaUiQ0I2iUwahwjZEkSao5g5GkIUV3Kl10K0ZjHpAkSVLFDEaShhSFU+kkSdJkMRhJGlIkNGy+IEmSJojBSNKQIpNGIyj3d3UfI0mSVHsGI0lDMqERQSOsGEmSpMlgMJI0pF0kjYBWucGrXekkSVLdGYwkDSkyaTaCMhcx1zYYSZKkejMYSRpSJEREr123FSNJklR3BiNJQzLTrnSSJGmiGIwkDWmX+xg1usHIipEkSao5g5GkIUXZla5VBqPCipEkSao5g5GkIZlJo0GvXfecwUiSJNWcwUjSkCI7U+maVowkSdKEMBhJGtIup9I1XWMkSZImhMFI0pCi7ErXnUpnVzpJklR3BiNJQ7KcSteyXbckSZoQBiNJQ4pi3lQ6g5EkSao5g5GkIe1MIujtY1S4xkiSJNWcwUjSkMyk2QiavTVGYx6QJElSxQxGkoYUdqWTJEkTxmAkaUi76HSl6wUjS0aSJKnmDEaShhSZRPRNpbNgJEmSas5gJGlIZqda1Ch/QxR2pZMkSTVnMJI0pLvBq2uMJEnSpDAYSRrSLsqpdO5jJEmSJoTBSNKQTGj2rzEyGEmSpJozGEkaUmTSaGDFSJIkTQyDkaQhnTVGQUQQ0XksSZJUZwYjSUPaCVFOo2s1woqRJEmqPYORpCGZSbOTi2iEwUiSJNWfwUjSkO5UOuisMzIYSZKkujMYSRpSFIen0jUj3MdIkiTVnsFI0pDuBq8AjUZQWDGSJEk1ZzCSNKTI7LXqbjWCOYORJEmqOYORpCFF0ltj1GiE7bolSVLtGYwkDSmKpMxFnTVGVowkSVLNGYwkDRnuSjfmAUmSJFXMYCRpSJH01hg1nUonSZImgMFI0pAi+6bS2XxBkiRNAIORpCFFcXgqXSOwXbckSao9g5GkIUV2mi5Ad42RwUiSJNWbwUjSkCKTRvnboRFB2zVGkiSp5ioNRhFxaUR8NSJ2RMQ1I56fjoiby+c/ExFnl8cvjogvlF9fjIiXVzlOSYOKhCgrRq2mFSNJklR/lQWjiGgC1wIvATYDr46IzfNOuxLYm5nnAu8E3l4evxPYkpkXAZcCfxIRrarGKmlQp1135777GEmSpElQZcXoYmBHZt6dmTPATcDWeedsBW4o798CPD8iIjMfy8y58vhqwE9l0goqMntrjBq265YkSROgymC0Cbiv7/HO8tjIc8ogtA84BSAiLomIu4A7gF/qC0o9EXFVRGyPiO27du2q4EeQJlNRZG8qnRUjSZI0CY7Z5guZ+ZnMvAB4LvAbEbF6xDnXZeaWzNyycePGlR+kVFOZ9Np125VOkiRNgiqD0f3AmX2PzyiPjTynXEO0Adjdf0Jm/jPwKPC9lY1U0oB2/xojg5EkSZoAVQaj24DzIuKciFgFXA5sm3fONuCK8v5lwMczM8vXtAAi4inA+cA9FY5VUp8ik2ajr2LkGiNJklRzlXV6y8y5iLga+DDQBK7PzLsi4q3A9szcBrwbuDEidgB76IQngB8EromIWaAAXp+ZD1Y1VkmD+tt1NyIorBhJkqSaq7QFdmbeCtw679ib++4fBF454nU3AjdWOTZJC8v5U+msGEmSpJo7ZpsvSBqfdpEDzRfm2gYjSZJUbwYjSUOK7OxfBJ123e5jJEmS6s5gJGlAliHIrnSSJGmSGIwkDeiGoO5UukYjMBdJkqS6MxhJGtANQd123S0rRpIkaQIYjCQN6K4nKgtGNMJgJEmS6s9gJGlAt8/C4a50GIwkSVLtGYwkDWiPar5gVzpJklRzBiNJA4qc13whgsKKkSRJqjmDkaQBWXRuu8Go1QjmDEaSJKnmDEaSBhTzptI1GlaMJElS/RmMJA3orTEqk1EzXGMkSZLqz2AkacD8NUZN9zGSJEkTwGAkacBwu+7ohSVJkqS6MhhJGjB/jVHT5guSJGkCGIwkDehOm+tv150JadVIkiTV2JKCUUT8ZUT8eEQYpKSa602laxyeSge4zkiSJNXaUoPOHwM/A3wtIt4WEc+ocEySxmjUVDrAznSSJKnWlhSMMvOjmfka4NnAPcBHI+L/RcQvRMRUlQOUtLLmT6XrBqOiGNuQJEmSKrfkqXERcQrw88AvAp8H/oBOUPpIJSOTNBbdGXPRrRiVd+ZMRpIkqcZaSzkpIj4APAO4EfjJzHygfOrmiNhe1eAkrbxuk4VupahhxUiSJE2AJQUj4E8z89b+AxExnZmHMnNLBeOSNCbF/H2MysqRa4wkSVKdLXUq3e+OOPap5RyIpGPD4TVGncd2pZMkSZNg0YpRRJwObALWRMSzgPKjEuuBtRWPTdIYHO5K122+0Pn7icFIkiTV2ZGm0r2YTsOFM4Df7zv+CPCbFY1J0hjl/Kl0ZV3ZqXSSJKnOFg1GmXkDcENEvCIz/88KjUnSGPUqRmUg6gakwoqRJEmqsSNNpfvZzPwz4OyI+LX5z2fm7494maTjWLcyFPP2MXIqnSRJqrMjTaU7obw9seqBSDo29Np1zwtGcwYjSZJUY0eaSvcn5e3vrMxwJI3b/HbdU+UiIzd4lSRJdbakdt0R8Y6IWB8RUxHxsYjYFRE/W/XgJK28Yl677la3YtS2YiRJkuprqfsYvSgzHwZ+ArgHOBf4d1UNStL4zF9j1K0YzbatGEmSpPpaajDqTrn7ceAvMnNfReORNGbdrtzdtUWtpmuMJElS/R2p+ULX30TEV4ADwC9HxEbgYHXDkjQuhzd47TxuNawYSZKk+ltSxSgzrwG+H9iSmbPAfmBrlQOTNB7dttyHp9K5xkiSJNXfUitGAOfT2c+o/zXvXebxSBqz7HWl69y27EonSZImwJKCUUTcCDwN+ALQLg8nBiOpdrpT6XprjMrbWStGkiSpxpZaMdoCbM7uzo+SamvBfYwMRpIkqcaW2pXuTuD0Kgci6dhweI1R5/HhrnROpZMkSfW11IrRqcCXI+KzwKHuwcx8aSWjkjQ2OW8q3VSvK50VI0mSVF9LDUZvqXIQko4d86fS9SpGtuuWJEk1tqRglJn/GBFPAc7LzI9GxFqgWe3QJI3D0D5GZTCadYNXSZJUY0taYxQR/xa4BfiT8tAm4INVDUrS+HSDUW8fo+5UujkrRpIkqb6W2nzhDcAPAA8DZObXgCdWNShJ49Nr1z1/Kp3NFyRJUo0tNRgdysyZ7oNyk1fn1Ug11M0/89t123xBkiTV2VKD0T9GxG8CayLihcBfAH9d3bAkjcvhqXSdx+5jJEmSJsFSg9E1wC7gDuB1wK3Ab1U1KEnj02u+UHZfaDaCCKfSSZKkeltqV7oiIj4IfDAzd1U8Jklj1G0+111jBJ0GDE6lkyRJdbZoxSg63hIRDwJfBb4aEbsi4s0rMzxJK21+u27oNGBwHyNJklRnR5pK90Y63eiem5knZ+bJwCXAD0TEGysfnaQV160YRV/FqNUI5tzHSJIk1diRgtHPAa/OzG90D2Tm3cDPAq+tcmCSxqMohitGU80Gs1aMJElSjR0pGE1l5oPzD5brjKaqGZKkcertY9SXjDpT6awYSZKk+jpSMJp5nM9JOk6NnkrXYNaudJIkqcaO1JXumRHx8IjjAayuYDySxmz0VDorRpIkqd4WrRhlZjMz14/4WpeZR5xKFxGXRsRXI2JHRFwz4vnpiLi5fP4zEXF2efyFEXF7RNxR3v7o4/0BJR2dw13p+qfSNdzHSJIk1dpSN3g9ahHRBK4FXgJsBl4dEZvnnXYlsDczzwXeCby9PP4g8JOZeSFwBXBjVeOUNKi3j1FjsCud+xhJkqQ6qywYARcDOzLz7sycAW4Cts47ZytwQ3n/FuD5ERGZ+fnM/GZ5/C5gTURMVzhWSaVuxSjmdaVzHyNJklRnVQajTcB9fY93lsdGnpOZc8A+4JR557wC+FxmHqponJL6HF5jNK8rnfsYSZKkGjtS84WxiogL6Eyve9ECz18FXAVw1llnreDIpPrqTaXrC0ZTDfcxkiRJ9VZlxeh+4My+x2eUx0aeExEtYAOwu3x8BvAB4LWZ+fVR3yAzr8vMLZm5ZePGjcs8fGkyjZpK5z5GkiSp7qoMRrcB50XEORGxCrgc2DbvnG10misAXAZ8PDMzIk4C/ha4JjM/WeEYJc2TmUTM28eo2WDWqXSSJKnGKgtG5Zqhq4EPA/8MvD8z74qIt0bES8vT3g2cEhE7gF8Dui29rwbOBd4cEV8ov55Y1VglHdbOHFhfBDDVCJsvSJKkWqt0jVFm3grcOu/Ym/vuHwReOeJ1vwv8bpVjkzRakYPri8CpdJIkqf6qnEon6ThUlFPp+rWaNl+QJEn1ZjCSNCCToal0q5oNZgxGkiSpxgxGkga0i6Qxr2K0eqrBoTmDkSRJqi+DkaQBRSaNecloutXk4Gx7TCOSJEmqnsFI0oBRU+mmpxocmrViJEmS6stgJGnAyKl0rSYz7YLCvYwkSVJNGYwkDShG7GO0eqoJ4DojSZJUWwYjSQOKZGiN0eqpzq8K1xlJkqS6MhhJGpA5qitdp2J0cM5gJEmS6slgJGlAZ43RQhUjp9JJkqR6MhhJGtAetcaoVVaMnEonSZJqymAkaUBRJM2hNUYGI0mSVG8GI0kD2slQMJp2Kp0kSao5g5GkAcWofYxsviBJkmrOYCRpQJEjptKVa4wOWTGSJEk1ZTCSNGCxrnSHrBhJkqSaMhhJGlCM6kpn8wVJklRzBiNJA9ojutJNt2y+IEmS6s1gJGlAO6Fhu25JkjRhDEaSBhRF0lyoK50VI0mSVFMGI0kDRk2lazaCqWbYrluSJNWWwUjSgPaI5gvQadntVDpJklRXBiNJA4oRFSOAE6Zb7D80N4YRSZIkVc9gJGlAe8QGrwDrVrd45KDBSJIk1ZPBSNKAYsQGr2AwkiRJ9WYwkjRg4YrRFI8cnB3DiCRJkqpnMJI0oF0wsmJ04uoWj7jGSJIk1ZTBSNKATvOF4ePrnUonSZJqzGAkaUCxQLtup9JJkqQ6MxhJGtDOpDFqjdF0i4OzBbPtYgyjkiRJqpbBSNKAokiaC3SlA5xOJ0mSaslgJGnAQl3pTlw9BeB0OkmSVEsGI0kDigW60lkxkiRJdWYwkjSgvUBXOoORJEmqM4ORpAELTaXbsKYzlW7fgZmVHpIkSVLlDEaSBhTF6HbdJ5+wCoC9j7nGSJIk1Y/BSNKAhSpGT1jbCUZ79lsxkiRJ9WMwkjSgvUDFaPVUk7WrmgYjSZJUSwYjSQOKYnTFCDpVo70GI0mSVEMGI0kDFppKB511RnseMxhJkqT6MRhJGrDQPkYATzjBipEkSaong5GkAUUmCxSMOMWKkSRJqimDkaQBi02l66wxsl23JEmqH4ORpJ7MJHPhqXQnnzDFo4fmODTXXuGRSZIkVctgJKmnXSTAwhWjcpPXh9zkVZIk1YzBSFJPOxcPRie7yaskSaopg5GknqLo3C7WlQ6wM50kSaodg5GknsMVo9HPn1wGIzvTSZKkujEYSerprjFasGK01oqRJEmqJ4ORpJ7iCM0XTlo7BcAeW3ZLkqSaMRhJ6jlS84WpZoP1q1vsdSqdJEmqGYORpJ7iCFPpoLPOyK50kiSpbgxGknqOVDGCTmc6K0aSJKluKg1GEXFpRHw1InZExDUjnp+OiJvL5z8TEWeXx0+JiE9ExKMR8a4qxyjpsN4Gr4tVjNZaMZIkSfVTWTCKiCZwLfASYDPw6ojYPO+0K4G9mXku8E7g7eXxg8B/AN5U1fgkDSsLRiySizoVI4ORJEmqmSorRhcDOzLz7sycAW4Cts47ZytwQ3n/FuD5ERGZuT8z/4lOQJK0QtpH6EoH5Rojp9JJkqSaqTIYbQLu63u8szw28pzMnAP2AadUOCZJi1jSGqO1qzg4W3Bgpr1Sw5IkSarccd18ISKuiojtEbF9165d4x6OdNxbWle6zl5Gu/cfWpExSZIkrYQqg9H9wJl9j88oj408JyJawAZg91K/QWZel5lbMnPLxo0bv8vhSlpqxQhgr5u8SpKkGqkyGN0GnBcR50TEKuByYNu8c7YBV5T3LwM+ntld/i1ppbWXuI8R4DojSZJUK62q3jgz5yLiauDDQBO4PjPvioi3AtszcxvwbuDGiNgB7KETngCIiHuA9cCqiHgZ8KLM/HJV45UERdG5PdI+RoCd6SRJUq1UFowAMvNW4NZ5x97cd/8g8MoFXnt2lWOTNOzwVLqFzzm5nEq322AkSZJq5LhuviBpeS1lKt2GNVNMNYMHH7X5giRJqg+DkaSeYgnNFxqN4JQTpnnwEYORJEmqD4ORpJ7eBq+LVIwATl23il1WjCRJUo0YjCT19PYxWqRiBHDqidNOpZMkSbViMJLUs5R9jAA2njjNg4/YfEGSJNWHwUhST1kw4gi5iFPXTbN7/6FehUmSJOl4ZzCS1FMsoSsddKbSzbaTfQdmV2JYkiRJlTMYSerpNV840lS6ddMArjOSJEm1YTCS1NNdY3TkilFnk1c700mSpLowGEnqKZZaMTqxWzGyAYMkSaoHg5GkntkyGE01lzaVbpebvEqSpJowGEnqmWsXAEw1F//VsGHNFFPNcI2RJEmqDYORpJ7ZJQajiOCUE6Z50IqRJEmqCYORpJ6Zdncq3ZF/NWxcN23FSJIk1YbBSFLP7Fy3YnSEHV7pdKazK50kSaoLg5GknrliaVPpAE7fsJpv7TtY9ZAkSZJWhMFIUs/sUUyle/KGNTz46AwHZ9tVD0uSJKlyBiNJPTNHMZVu0xPWAPDNhw5UOiZJkqSVYDCS1DPbLmg1gogjB6Mnn9QNRk6nkyRJxz+DkaSeuSKXNI0OYFMZjO5/6LEqhyRJkrQiDEaSembmiiVNo4NO84VGwP17nUonSZKOfwYjST2z7WLJFaOpZoMnn7SGe3ZbMZIkScc/g5GknqMJRgBP3XgiX9/1aIUjkiRJWhkGI0k9c+1kqrW0qXQATz31BO7etZ+iyApHJUmSVD2DkaSemaOsGD3tiSdyYLbNtx62M50kSTq+GYwk9cy2C6YaRxGMNp4AwNe+43Q6SZJ0fDMYSeqZPcqpdBc8aQMAd96/r6ohSZIkrQiDkaSeo22+sGHtFGefspYv3vdQhaOSJEmqnsFIUs/RBiOA7zvjJL60cx+ZNmCQJEnHL4ORpJ7Zdi55g9eu555zMt96+CBf37W/olFJkiRVz2AkqefxVIx+9PwnAvCJr3yniiFJkiStCIORpJ5Oxejofi1sOmkN55++jm1f/KbT6SRJ0nHLYCSpZ7ZdsOoogxHAay45izvu38dt9+ytYFSSJEnVMxhJ6pltF7SOco0RwCuecwanrZ/mzX91JzNzRQUjkyRJqpbBSFLP7NzRrzECWLuqxX962YV85VuP8K5P7KhgZJIkSdUyGEnqmS2Ofo1R1ws2n8ZPPWsTf/Txr/F3dzywzCOTJEmqlsFIUk9njdHRT6Xr+r2fupCLzjyJX735C3z67t3LODJJkqRqGYwk9czOFbQeZ8UIYPVUk3df8VzOOnkt/+Y9t3H7vTZjkCRJxweDkaSex9Oue76TT1jF+37xEp64bprXv+92HnpsZplGJ0mSVB2DkSQAMpPZ4rubStf1xPWredfPPJs9+2f49x+40/2NJEnSMc9gJAmAdpFk8l1XjLq+d9MGfvUFT+dv73iAD935rWV5T0mSpKoYjCQBcKjcf2iqtXy/Fl73vKey+Unr+e1td/Hwwdlle19JkqTlZjCSBMCjh+YAWLe6tWzv2Wo2eNsrLuTBRw/xjg99ZdneV5IkabkZjCQB8PCBTkVn/eqpZX3f7zvjJH7++8/hfZ/5Fz765W8v63tLkiQtF4ORJIDeVLflrBh1venFT+fCTRt43Z/dzq/f8iU+ffduisKGDJIk6dhhMJIEwMMHO1Pp1q9Z3ooRwNpVLW688hJe9dwz+esvfZPLr/s0W6/9JA/sO7Ds30uSJOnxMBhJAqqbSte1Yc0Uv/fyC9n+Wy/gHZd9H994cD9XXP9Z9h2wKYMkSRo/g5EkoL9itPxT6fqtXdXip7ecyXU/9xy+8eB+Xv++25ltF5V+T0mSpCMxGEkC4JGD1VaM5vv+c0/l915+IZ/csZvf+sCdtF1zJEmSxqjaPw1LOm48fGCOVc0G08u4j9GRvHLLmdy35zH+8OM7+PIDD/P6H34aL7rgdJqNWLExSJIkgRUjSaWHD86yfk2LiJUNJW984dP5g8sv4qEDM/zy+z7Hy//4k9yxc9+KjkGSJMlgJAmARw7OsW6FptH1iwi2XrSJf3jTj/DOVz2Tbz50kK3X/hO/8uef55M7HrSttyRJWhFOpZMEdLrSra9gD6OlajaClz/rDH70/NP4o499jfdvv49tX/wmm05aw/OefiprV7VoF0kEfM/p6+bxYCwAAAjsSURBVLn0wtNXbD2UJEmqv0o/BUXEpcAfAE3gf2bm2+Y9Pw28F3gOsBt4VWbeUz73G8CVQBv4lcz8cJVjlSbdPbv3c/7p68Y9DDasmeK3fmIzb3rxM/j7L3+bv/zcTj5057eYmStoNRvMtQv2z7T5nb++i59+7pm89l+fzWnrp3nosVn27J9h3eoWp61fzeqp5rh/FEmSdBypLBhFRBO4FnghsBO4LSK2ZeaX+067EtibmedGxOXA24FXRcRm4HLgAuDJwEcj4umZ2a5qvNIk2/XIIe7d/RivueSscQ+lZ/VUk5c+88m89JlPHjiemXxx5z7e88lvcOOn7uV/ffKeoddGwJM3rOGktVM0Img0gtWtBs84fR2bn7SeJ66fZsOaKU5au4rT16/mhGmL55IkTboqPw1cDOzIzLsBIuImYCvQH4y2Am8p798CvCs6K7+3Ajdl5iHgGxGxo3y/T1U4Xmlibb9nDwDPecoTxjySI4sILjrzJP7b5c/impd8Dx+68wEOzBasX9PilBNW8eihNjv3Psa9ux/jkYOztIuknbD/0Bx/+bn7ee+he4fec93qFmc8YS1nPGENa6aaREAjgqlmsKrVYFWzyfRUg1XNBqtanc59/berms3O7cCxBqunGqxZ1WJtWb2aK5J2kcwVBRHBVCOYajZoNTu3U80GjWDFG2BIkqRqg9Em4L6+xzuBSxY6JzPnImIfcEp5/NPzXrupuqEuryuu/ywPl3vC9MsF1pAvurR8gRct9pqFv88C77XImz2eMedib3jU3+dxjHnB77HwixZ8Zhl//uX8f7boax5Hr4I9+2fYuG6aC5684ehfPEanb1jNz//AOUs+vyiSnXsPsOexGfYdmGXv/hm+9fBBvvnQAXbuPcC9u/czM1eQQJHJ7Fwy0y6YmSu/VnAj2ggIOiEp6AQ1gk5wInoBKrrnxuFjnW7n3cfzzi+PNea9b/f+cmeyznc5/DMN/5xRnsfI87r3F3qfGHXwiGNaOjOqJH33zj99Pf/5py4c9zCO6LiePxIRVwFXAZx11rEzBejE6RbFAp9OF/pL8GL/9i70D/Pir1m+77PQqxb7wLDQU4u/5nF8nwX/2xz9f7SFx7zwix7fz3l032fRz2VH+/MzemzTrQa/+ENPrf26nEYjOOuUtZx1ytrH9fqiKINSf1gqA9Oh2YKZdptDfccPzRUcmGmzf2aOAJrNBq1G0IwgSWbbyVy7YLadzBYFs3NJkWUczqTITjjOpHef7IS2/mOZnUDeDXTd5yApis45RXZCc//5ndd3XtP/vssVBvp/DXZD/uCx4fP6/4TQPd7/dP8fHka//ghjWvqpj+uPPJKkYWtXHR+fL6oMRvcDZ/Y9PqM8NuqcnRHRAjbQacKwlNeSmdcB1wFs2bLlmPkX7NrXPHvcQ5BUgUYjWN1o1j5ASpI0iarcx+g24LyIOCciVtFpprBt3jnbgCvK+5cBH8/On+i2AZdHxHREnAOcB3y2wrFKkiRJmmCVVYzKNUNXAx+m0677+sy8KyLeCmzPzG3Au4Eby+YKe+iEJ8rz3k+nUcMc8AY70kmSJEmqStRlDvWWLVty+/bt4x6GJEmSpGNYRNyemVvmH69yKp0kSZIkHRcMRpIkSZImnsFIkiRJ0sQzGEmSJEmaeAYjSZIkSRPPYCRJkiRp4hmMJEmSJE08g5EkSZKkiWcwkiRJkjTxDEaSJEmSJl5k5rjHsCwiYhdw77jHUYFTgQfHPQhNJK89jYvXnsbFa0/j4rW3sp6SmRvnH6xNMKqriNiemVvGPQ5NHq89jYvXnsbFa0/j4rV3bHAqnSRJkqSJZzCSJEmSNPEMRse+68Y9AE0srz2Ni9eexsVrT+PitXcMcI2RJEmSpIlnxUiSJEnSxDMYHUMi4i0RcX9EfKH8+rG+534jInZExFcj4sV9xy8tj+2IiGvGM3LVjdeVqhYR90TEHeXvuu3lsZMj4iMR8bXy9gnl8YiIPyyvxy9FxLPHO3odTyLi+oj4TkTc2XfsqK+1iLiiPP9rEXHFOH4WHV8WuPb8rHcMMxgde96ZmReVX7cCRMRm4HLgAuBS4I8johkRTeBa4CXAZuDV5bnS4+Z1pRX0I+Xvum6L2muAj2XmecDHysfQuRbPK7+uAv77io9Ux7P30Pm3s99RXWsRcTLw28AlwMXAb3fDlLSI9zB87YGf9Y5ZBqPjw1bgpsw8lJnfAHbQ+cV8MbAjM+/OzBngpvJc6bvhdaVx2QrcUN6/AXhZ3/H3ZsengZMi4knjGKCOP5n5f4E98w4f7bX2YuAjmbknM/cCH2H0B16pZ4FrbyF+1jsGGIyOPVeX5fvr+/4atQm4r++cneWxhY5L3w2vK62EBP4+Im6PiKvKY6dl5gPl/W8Bp5X3vSa13I72WvMa1HLys94xymC0wiLioxFx54ivrXRK9k8DLgIeAP7rWAcrSdX5wcx8Np3pIW+IiOf1P5mdlqm2TVXlvNa0wvysdwxrjXsAkyYzX7CU8yLiT4G/KR/eD5zZ9/QZ5TEWOS49Xotdb9KyyMz7y9vvRMQH6EwX+XZEPCkzHyinL32nPN1rUsvtaK+1+4Efnnf8H1ZgnKqZzPx2976f9Y49VoyOIfPmzL8c6HYx2QZcHhHTEXEOnUWhnwVuA86LiHMiYhWdRXvbVnLMqiWvK1UqIk6IiHXd+8CL6Py+2wZ0u31dAfxVeX8b8NqyY9i/Avb1TYOSHo+jvdY+DLwoIp5QTn16UXlMOip+1ju2WTE6trwjIi6iU9K/B3gdQGbeFRHvB74MzAFvyMw2QERcTeeXcxO4PjPvGsfAVR+ZOed1pYqdBnwgIqDz79D/zswPRcRtwPsj4krgXuCny/NvBX6MzmLkx4BfWPkh63gVEX9Op9pzakTspNNd7m0cxbWWmXsi4j/S+ZAK8NbMXOqiek2oBa69H/az3rErOlNrJUmSJGlyOZVOkiRJ0sQzGEmSJEmaeAYjSZIkSRPPYCRJkiRp4hmMJEmSJE08g5EkSZKkiWcwkiRJkjTxDEaSJEmSJt7/ByrR5TSA9Hf5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "HU91TP0OqTzH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 559 + }, + "outputId": "3cf3ba3d-5d90-4a9b-91ab-047301781b2b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAINCAYAAAAZcvRHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABO5klEQVR4nO3deXxU1f3/8feE7IRJAiEJgQCxYFhE1oIRxFryIyguVOqCqVKMUDWoSKtAWxG7CEJdEFG+ftuCtorKt2oREEwBiWJkCYTdCLKEilkgJCFhC8n5/WFzy5A9JMxc8no+HvN4OPd85s65M+Qxb+8951yHMcYIAADABrzc3QEAAIC6IrgAAADbILgAAADbILgAAADbILgAAADbILgAAADbILgAAADbILgAAADb8HZ3By4X5eXlOnLkiFq1aiWHw+Hu7gAAYBvGGJ04cUJRUVHy8qr5nArBpZEcOXJE0dHR7u4GAAC2dfjwYXXo0KHGGoJLI2nVqpWk7z90p9Pp5t4AAGAfRUVFio6Otn5La0JwaSQVl4ecTifBBQCABqjLUAsG5wIAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANvwdncHAACAfezPK9ah/JPq3KalYsJaXvL3J7gAAIBaFZw8q0cXZyh1b561bWjXtpo3pq+CA30uWT+4VAQAAGr16OIMrd931GXb+n1H9cjirZe0HwQXAABQo/15xUrdm6cyY1y2lxmj1L15OnC05JL1heACAABqdCj/ZI3tB48RXAAAgIfo1DqwxvbObS7dIF2CCwAAqNEVbYM0tGtbtXA4XLa3cDg0tGvbSzq7iOACAABqNW9MXw3uEuaybXCXMM0b0/eS9oPp0AAAoFbBgT56M2mgDhwt0cFjJazjAgAAPF9MmHsCSwUuFQEAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANsguAAAANvwdncHAABAw+zPK9ah/JPq3KalYsJaurs7lwTBBQAAmyk4eVaPLs5Q6t48a9vQrm01b0xfBQf6uLFnTc+tl4pSU1N1yy23KCoqSg6HQx9++GG1tQ8++KAcDodeeukll+35+flKTEyU0+lUSEiIkpKSVFxc7FKzfft2XXfddfL391d0dLRmz55daf9LlixRt27d5O/vr169emnFihWNcYgAADS6RxdnaP2+oy7b1u87qkcWb3VTjy4dtwaXkpIS9e7dW/Pnz6+x7oMPPtCXX36pqKioSm2JiYnatWuXUlJStGzZMqWmpmrChAlWe1FRkYYPH65OnTopPT1dc+bM0YwZM/T6669bNV988YXGjBmjpKQkbd26VaNGjdKoUaO0c+fOxjtYAAAawf68YqXuzVOZMS7by4xR6t48HTha4qaeXRpuvVR044036sYbb6yx5ttvv9UjjzyiVatWaeTIkS5te/bs0cqVK7Vp0yYNGDBAkjRv3jzddNNN+tOf/qSoqCi99dZbOnv2rP7617/K19dXPXv2VEZGhl544QUr4MydO1cjRozQE088IUn6/e9/r5SUFL3yyitasGBBExw5AAANcyj/ZI3tB4+VXNbjXTx6VlF5ebnuvfdePfHEE+rZs2el9rS0NIWEhFihRZLi4+Pl5eWlDRs2WDVDhw6Vr6+vVZOQkKDMzEwdP37cqomPj3fZd0JCgtLS0qrt25kzZ1RUVOTyAACgqXVqHVhje+c2l29okTw8uDz33HPy9vbWo48+WmV7dna2wsPDXbZ5e3urdevWys7OtmoiIiJcaiqe11ZT0V6VmTNnKjg42HpER0fX7+AAAGiAK9oGaWjXtmrhcLhsb+FwaGjXtpf12RbJg4NLenq65s6dq0WLFslxwZfjCaZNm6bCwkLrcfjwYXd3CQDQTMwb01eDu4S5bBvcJUzzxvR1U48uHY+dDv3ZZ58pNzdXHTt2tLaVlZXpl7/8pV566SUdPHhQkZGRys3NdXnduXPnlJ+fr8jISElSZGSkcnJyXGoqntdWU9FeFT8/P/n5+TX8AAEAaKDgQB+9mTRQB46W6OCxkma1jovHnnG59957tX37dmVkZFiPqKgoPfHEE1q1apUkKS4uTgUFBUpPT7det2bNGpWXl2vQoEFWTWpqqkpLS62alJQUxcbGKjQ01KpZvXq1y/unpKQoLi6uqQ8TAIAGiwlrqRtiw5tNaJHcfMaluLhY+/bts54fOHBAGRkZat26tTp27Kg2bdq41Pv4+CgyMlKxsbGSpO7du2vEiBEaP368FixYoNLSUk2cOFF33323NXX6nnvu0TPPPKOkpCRNmTJFO3fu1Ny5c/Xiiy9a+33sscd0/fXX6/nnn9fIkSP1zjvvaPPmzS5TpgEAgAcwbrR27VojqdJj7NixVdZ36tTJvPjiiy7bjh07ZsaMGWOCgoKM0+k048aNMydOnHCp2bZtmxkyZIjx8/Mz7du3N7Nmzaq07/fee89ceeWVxtfX1/Ts2dMsX768XsdSWFhoJJnCwsJ6vQ4AgOauPr+hDmMuWMEGDVJUVKTg4GAVFhbK6XS6uzsAANhGfX5DPXaMCwAAwIUILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDYILgAAwDbcGlxSU1N1yy23KCoqSg6HQx9++KHVVlpaqilTpqhXr15q2bKloqKidN999+nIkSMu+8jPz1diYqKcTqdCQkKUlJSk4uJil5rt27fruuuuk7+/v6KjozV79uxKfVmyZIm6desmf39/9erVSytWrGiSYwYAAA3n1uBSUlKi3r17a/78+ZXaTp48qS1btuipp57Sli1b9P777yszM1O33nqrS11iYqJ27dqllJQULVu2TKmpqZowYYLVXlRUpOHDh6tTp05KT0/XnDlzNGPGDL3++utWzRdffKExY8YoKSlJW7du1ahRozRq1Cjt3Lmz6Q4eAADUm8MYY9zdCUlyOBz64IMPNGrUqGprNm3apIEDB+rQoUPq2LGj9uzZox49emjTpk0aMGCAJGnlypW66aab9O9//1tRUVF67bXX9Jvf/EbZ2dny9fWVJE2dOlUffvihvvrqK0nSXXfdpZKSEi1btsx6r2uuuUZ9+vTRggUL6tT/oqIiBQcHq7CwUE6ns4GfAgAAzU99fkNtNcalsLBQDodDISEhkqS0tDSFhIRYoUWS4uPj5eXlpQ0bNlg1Q4cOtUKLJCUkJCgzM1PHjx+3auLj413eKyEhQWlpaU18RAAAoD683d2Bujp9+rSmTJmiMWPGWGksOztb4eHhLnXe3t5q3bq1srOzrZqYmBiXmoiICKstNDRU2dnZ1rbzayr2UZUzZ87ozJkz1vOioqKGHxwAAKgTW5xxKS0t1Z133iljjF577TV3d0eSNHPmTAUHB1uP6Ohod3cJAIDLnscHl4rQcujQIaWkpLhc+4qMjFRubq5L/blz55Sfn6/IyEirJicnx6Wm4nltNRXtVZk2bZoKCwutx+HDhxt+kAAAoE48OrhUhJa9e/fqX//6l9q0aePSHhcXp4KCAqWnp1vb1qxZo/Lycg0aNMiqSU1NVWlpqVWTkpKi2NhYhYaGWjWrV6922XdKSori4uKq7Zufn5+cTqfLAwAANC23Bpfi4mJlZGQoIyNDknTgwAFlZGQoKytLpaWl+ulPf6rNmzfrrbfeUllZmbKzs5Wdna2zZ89Kkrp3764RI0Zo/Pjx2rhxo9avX6+JEyfq7rvvVlRUlCTpnnvuka+vr5KSkrRr1y69++67mjt3riZPnmz147HHHtPKlSv1/PPP66uvvtKMGTO0efNmTZw48ZJ/JgAAoAbGjdauXWskVXqMHTvWHDhwoMo2SWbt2rXWPo4dO2bGjBljgoKCjNPpNOPGjTMnTpxweZ9t27aZIUOGGD8/P9O+fXsza9asSn157733zJVXXml8fX1Nz549zfLly+t1LIWFhUaSKSwsbNBnAQBAc1Wf31CPWcfF7ljHBQCAhrls13EBAADNG8EFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYBsEFAADYhluDS2pqqm655RZFRUXJ4XDoww8/dGk3xmj69Olq166dAgICFB8fr71797rU5OfnKzExUU6nUyEhIUpKSlJxcbFLzfbt23XdddfJ399f0dHRmj17dqW+LFmyRN26dZO/v7969eqlFStWNPrxAgCAi+PW4FJSUqLevXtr/vz5VbbPnj1bL7/8shYsWKANGzaoZcuWSkhI0OnTp62axMRE7dq1SykpKVq2bJlSU1M1YcIEq72oqEjDhw9Xp06dlJ6erjlz5mjGjBl6/fXXrZovvvhCY8aMUVJSkrZu3apRo0Zp1KhR2rlzZ9MdPAAAqD/jISSZDz74wHpeXl5uIiMjzZw5c6xtBQUFxs/PzyxevNgYY8zu3buNJLNp0yar5uOPPzYOh8N8++23xhhjXn31VRMaGmrOnDlj1UyZMsXExsZaz++8804zcuRIl/4MGjTI/OIXv6hz/wsLC40kU1hYWOfXAACA+v2GeuwYlwMHDig7O1vx8fHWtuDgYA0aNEhpaWmSpLS0NIWEhGjAgAFWTXx8vLy8vLRhwwarZujQofL19bVqEhISlJmZqePHj1s1579PRU3F+1TlzJkzKioqcnkAAICm5bHBJTs7W5IUERHhsj0iIsJqy87OVnh4uEu7t7e3Wrdu7VJT1T7Of4/qairaqzJz5kwFBwdbj+jo6PoeIgAAqCePDS6ebtq0aSosLLQehw8fdneXAAC47HlscImMjJQk5eTkuGzPycmx2iIjI5Wbm+vSfu7cOeXn57vUVLWP89+jupqK9qr4+fnJ6XS6PAAAQNPy2OASExOjyMhIrV692tpWVFSkDRs2KC4uTpIUFxengoICpaenWzVr1qxReXm5Bg0aZNWkpqaqtLTUqklJSVFsbKxCQ0OtmvPfp6Km4n0AAIBncGtwKS4uVkZGhjIyMiR9PyA3IyNDWVlZcjgcmjRpkv7whz9o6dKl2rFjh+677z5FRUVp1KhRkqTu3btrxIgRGj9+vDZu3Kj169dr4sSJuvvuuxUVFSVJuueee+Tr66ukpCTt2rVL7777rubOnavJkydb/Xjssce0cuVKPf/88/rqq680Y8YMbd68WRMnTrzUHwkAAKjJJZjlVK21a9caSZUeY8eONcZ8PyX6qaeeMhEREcbPz88MGzbMZGZmuuzj2LFjZsyYMSYoKMg4nU4zbtw4c+LECZeabdu2mSFDhhg/Pz/Tvn17M2vWrEp9ee+998yVV15pfH19Tc+ePc3y5cvrdSxMhwYAoGHq8xvqMMYYN+amy0ZRUZGCg4NVWFjIeBcAAOqhPr+hHjvGBQAA4EIEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBsEFwAAYBseHVzKysr01FNPKSYmRgEBAfrBD36g3//+9zLGWDXGGE2fPl3t2rVTQECA4uPjtXfvXpf95OfnKzExUU6nUyEhIUpKSlJxcbFLzfbt23XdddfJ399f0dHRmj179iU5RgAAUHcNCi5ZWVku4aGCMUZZWVkX3akKzz33nF577TW98sor2rNnj5577jnNnj1b8+bNs2pmz56tl19+WQsWLNCGDRvUsmVLJSQk6PTp01ZNYmKidu3apZSUFC1btkypqamaMGGC1V5UVKThw4erU6dOSk9P15w5czRjxgy9/vrrjXYsAACgEZgG8PLyMjk5OZW2Hz161Hh5eTVkl1UaOXKkuf/++1223X777SYxMdEYY0x5ebmJjIw0c+bMsdoLCgqMn5+fWbx4sTHGmN27dxtJZtOmTVbNxx9/bBwOh/n222+NMca8+uqrJjQ01Jw5c8aqmTJliomNja1zXwsLC40kU1hYWP8DBQCgGavPb2iDzrgYY+RwOCptLy4ulr+//8UlqfNce+21Wr16tb7++mtJ0rZt2/T555/rxhtvlCQdOHBA2dnZio+Pt14THBysQYMGKS0tTZKUlpamkJAQDRgwwKqJj4+Xl5eXNmzYYNUMHTpUvr6+Vk1CQoIyMzN1/PjxKvt25swZFRUVuTwAAEDT8q5P8eTJkyVJDodDTz31lAIDA622srIybdiwQX369Gm0zk2dOlVFRUXq1q2bWrRoobKyMv3xj39UYmKiJCk7O1uSFBER4fK6iIgIqy07O1vh4eEu7d7e3mrdurVLTUxMTKV9VLSFhoZW6tvMmTP1zDPPNMJRAgCAuqpXcNm6dauk78+47Nixw+UMha+vr3r37q1f/epXjda59957T2+99Zbefvtt9ezZUxkZGZo0aZKioqI0duzYRnufhpg2bZoV5KTvx8lER0e7sUcAAFz+6hVc1q5dK0kaN26c5s6dK6fT2SSdqvDEE09o6tSpuvvuuyVJvXr10qFDhzRz5kyNHTtWkZGRkqScnBy1a9fOel1OTo515icyMlK5ubku+z137pzy8/Ot10dGRionJ8elpuJ5Rc2F/Pz85Ofnd/EHCQAA6qxBY1wWLlzY5KFFkk6ePCkvL9cutmjRQuXl5ZKkmJgYRUZGavXq1VZ7UVGRNmzYoLi4OElSXFycCgoKlJ6ebtWsWbNG5eXlGjRokFWTmpqq0tJSqyYlJUWxsbFVXiYCAADuUeczLrfffrsWLVokp9Op22+/vcba999//6I7Jkm33HKL/vjHP6pjx47q2bOntm7dqhdeeEH333+/pO/H2kyaNEl/+MMf1LVrV8XExOipp55SVFSURo0aJUnq3r27RowYofHjx2vBggUqLS3VxIkTdffddysqKkqSdM899+iZZ55RUlKSpkyZop07d2ru3Ll68cUXG+U4AABA46hzcAkODrZmEjmdzipnFTW2efPm6amnntLDDz+s3NxcRUVF6Re/+IWmT59u1Tz55JMqKSnRhAkTVFBQoCFDhmjlypUus5veeustTZw4UcOGDZOXl5dGjx6tl19+2eXYPvnkEyUnJ6t///4KCwvT9OnTXdZ6AQAA7ucwpoqV5KqwdOlS3XjjjfLx8WnqPtlSUVGRgoODVVhYeEkuowEAcLmoz29once4/OQnP1FBQYGk78eZXDjgFQAAoKnVObi0bdtWX375paTqF6ADAABoSnUe4/Lggw/qtttuk8PhkMPhqHaasPT9YnQAAACNrc7BZcaMGbr77ru1b98+3XrrrVq4cKFCQkKasGsAAACu6rUAXbdu3dStWzc9/fTTuuOOO1yW/AcAAGhqdZ5VVJW8vDxlZmZKkmJjY9W2bdtG65jdMKsIAICGaZJZRec7efKk7r//fkVFRWno0KEaOnSooqKilJSUpJMnTzao0wAAALVpUHB5/PHHtW7dOi1dulQFBQUqKCjQP//5T61bt06//OUvG7uPAAAAkhp4qSgsLEz/93//px/96Ecu29euXas777xTeXl5jdU/2+BSEQAADXNJLhVFRERU2h4eHs6lIgAA0GQaFFzi4uL09NNP6/Tp09a2U6dO6ZlnnrHuygwAANDY6jUdusJLL72kESNGqEOHDurdu7ckadu2bfL399eqVasatYMAAAAVGjwd+uTJk3rrrbf01VdfSZK6d++uxMREBQQENGoH7YIxLgAANEx9fkPrfcaltLRU3bp107JlyzR+/PgGdxIAAKC+6j3GxcfHx2VsCwAAwKXSoMG5ycnJeu6553Tu3LnG7g8AAEC1GjQ4d9OmTVq9erU++eQT9erVSy1btnRpf//99xulcwAAAOdrUHAJCQnR6NGjG7svAAAANapXcCkvL9ecOXP09ddf6+zZs/rxj3+sGTNmNNuZRAAA4NKq1xiXP/7xj/r1r3+toKAgtW/fXi+//LKSk5Obqm8AAAAu6hVc3nzzTb366qtatWqVPvzwQ3300Ud66623VF5e3lT9AwAAsNQruGRlZemmm26ynsfHx8vhcOjIkSON3jEAAIAL1Su4nDt3Tv7+/i7bfHx8VFpa2qidAgAAqEq9BucaY/Tzn/9cfn5+1rbTp0/rwQcfdJkSzXRoAADQFOoVXMaOHVtp289+9rNG6wwAAEBN6hVcFi5c2FT9AAAAqFWDlvwHAABwB4ILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDYILAACwDY8PLt9++61+9rOfqU2bNgoICFCvXr20efNmq90Yo+nTp6tdu3YKCAhQfHy89u7d67KP/Px8JSYmyul0KiQkRElJSSouLnap2b59u6677jr5+/srOjpas2fPviTHBwAA6s6jg8vx48c1ePBg+fj46OOPP9bu3bv1/PPPKzQ01KqZPXu2Xn75ZS1YsEAbNmxQy5YtlZCQoNOnT1s1iYmJ2rVrl1JSUrRs2TKlpqZqwoQJVntRUZGGDx+uTp06KT09XXPmzNGMGTP0+uuvX9LjBQAAtTAebMqUKWbIkCHVtpeXl5vIyEgzZ84ca1tBQYHx8/MzixcvNsYYs3v3biPJbNq0yar5+OOPjcPhMN9++60xxphXX33VhIaGmjNnzri8d2xsbJ37WlhYaCSZwsLCOr8GAADU7zfUo8+4LF26VAMGDNAdd9yh8PBw9e3bV//7v/9rtR84cEDZ2dmKj4+3tgUHB2vQoEFKS0uTJKWlpSkkJEQDBgywauLj4+Xl5aUNGzZYNUOHDpWvr69Vk5CQoMzMTB0/frzKvp05c0ZFRUUuDwAA0LQ8Orjs379fr732mrp27apVq1bpoYce0qOPPqo33nhDkpSdnS1JioiIcHldRESE1Zadna3w8HCXdm9vb7Vu3dqlpqp9nP8eF5o5c6aCg4OtR3R09EUeLQAAqI1HB5fy8nL169dPzz77rPr27asJEyZo/PjxWrBggbu7pmnTpqmwsNB6HD582N1dAgDgsufRwaVdu3bq0aOHy7bu3bsrKytLkhQZGSlJysnJcanJycmx2iIjI5Wbm+vSfu7cOeXn57vUVLWP89/jQn5+fnI6nS4PAADQtDw6uAwePFiZmZku277++mt16tRJkhQTE6PIyEitXr3aai8qKtKGDRsUFxcnSYqLi1NBQYHS09OtmjVr1qi8vFyDBg2yalJTU1VaWmrVpKSkKDY21mUGEwAAcC+PDi6PP/64vvzySz377LPat2+f3n77bb3++utKTk6WJDkcDk2aNEl/+MMftHTpUu3YsUP33XefoqKiNGrUKEnfn6EZMWKExo8fr40bN2r9+vWaOHGi7r77bkVFRUmS7rnnHvn6+iopKUm7du3Su+++q7lz52ry5MnuOnQAAFCVSzDL6aJ89NFH5qqrrjJ+fn6mW7du5vXXX3dpLy8vN0899ZSJiIgwfn5+ZtiwYSYzM9Ol5tixY2bMmDEmKCjIOJ1OM27cOHPixAmXmm3btpkhQ4YYPz8/0759ezNr1qx69ZPp0AAANEx9fkMdxhjj7vB0OSgqKlJwcLAKCwsZ7+IG+/OKdSj/pDq3aamYsJaNVgsAaHr1+Q31vkR9AppEwcmzenRxhlL35lnbhnZtq3lj+io40KfBtQAAz+TRY1yA2jy6OEPr9x112bZ+31E9snjrRdUCADwTwQW2tT+vWKl781R2wdXOMmOUujdPB46WNKgWAOC5CC6wrUP5J2tsP3jsv2GkPrUAAM9FcIFtdWodWGN75zb/HXhbn1oAgOciuMC2rmgbpKFd26qFw+GyvYXDoaFd27rMGLqibVCN+2J2EQDYA8EFtjZvTF8N7hLmsm1wlzDNG9PXZduENzbVuJ8H/7a50fsGAGh8TIeGrQUH+ujNpIE6cLREB4+VVLs2S/rh4zXuZ9Oh/KbqIgCgEXHGBZeFmLCWuiE2vNpLPv2ja77n1A87tW6KbgEAGhnBBc3C62N/WGP7gnsHXKKeAAAuBsEFzUL3366osb1HLe0AAM9AcEGzcOpczbfkOllLOwDAMxBc0CwEeDtqbA+spR0A4BkILmgW9vzhphrbd9fSDgDwDAQXNBtDflD1zKLqtgMAPA/ruKDZ+Pv4ayVJP5i6XGWSWkj6ZtZIt/YJAFA/nHFBs/HJzu/U+T+hRZLKJHWeulyrd+e4s1sAgHoguOCysT+vWGszc3XgaNV3ep7w9y1Vbk96k+X+AcAuuFQE2ys4eVaPLs5Q6t48a9vQrm01b0xfBQf6SJJ+t3RXjfv4w7Ld+u3NPZq0nwCAi8cZF9jeo4sztH7fUZdt6/cd1SOLt1rPv9h/9MKXufh8X16N7QAAz0Bwga3tzytW6t48lRnXBeTKjFHq3jzrstG1V4RV9XLLkC5tm6yPAIDGQ3CBrR3KP1lj+8Fj3weX6bf2rLGOy0QAYA8EF9hap9aBNbZ3bvPfu0X/5b6qb6RY3XYAgOchuMDWrmgbpKFd26qFw3XJ/hYOh4Z2bauYsP8Gl2E9InRw1kg9MCRG3SKD9MCQGB2cNVLDekRc6m4DABrIYYzh7nKNoKioSMHBwSosLJTT6XR3d5qVwpOlemTx1hpnFQEAPFd9fkOZDg3bCw700ZtJA3XgaIkOHitR5zYtXc60AAAuHwQXXDZiwggsAHC5I7ig2VmXmauMfxeoX8dQXdeVadAAYCcEFzQbh46VaNT89Tp+stTaFhroo6XJQxTdpubZSQAAz8CsIjQbF4YWSTp+slS3zv/cTT0CANQXwQXNwrrM3EqhpcLxk6X6bC9L/gOAHRBc0Cxk/LugxvYtWccvTUcAABeF4IJmoU+HkBrb+3UMvTQdAQBcFIILmoXrY8MVWs1idKGBPswuAgCbILig2ViaPKRSeKmYVQQAsAemQ6PZiG4TqK3Th+uzvXnaknWcdVwAwIYILmh2ruvalsACADbFpSIAAGAbnHGB2+zPK9ah/JPcFBEAUGcEF1xyBSfP6tHFGUo9b9G3oV3bat6YvgquZuYPAAASl4rgBo8uztD6fUddtq3fd1SPLN7qph4BAOyCMy5ocuffjbl9SIDLmZYKZcYodW+eDhwt4bIRAKBaBBc0maruxhzk16LG1xw89t/g0mXacp0zko9D2jtzZJP2FQBgDwQXNJmbX/5MJ86UuWwrvuD5hTq3aamRL32qXdkl1rZSI3Weulx92rfSh48Mrfa1DPYFgMsfwQVNYl1mbqXQcj4vh1RuXLeFBvqodaCvS2g5X8a3J6rcXnDyrH72lw3a+W2RtY3BvgBwebLV4NxZs2bJ4XBo0qRJ1rbTp08rOTlZbdq0UVBQkEaPHq2cnByX12VlZWnkyJEKDAxUeHi4nnjiCZ07d86l5tNPP1W/fv3k5+enLl26aNGiRZfgiC5ff/vyUI3tXg5HpW2FJ0vV+3ef1Pi6rtOWuzw/dKxEA/7wL5fQIkmf78tjsC8AXIZsE1w2bdqk//mf/9HVV1/tsv3xxx/XRx99pCVLlmjdunU6cuSIbr/9dqu9rKxMI0eO1NmzZ/XFF1/ojTfe0KJFizR9+nSr5sCBAxo5cqRuuOEGZWRkaNKkSXrggQe0atWqS3Z8l5uSWi4JnbvwdIuk8jrst/SCl90y7/Oq92VkDfYFAFw+bBFciouLlZiYqP/93/9VaGiotb2wsFB/+ctf9MILL+jHP/6x+vfvr4ULF+qLL77Ql19+KUn65JNPtHv3bv39739Xnz59dOONN+r3v/+95s+fr7Nnz0qSFixYoJiYGD3//PPq3r27Jk6cqJ/+9Kd68cUX3XK8l4MzZ8/VXtQAPuedqFmXmaui0zW/z8FjBBcAuJzYIrgkJydr5MiRio+Pd9menp6u0tJSl+3dunVTx44dlZaWJklKS0tTr169FBERYdUkJCSoqKhIu3btsmou3HdCQoK1j6qcOXNGRUVFLg/8157sqsejXKzzz7hk/Lug1vrObRikCwCXE48fnPvOO+9oy5Yt2rRpU6W27Oxs+fr6KiQkxGV7RESEsrOzrZrzQ0tFe0VbTTVFRUU6deqUAgICKr33zJkz9cwzzzT4uC57lYewVNLC4VCZMdU+r02fDiE1tvdq72R2EQBcZjz6jMvhw4f12GOP6a233pK/v7+7u+Ni2rRpKiwstB6HDx92d5c8yk1XtauxfVTvSA3uEuay7cLntbk+Nlyh1cwa8vZy6O9J19RrfwAAz+fRZ1zS09OVm5urfv36WdvKysqUmpqqV155RatWrdLZs2dVUFDgctYlJydHkZGRkqTIyEht3LjRZb8Vs47Or7lwJlJOTo6cTmeVZ1skyc/PT35+fhd9jJer5+/qo39s/bba9pfG9JckHThaooPHSlzWXuk8dXm1rzs4y3UhuqXJQ3Tr/M9dFrlz+ntr+SPXVTsVOvH1NG0/Uqg+HUL0twcINwBgJx4dXIYNG6YdO3a4bBs3bpy6deumKVOmKDo6Wj4+Plq9erVGjx4tScrMzFRWVpbi4uIkSXFxcfrjH/+o3NxchYeHS5JSUlLkdDrVo0cPq2bFihUu75OSkmLtA/X37sasGtuXbD6s/p1CL3rBuOg2gdo6fbg+25unLVnH1a9jqK7r2rbK2tfX7dOzH2dazz/bd0ydpy7X9JHddf91VzTo/QEAl5bDmHoMKvAAP/rRj9SnTx+99NJLkqSHHnpIK1as0KJFi+R0OvXII49Ikr744gtJ35+h6dOnj6KiojR79mxlZ2fr3nvv1QMPPKBnn31W0vfToa+66iolJyfr/vvv15o1a/Too49q+fLlSkhIqFO/ioqKFBwcrMLCQjmdzsY/cJv5yfzPtfVwYbXtrfy8deLMf2cEVSwYN+APn6i0hnnRvl7S1882bPn/+pzJAQBcOvX5DfXoMS518eKLL+rmm2/W6NGjNXToUEVGRur999+32lu0aKFly5apRYsWiouL089+9jPdd999+t3vfmfVxMTEaPny5UpJSVHv3r31/PPP689//nOdQwsqqy0Onx9apP/eHbqm0CJJZ+uy2EsVEl+vfoaYJN375y8btmMAwCVluzMunoozLq7e3ZilKe/vqL3wAt4O6VwN/yIbesal14yVOnG6+kXxWvm30I4ZI+q9XwDAxWtWZ1zgme4a2LFB/7i6RATV2N7Qy0RXRwXX2F7b1GoAgGcguKDJLHtkiLy9XBd0aVHL+i5fZRdX23ZVu5pDTU3emlDzQGtmFwGAPRBc0GSqWkzO4XCoX3SIWlRxk8XafFt4psF9qcssJwCA5yO4oMn85NUvKt0A8Vy50fZvC+q92JwkHT9Zqs/25lXZtj+vWGszc6u9qWLagWM17nv9N0fr3R8AwKVHcEGTeHdjVpV3bZakc+XSLb3bae2vfqRukfW7/LMl67jL84KTZ3XfXzbqx8+v07iFm3TDnz7VfX/ZqMLzFqSTpLiYNjXud/AP6h+kAACXHsEFTaIuZzhiwlrq5l5R9dpvv46hLs8fXZyh9ftcz5ZUTK0+310DO1Yab1PB28uhOwZE16sfAAD3ILigSdT1DEevDjXP9rnQ6+u+sf57f16xUvfmVRpLU2aMUvfmVbpstDR5cKXw4u3l0NLkwfXqAwDAfQguaBJ1PcOR8e+Ceu33/PpD+SdrrD14zDW49GgfrH3P3qQnE2IVd0VrPZkQq33P3qQe7esXngAA7kNwQZOpyxmO+q6fcn59p9aBNdZ2buN6/6OK8TCzV2UqbX++Zq/KrHI8DADAc3n0TRZhbxVnOJZsPqz13xzV4B+EVRpLcn1seK2r5Z7v/PVWrmgbpKFd22r9vqMul4taOBwa3CWs0o0baxoP82bSwHoeHQDAHTjjgiZ3x4BovXRX3+oHwNZxSZfpI7tX2jZvTN9KU6sHdwnTvDF9XbbVdzwMAMAzccYFbrUuM1fnarlxoq+XQ18/e1OVbcGBPnozaaAOHC3RwWMl6tymZaUzLVLdxsNU9ToAgGchuKDe9ucV61D+yWpDQn3UZXDubX3b11oTE1ZzX+o7HgYA4JkILqizgpNn9ejiDKWet3rt0K5tNW9MXwUH+tR7f798N0P/zPi21ro5d/Su974vVN/xMAAAz8QYF9RZXRd7q80H6YfVeepy/WPrt7UOyq3rHY1qW/Jfqvt4GACA5+KMC+qkYnDrhc4f3FrXsxaPL9le5/c1kh7822YtuHdAle31OQtUMR7m90t3af3+oxrSpa1+e3OPOvcFAOB+DmOquIUv6q2oqEjBwcEqLCyU0+l0d3caXd9nVur4qbJq2xeO+6FuiA2vsm3CG5uUfvi4ftiptVr6eusfW2u/PFSVd8dfo0E/cF2R976/bKz28s+FU5y/2Jene/68sU77BQBcOvX5DeVSEeqkptAiSZPe3lJp29/TDqjz1OX6ZE+ujhWXauWunAaHFkm663+/dHle3ynOVYWWqvYLAPBcBBfUqvPU5bXWFJ6pHGx++8/djd6XV9fus/67Pkv+v7J6b533CwDwXAQXNIkJb2xqkv1+dt5YlvpMcV7/zdEaKl33CwDwXAQXNIlPv85tkv1e17Wt9d8VU5xbOFznHrVwODS0a1uXwcIVd6Ouy34BAJ6L4IIm4ajzROb6ubFXO5fndZ3iPHFY1xr3+/ANXRqngwCAJsV0aDSKNb+8Xmszc63VdG++OuqiBuJW58Kl+eu65L/0/eyhqgbivjv+miqqAQCeiOnQjeRynw5dlwG6FYZ2basbYtvqmWWNPzh37a9+dNGr3L66dp8+25un67q25UwLAHiA+vyGElwayeUcXOoTWqTvx5i0CfJV7okzTdKfg7NGNsl+AQDuwToucKsyY5ostAAAmjeCCwAAsA2CC2rlSZdmruty8Uvzr8vM1dzVX7N2CwDYELOK4FF8vKTS8urbM/5d0OB9HzpWolHz1+v4yVJrW2igj5YmD1F0m5oXswMAeAbOuKBWVz+98pK8z1/uG6CBnVvXWNOnQ0iD939haJGk4ydLdev8zxu8TwDApcUZF9SqqIr7EF2sO/p3UHCAjz7fl6chXdrqtzf3kCQN6xFR4yymvz3QsDVX1mXmVgotFY6fLLWmRwMAPBvBBbVy+rVo9PAy547e1ba18pVOnK28Pdi/4e9X2yWmLVnHCS4AYANcKkKttj8zotH3uWTz4WrbqgotklR4uuHvV9slpn4dQxu+cwDAJUNwQZ38oE1Ao+7vr58fqHJ7bYvd1XcxvArXx4bX2M7ZFgCwB4IL6iQmvFWj7u/MuRqmDjWBa/6YUmP7tc/+6xL1BABwMRjjgjpxBvg06v5+3O37MyA3vbhO+46W6MrwII24ql0tr2q4nOquP/3Hd0Ws9AsAdkBwQZ18vOO7Rt3fkeMnXS777PzuhHZ+d6LW1zV0MbyIVr7KriG8tHP6NWi/AIBLi0tFqNW6zFydqmlVuAZYsSun3q/xdzT8/b78zf+rsf2LX8c3fOcAgEuG4HIZ2p9XrLWZuTpwtKRR9ncxq9U2ptMXeR/zuwa0r9d2AIDncRhjLvLnAFL9bsndVApOntWjizOUet49eIZ2bat5Y/oqOLDhY1TWZeZq7MJNjdHFi9Y6wFtbnk64qH0M/P0nyi0pVXhLH218angj9QwA0FD1+Q3ljMtlZMKbm11CiySl7s3T+Dc3X9R+a5tKfCnlnzrX4NcWnDyr+/6yUbkl36+gm1tSqvv+slGF1ayoCwDwPASXy8S2w8e18eDxKts2Hsy/qMtGDV07pSm0Dmj4ePJHF2do/b6jLtvW7zuqRxZvvdhuAQAuEYLLZWLi2zX/+C7ffqTK7V2mLVfnqcvVdZrnhJOazL2nX4Netz+vWKl781R2wZXRMmOUujev0cYDAQCaFsHlMrA/r1iHj5+qseZoses6JSNf+lSdpy7Xuf/8jpea78+sjJqX2lTdbBRbsqo+q1SbQ/kna2w/eIzgAgB24NHBZebMmfrhD3+oVq1aKTw8XKNGjVJmZqZLzenTp5WcnKw2bdooKChIo0ePVk6O61TbrKwsjRw5UoGBgQoPD9cTTzyhc+dcx0p8+umn6tevn/z8/NSlSxctWrSoqQ+v0Ww4cKzWmmHdI1ye78qu+oc649va11Jxp4beU6hT68Aa2zu3admg/QIALi2PDi7r1q1TcnKyvvzyS6WkpKi0tFTDhw9XScl/f3Qff/xxffTRR1qyZInWrVunI0eO6Pbbb7fay8rKNHLkSJ09e1ZffPGF3njjDS1atEjTp0+3ag4cOKCRI0fqhhtuUEZGhiZNmqQHHnhAq1atuqTH21Anz9Z85+YAb4fLvXi61HJZ6MLLRj4e8q8kNNCnwfcUuqJtkIZ2basWDtfFYFo4HBrata1iwgguAGAHtpoOnZeXp/DwcK1bt05Dhw5VYWGh2rZtq7fffls//elPJUlfffWVunfvrrS0NF1zzTX6+OOPdfPNN+vIkSOKiPj+rMOCBQs0ZcoU5eXlydfXV1OmTNHy5cu1c+dO673uvvtuFRQUaOXKlXXqmzunQ98y7zPt+Lao2va3Hxika7uEWc/rMtj2/BVqB/z+Ex0tabyZN14OaUiXti4zoMJaeutoSc0zhtq18lHabxo+fbnwZKkeWby10aeLAwAuTn1+Q2215H9hYaEkqXXr1pKk9PR0lZaWKj7+v6ueduvWTR07drSCS1pamnr16mWFFklKSEjQQw89pF27dqlv375KS0tz2UdFzaRJk6rty5kzZ3TmzH/HjRQVVR8cmtL+vOIaQ0tL3xYuoaUhGjO0SFKf6BC9mTRQB46W6OCxErUO9NVt89fX+rrvTlxcP4IDfVzet3OblpxpAQCb8ZCLALUrLy/XpEmTNHjwYF111VWSpOzsbPn6+iokJMSlNiIiQtnZ2VbN+aGlor2iraaaoqIinTpV9aDXmTNnKjg42HpER0df9DE2xLJqZgtVKDlbdtEzZsJaNu7ZiC1ZBTpwtEQxYS11Q2y4xr+xsc6vbYyp2RXvS2gBAPuxTXBJTk7Wzp079c4777i7K5KkadOmqbCw0HocPnzYLf2oSyjZsL/2wbs12dwEq8tWzOLZn1es3GIWgAMA1I0tLhVNnDhRy5YtU2pqqjp06GBtj4yM1NmzZ1VQUOBy1iUnJ0eRkZFWzcaNrv9HXzHr6PyaC2ci5eTkyOl0KiAgoMo++fn5yc/P/XcULiurfYhSQwYxNfWicxWzeGqbpgwAwPk8+oyLMUYTJ07UBx98oDVr1igmJsalvX///vLx8dHq1autbZmZmcrKylJcXJwkKS4uTjt27FBubq5Vk5KSIqfTqR49elg15++joqZiH55s2Y7vaq3pEFp1+HKHC2fx1DZN+UIXcYNoAMBlwKODS3Jysv7+97/r7bffVqtWrZSdna3s7Gxr3ElwcLCSkpI0efJkrV27Vunp6Ro3bpzi4uJ0zTXXSJKGDx+uHj166N5779W2bdu0atUq/fa3v1VycrJ1xuTBBx/U/v379eSTT+qrr77Sq6++qvfee0+PP/642469Lt7dmKXyOpxOOVeXoktkcJcwzRvT13peMU25rjznSAAA7uDRl4pee+01SdKPfvQjl+0LFy7Uz3/+c0nSiy++KC8vL40ePVpnzpxRQkKCXn31Vau2RYsWWrZsmR566CHFxcWpZcuWGjt2rH73u99ZNTExMVq+fLkef/xxzZ07Vx06dNCf//xnJSRc3F2Im1paHRaekzxjcbWF435Y7SyeFo7yOu+HMy4A0Lx5dHCpyxIz/v7+mj9/vubPn19tTadOnbRixYoa9/OjH/1IW7fa62Z7bQJ9a635QZhnTPm9oYY7TG8/Uvep5AfOW18GAND8ePSlItTs3c21z2Ty9faMr7imwb79o+u2jH90sPsHQwMA3MszftVQb+syc1V8pual/iVpT/YJj7/zceI1nepUV1xa90tKAIDLE8HFpjL+XVDn2gvvfHzQwy631PVYjp8s1WfnLdcPAGh+CC42tWp77dOgK1w4OHd/XnFjd6dWcVe0rrYtxL/uK/NuyTreGN0BANiURw/ORfUOF1Z9K4IL9YpyKiaspV5ZvVfrvzmq67q2VWgjL+FfFzXd1fn3y/fUeT/9OtZtPAwA4PJEcLGp6NYB2n2k9jMnX2cXuQyMTduf35TdqtbDN3Spcvu7G7PqvM5MaKBPjQEIAHD541KRTWUdq9sZlzMeMp613zOrqtxe17VoQgN9tDR5SGN2CQBgQwQXG6rrjCJPkn/qXJXb42La1Pra6NAAbZ0+XNFt6nd7AADA5YfgYkNf1vEshSdpHVD1Vcm7Bnas9bUJPSMbuzsAAJsiuNjQ2xuy3N2FetvydPW3T3jsx1WPf6kQG9mqsbsDALApgovN7M8rVmE1l1082VVPfVxt26HjJ2t87fpvjjZ2dwAANkVwsZnxiza5uwsNUtOqt7WNcxn8g7DG7g4AwKYILjbzzbGaz040tQEdQ+Sl+v/D8W9RfdtdAzvK26vq+z57ezl0x4Doer4bAOByRXBBvVwX21b7Z43U/nreNuChH3etsX1p8uBK4cXby6GlyYPr3UcAwOWLBehspPtvV7i7Cw1euba21/VoH6x9z96kJZsPa/03RzX4B2GcaQEAVEJwsZFT5+q2wmxTuvcvGxt0k8a6rnh7x4BoAgsAoFpcKkKDedpdpgEAlz+CCxrsphfX1bn25rmpTdgTAEBzQXBBvTyZEGv9976jJXV+3de5td8QEgCA2hBcbOL8Ozy707sb/7tqr081U5ir0s7p3xTdAQA0MwQX1Mvhgv/eldrfr4bFWS5w+4AOTdEdAEAzQ3BBvUSHBFj/HeLnU+fXNXQaNQAA5yO4oMHCg+t++aeu06EBAKgJwQX1cuj4fy8V1eceQp/tzWuK7gAAmhmCiw14ysBcSTp/WMvEYTUv43++LVnHm6A3AIDmhuCCenksPtbl+bvjr6nT6xjjAgBoDAQXXJRBP2ijg7NG6smEWHlX868pNNCHMS4AgEZBcEG9LFj3TZXbH76hi9b+8gaFBrrONAoN9NHS5CGXomsAgGaAmyyiXk6Vnqu2LbpNoLZOH67P9uZpS9Zx9esYypkWAECjIrh4OE8amCtJ18S0qbXmuq5tCSwAgCbBpSLUy+9G9XJ3FwAAzRjBBfVy8Fjdb6wIAEBjI7h4sFdW73V3Fyrp3Kalu7sAAGjGCC4e7E8pX7u7Cy78WkgxYQQXAID7EFxQZxt/M9zdXQAANHMEF1j+ljRQvds7q2y775poBQfW/W7QAAA0BaZDw3L+NObrn1ujwwWnFB0SoHVTfuzmngEA8D2Ci4e61Ou3xF3R2uU5YQUA4Im4VARJYsE4AIAtEFwg6ft7DQEA4OkILtC7469xdxcAAKgTxrg0M4HeDvXt1Fr5JWd0S+/2nGkBANgKwcUDNeXA3N1/uKnJ9g0AQFPjUlEzMrw7A3ABAPbGGZdm4uCske7uAgAAF40zLheYP3++OnfuLH9/fw0aNEgbN250d5cumg/fMgDgMsFP2nneffddTZ48WU8//bS2bNmi3r17KyEhQbm5uZesD00xvuVceaPvEgAAtyC4nOeFF17Q+PHjNW7cOPXo0UMLFixQYGCg/vrXv7q7axfFi28ZAHCZ4CftP86ePav09HTFx8db27y8vBQfH6+0tLRK9WfOnFFRUZHLw1M5jLt7AABA4yC4/MfRo0dVVlamiIgIl+0RERHKzs6uVD9z5kwFBwdbj+jo6EvVVQAAmi2CSwNNmzZNhYWF1uPw4cPu7lK1okIC3N0FAAAaBcHlP8LCwtSiRQvl5OS4bM/JyVFkZGSlej8/PzmdTpdHY2iKact/vL1Xo+8TAAB3ILj8h6+vr/r376/Vq1db28rLy7V69WrFxcW5sWcXJ8DHizs/AwAuGyxAd57Jkydr7NixGjBggAYOHKiXXnpJJSUlGjdu3CXtR8VZl4udGh0a6KOlyUMao0sAAHgEgst57rrrLuXl5Wn69OnKzs5Wnz59tHLlykoDdi+Vhlw2+mxvnrZkHVe/jqGcaQEAXHYcxhgmyzaCoqIiBQcHq7CwsNHGuwAA0BzU5zeUMS4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2CC4AAMA2vN3dgcuFMUbS97fmBgAAdVfx21nxW1oTgksjOXHihCQpOjrazT0BAMCeTpw4oeDg4BprHKYu8Qa1Ki8v15EjR9SqVSs5HI5G2WdRUZGio6N1+PBhOZ3ORtknGobvwjPwPXgGvgfPcbl8F8YYnThxQlFRUfLyqnkUC2dcGomXl5c6dOjQJPt2Op22/gd5OeG78Ax8D56B78FzXA7fRW1nWiowOBcAANgGwQUAANgGwcWD+fn56emnn5afn5+7u9Ls8V14Br4Hz8D34Dma43fB4FwAAGAbnHEBAAC2QXABAAC2QXABAAC2QXABAAC2QXDxYPPnz1fnzp3l7++vQYMGaePGje7ukm2kpqbqlltuUVRUlBwOhz788EOXdmOMpk+frnbt2ikgIEDx8fHau3evS01+fr4SExPldDoVEhKipKQkFRcXu9Rs375d1113nfz9/RUdHa3Zs2dX6suSJUvUrVs3+fv7q1evXlqxYkWjH6+nmjlzpn74wx+qVatWCg8P16hRo5SZmelSc/r0aSUnJ6tNmzYKCgrS6NGjlZOT41KTlZWlkSNHKjAwUOHh4XriiSd07tw5l5pPP/1U/fr1k5+fn7p06aJFixZV6k9z/pt67bXXdPXVV1sLlcXFxenjjz+22vke3GPWrFlyOByaNGmStY3vohYGHumdd94xvr6+5q9//avZtWuXGT9+vAkJCTE5OTnu7potrFixwvzmN78x77//vpFkPvjgA5f2WbNmmeDgYPPhhx+abdu2mVtvvdXExMSYU6dOWTUjRowwvXv3Nl9++aX57LPPTJcuXcyYMWOs9sLCQhMREWESExPNzp07zeLFi01AQID5n//5H6tm/fr1pkWLFmb27Nlm9+7d5re//a3x8fExO3bsaPLPwBMkJCSYhQsXmp07d5qMjAxz0003mY4dO5ri4mKr5sEHHzTR0dFm9erVZvPmzeaaa64x1157rdV+7tw5c9VVV5n4+HizdetWs2LFChMWFmamTZtm1ezfv98EBgaayZMnm927d5t58+aZFi1amJUrV1o1zf1vaunSpWb58uXm66+/NpmZmebXv/618fHxMTt37jTG8D24w8aNG03nzp3N1VdfbR577DFrO99FzQguHmrgwIEmOTnZel5WVmaioqLMzJkz3dgre7owuJSXl5vIyEgzZ84ca1tBQYHx8/MzixcvNsYYs3v3biPJbNq0yar5+OOPjcPhMN9++60xxphXX33VhIaGmjNnzlg1U6ZMMbGxsdbzO++804wcOdKlP4MGDTK/+MUvGvUY7SI3N9dIMuvWrTPGfP+5+/j4mCVLllg1e/bsMZJMWlqaMeb7EOrl5WWys7Otmtdee804nU7rs3/yySdNz549Xd7rrrvuMgkJCdZz/qYqCw0NNX/+85/5HtzgxIkTpmvXriYlJcVcf/31VnDhu6gdl4o80NmzZ5Wenq74+Hhrm5eXl+Lj45WWlubGnl0eDhw4oOzsbJfPNzg4WIMGDbI+37S0NIWEhGjAgAFWTXx8vLy8vLRhwwarZujQofL19bVqEhISlJmZqePHj1s1579PRU1z/R4LCwslSa1bt5Ykpaenq7S01OUz6tatmzp27OjyXfTq1UsRERFWTUJCgoqKirRr1y6rpqbPmb8pV2VlZXrnnXdUUlKiuLg4vgc3SE5O1siRIyt9XnwXteMmix7o6NGjKisrc/lHKUkRERH66quv3NSry0d2drYkVfn5VrRlZ2crPDzcpd3b21utW7d2qYmJiam0j4q20NBQZWdn1/g+zUl5ebkmTZqkwYMH66qrrpL0/efk6+urkJAQl9oLv4uqPsOKtppqioqKdOrUKR0/fpy/KUk7duxQXFycTp8+raCgIH3wwQfq0aOHMjIy+B4uoXfeeUdbtmzRpk2bKrXxN1E7gguASyI5OVk7d+7U559/7u6uNFuxsbHKyMhQYWGh/u///k9jx47VunXr3N2tZuXw4cN67LHHlJKSIn9/f3d3x5a4VOSBwsLC1KJFi0qjyHNychQZGemmXl0+Kj7Dmj7fyMhI5ebmurSfO3dO+fn5LjVV7eP896iuprl9jxMnTtSyZcu0du1adejQwdoeGRmps2fPqqCgwKX+wu+ioZ+z0+lUQEAAf1P/4evrqy5duqh///6aOXOmevfurblz5/I9XELp6enKzc1Vv3795O3tLW9vb61bt04vv/yyvL29FRERwXdRC4KLB/L19VX//v21evVqa1t5eblWr16tuLg4N/bs8hATE6PIyEiXz7eoqEgbNmywPt+4uDgVFBQoPT3dqlmzZo3Ky8s1aNAgqyY1NVWlpaVWTUpKimJjYxUaGmrVnP8+FTXN5Xs0xmjixIn64IMPtGbNmkqX1vr37y8fHx+XzygzM1NZWVku38WOHTtcgmRKSoqcTqd69Ohh1dT0OfM3VbXy8nKdOXOG7+ESGjZsmHbs2KGMjAzrMWDAACUmJlr/zXdRC3ePDkbV3nnnHePn52cWLVpkdu/ebSZMmGBCQkJcRpGjeidOnDBbt241W7duNZLMCy+8YLZu3WoOHTpkjPl+OnRISIj55z//abZv325uu+22KqdD9+3b12zYsMF8/vnnpmvXri7ToQsKCkxERIS59957zc6dO80777xjAgMDK02H9vb2Nn/605/Mnj17zNNPP92spkM/9NBDJjg42Hz66afmu+++sx4nT560ah588EHTsWNHs2bNGrN582YTFxdn4uLirPaKqZ/Dhw83GRkZZuXKlaZt27ZVTv184oknzJ49e8z8+fOrnPrZnP+mpk6datatW2cOHDhgtm/fbqZOnWocDof55JNPjDF8D+50/qwiY/guakNw8WDz5s0zHTt2NL6+vmbgwIHmyy+/dHeXbGPt2rVGUqXH2LFjjTHfT4l+6qmnTEREhPHz8zPDhg0zmZmZLvs4duyYGTNmjAkKCjJOp9OMGzfOnDhxwqVm27ZtZsiQIcbPz8+0b9/ezJo1q1Jf3nvvPXPllVcaX19f07NnT7N8+fImO25PU9V3IMksXLjQqjl16pR5+OGHTWhoqAkMDDQ/+clPzHfffeeyn4MHD5obb7zRBAQEmLCwMPPLX/7SlJaWutSsXbvW9OnTx/j6+porrrjC5T0qNOe/qfvvv9906tTJ+Pr6mrZt25phw4ZZocUYvgd3ujC48F3UzGGMMe451wMAAFA/jHEBAAC2QXABAAC2QXABAAC2QXABAAC2QXABAAC2QXABAAC2QXABAAC2QXAB0OgWLVpU6e62F+PgwYNyOBzKyMhotH3Wx89//nONGjXKLe8NwBXBBUAl2dnZeuSRR3TFFVfIz89P0dHRuuWWWyrd+8STuTNsNPXn19jBELATb3d3AIBnOXjwoAYPHqyQkBDNmTNHvXr1UmlpqVatWqXk5GR99dVX7u6iR+PzA5oWZ1wAuHj44YflcDi0ceNGjR49WldeeaV69uypyZMn68svv5QkvfDCC+rVq5datmyp6OhoPfzwwyouLq5xvx999JF++MMfyt/fX2FhYfrJT35itTkcDn344Ycu9SEhIVq0aFGV+yorK1NSUpJiYmIUEBCg2NhYzZ0712qfMWOG3njjDf3zn/+Uw+GQw+HQp59+Kkk6fPiw7rzzToWEhKh169a67bbbdPDgQZd9T548WSEhIWrTpo2efPJJ1efOKHX5/CQpKytLt912m4KCguR0OnXnnXcqJyfHat+2bZtuuOEGtWrVSk6nU/3799fmzZv16aefaty4cSosLLSObcaMGXXuH2B3BBcAlvz8fK1cuVLJyclq2bJlpfaKyxNeXl56+eWXtWvXLr3xxhtas2aNnnzyyWr3u3z5cv3kJz/RTTfdpK1bt2r16tUaOHBgg/tZXl6uDh06aMmSJdq9e7emT5+uX//613rvvfckSb/61a905513asSIEfruu+/03Xff6dprr1VpaakSEhLUqlUrffbZZ1q/fr2CgoI0YsQInT17VpL0/PPPa9GiRfrrX/+qzz//XPn5+frggw/q1K+6fn7l5eW67bbblJ+fr3Xr1iklJUX79+/XXXfdZdUmJiaqQ4cO2rRpk9LT0zV16lT5+Pjo2muv1UsvvSSn02kd269+9asGf5aA7bj5Jo8APMiGDRuMJPP+++/X63VLliwxbdq0sZ4vXLjQBAcHW8/j4uJMYmJita+XZD744AOXbcHBwdbdbA8cOGAkma1bt1a7j+TkZDN69Gjr+dixY81tt93mUvO3v/3NxMbGmvLycmvbmTNnTEBAgFm1apUxxph27dqZ2bNnW+2lpaWmQ4cOlfZVlbp+fp988olp0aKFycrKsrbt2rXLSDIbN240xhjTqlUrs2jRoipff+HnCzQnnHEBYDF1vCTyr3/9S8OGDVP79u3VqlUr3XvvvTp27JhOnjxZZX1GRoaGDRvWmF3V/Pnz1b9/f7Vt21ZBQUF6/fXXlZWVVeNrtm3bpn379qlVq1YKCgpSUFCQWrdurdOnT+ubb75RYWGhvvvuOw0aNMh6jbe3twYMGFCnPtX189uzZ4+io6MVHR1tbevRo4dCQkK0Z88eSdLkyZP1wAMPKD4+XrNmzdI333xTp30DlzuCCwBL165d5XA4ahxAevDgQd188826+uqr9Y9//EPp6emaP3++JFmXWy4UEBBQ4/s6HI5KP/qlpaXV1r/zzjv61a9+paSkJH3yySfKyMjQuHHjqn3/CsXFxerfv78yMjJcHl9//bXuueeeGl9bF3X5/OpqxowZ2rVrl0aOHKk1a9aoR48edb5kBVzOCC4ALK1bt1ZCQoLmz5+vkpKSSu0FBQVKT09XeXm5nn/+eV1zzTW68sordeTIkRr3e/XVV9c4Fbht27b67rvvrOd79+6t9uyNJK1fv17XXnutHn74YfXt21ddunSpdEbC19dXZWVlLtv69eunvXv3Kjw8XF26dHF5BAcHKzg4WO3atdOGDRus15w7d07p6ek1Hl+Funx+ktS9e3cdPnxYhw8fttp2796tgoIC9ejRw9p25ZVX6vHHH9cnn3yi22+/XQsXLqz22IDmguACwMX8+fNVVlamgQMH6h//+If27t2rPXv26OWXX1ZcXJy6dOmi0tJSzZs3T/v379ff/vY3LViwoMZ9Pv3001q8eLGefvpp7dmzRzt27NBzzz1ntf/4xz/WK6+8oq1bt2rz5s168MEH5ePjU+3+unbtqs2bN2vVqlX6+uuv9dRTT2nTpk0uNZ07d9b27duVmZmpo0ePqrS0VImJiQoLC9Ntt92mzz77TAcOHNCnn36qRx99VP/+978lSY899phmzZqlDz/8UF999ZUefvhhK3A0xucnSfHx8erVq5cSExO1ZcsWbdy4Uffdd5+uv/56DRgwQKdOndLEiRP16aef6tChQ1q/fr02bdqk7t27W8dWXFys1atX6+jRozWGPOCy4+YxNgA80JEjR0xycrLp1KmT8fX1Ne3btze33nqrWbt2rTHGmBdeeMG0a9fOBAQEmISEBPPmm28aSeb48ePGmKoHj/7jH/8wffr0Mb6+viYsLMzcfvvtVtu3335rhg8fblq2bGm6du1qVqxYUePg3NOnT5uf//znJjg42ISEhJiHHnrITJ061fTu3dvaZ25urvl//+//maCgICPJ6vt3331n7rvvPhMWFmb8/PzMFVdcYcaPH28KCwuNMd8Pxn3ssceM0+k0ISEhZvLkyea+++6r0+Dcun5+xhhz6NAhc+utt5qWLVuaVq1amTvuuMNkZ2cbY74fMHz33Xeb6Oho4+vra6KioszEiRPNqVOnrNc/+OCDpk2bNkaSefrpp+vcN8DuHMbUY4ECAAAAN+JSEQAAsA2CCwDUUVZWljWNuqpHbdOxAVw8LhUBQB2dO3fO5fYAF+rcubO8vbkFHNCUCC4AAMA2uFQEAABsg+ACAABsg+ACAABsg+ACAABsg+ACAABsg+ACAABsg+ACAABsg+ACAABs4/8DxYS57MhoI8oAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "sales.plot(kind='scatter', x='Calculated_Cost', y='Profit', figsize=(6,6))" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sales['Revenue_per_Age'].plot(kind='density', figsize=(14,6))" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yvySZoQRqTzH" + }, + "source": [ + "### Add and calculate a new `Calculated_Revenue` column\n", + "\n", + "Use this formula\n", + "\n", + "$$ Calculated\\_Revenue = Cost + Profit $$" ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAFlCAYAAADoLXlBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAavklEQVR4nO3df7Bm9V0f8PfHXRGIDT9kSyOLLtYdFVPTkJXgpNoYlCyJCu3ESEbLNqWhbUiN1o4hGadYNZ1kJhWDjbQYMJDaIGJqqCEyG5Jo+weERZwQwAw75AeLJKxZAppokOTTP56zel12l7t8995n772v18wz95zP+T7P+Txz7rnsm3Oe71PdHQAAAJ65r5l3AwAAACudYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIPWz7uBI8VJJ53UmzZtmncbAADAEerOO+/8s+7esL9tgtVk06ZN2bFjx7zbAAAAjlBV9ekDbXMrIAAAwCDBCgAAYJBgBQAAMEiwAgAAGCRYAQAADBKsAAAABglWAAAAgwQrAACAQYIVAADAIMEKAABgkGAFAAAwSLACAAAYJFgBAAAMWj/vBniqTZe+f94tHLE+9ZaXz7sFAAB4ClesAAAABglWAAAAgwQrAACAQYIVAADAIMEKAABgkGAFAAAwSLACAAAYJFgBAAAMEqwAAAAGCVYAAACDBCsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEGCFQAAwKAlC1ZVdU1VPVJVH19QO7GqtlfV/dPPE6Z6VdUVVbWzqj5WVWcseM62afz9VbVtQf0FVXX39JwrqqoOtg8AAIClspRXrN6VZOs+tUuT3Nrdm5PcOq0nyblJNk+Pi5NcmcxCUpLLkrwwyZlJLlsQlK5M8poFz9v6NPsAAABYEksWrLr7D5Ps2ad8XpJrp+Vrk5y/oH5dz9yW5Piqek6SlybZ3t17uvvRJNuTbJ22Pbu7b+vuTnLdPq+1v30AAAAsieX+jNXJ3f3wtPzZJCdPy6ckeXDBuF1T7WD1XfupH2wfT1FVF1fVjqrasXv37mfwdgAAAOY4ecV0pannuY/uvqq7t3T3lg0bNixlKwAAwCq23MHqc9NtfJl+PjLVH0py6oJxG6faweob91M/2D4AAACWxHIHq5uS7J3Zb1uS9y2oXzjNDnhWksem2/luSXJOVZ0wTVpxTpJbpm2PV9VZ02yAF+7zWvvbBwAAwJJYv1QvXFXvSfLiJCdV1a7MZvd7S5IbquqiJJ9O8spp+M1JXpZkZ5IvJXl1knT3nqr6xSR3TON+obv3Tojx2sxmHjwmyQemRw6yDwAAgCWxZMGqu191gE1n72dsJ7nkAK9zTZJr9lPfkeS5+6l/fn/7AAAAWCpzm7wCAABgtRCsAAAABglWAAAAgwQrAACAQYIVAADAIMEKAABgkGAFAAAwSLACAAAYJFgBAAAMEqwAAAAGCVYAAACDBCsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEGCFQAAwCDBCgAAYJBgBQAAMEiwAgAAGCRYAQAADBKsAAAABglWAAAAgwQrAACAQYIVAADAIMEKAABgkGAFAAAwSLACAAAYJFgBAAAMEqwAAAAGCVYAAACDBCsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEGCFQAAwCDBCgAAYJBgBQAAMEiwAgAAGDSXYFVVP11V91TVx6vqPVV1dFWdVlW3V9XOqvqtqjpqGvt10/rOafumBa/zxqn+iap66YL61qm2s6ouXf53CAAArCXLHqyq6pQkP5lkS3c/N8m6JBckeWuSy7v7W5M8muSi6SkXJXl0ql8+jUtVnT497zuTbE3ya1W1rqrWJXlHknOTnJ7kVdNYAACAJTGvWwHXJzmmqtYnOTbJw0lekuTGafu1Sc6fls+b1jNtP7uqaqpf391f7u5PJtmZ5MzpsbO7H+juJ5JcP40FAABYEsserLr7oSRvS/KZzALVY0nuTPKF7n5yGrYrySnT8ilJHpye++Q0/hsW1vd5zoHqAAAAS2IetwKekNkVpNOSfGOSZ2V2K9+yq6qLq2pHVe3YvXv3PFoAAABWgXncCvgDST7Z3bu7+6+TvDfJi5IcP90amCQbkzw0LT+U5NQkmbYfl+TzC+v7POdA9afo7qu6e0t3b9mwYcPheG8AAMAaNI9g9ZkkZ1XVsdNnpc5Ocm+SDyd5xTRmW5L3Tcs3TeuZtn+ou3uqXzDNGnhaks1JPprkjiSbp1kGj8psgoubluF9AQAAa9T6px9yeHX37VV1Y5I/SvJkkruSXJXk/Umur6pfmmpXT0+5Osm7q2pnkj2ZBaV09z1VdUNmoezJJJd091eSpKpel+SWzGYcvKa771mu9wcAAKw9yx6skqS7L0ty2T7lBzKb0W/fsX+V5EcP8DpvTvLm/dRvTnLzeKcAAABPb17TrQMAAKwaghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEGCFQAAwCDBCgAAYJBgBQAAMEiwAgAAGCRYAQAADBKsAAAABglWAAAAgwQrAACAQYIVAADAIMEKAABgkGAFAAAwSLACAAAYJFgBAAAMEqwAAAAGCVYAAACDBCsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEGCFQAAwCDBCgAAYJBgBQAAMEiwAgAAGLSoYFVV/2ipGwEAAFipFnvF6teq6qNV9dqqOm5JOwIAAFhhFhWsuvt7k/x4klOT3FlV/6uqfnBJOwMAAFghFv0Zq+6+P8nPJXlDkn+a5Iqq+pOq+udL1RwAAMBKsNjPWH1XVV2e5L4kL0nyw939HdPy5UvYHwAAwBFv/SLH/WqSdyZ5U3f/5d5id/9pVf3cknQGAACwQiw2WL08yV9291eSpKq+JsnR3f2l7n73knUHAACwAiz2M1YfTHLMgvVjpxoAAMCat9hgdXR3/8XelWn52KVpCQAAYGVZbLD6YlWdsXelql6Q5C8PMh4AAGDNWOxnrH4qyW9X1Z8mqST/IMmPLVlXAAAAK8hivyD4jiTfnuTfJfm3Sb6ju+98pjutquOr6sbpe7Duq6rvqaoTq2p7Vd0//TxhGltVdUVV7ayqj+1z5WzbNP7+qtq2oP6Cqrp7es4VVVXPtFcAAICns+gvCE7y3Um+K8kZSV5VVRcO7PftSX6/u789yfMy+36sS5Pc2t2bk9w6rSfJuUk2T4+Lk1yZJFV1YpLLkrwwyZlJLtsbxqYxr1nwvK0DvQIAABzUom4FrKp3J/mHSf44yVemcie57lB3WFXHJfm+JP8ySbr7iSRPVNV5SV48Dbs2yUeSvCHJeUmu6+5Octt0tes509jt3b1net3tSbZW1UeSPLu7b5vq1yU5P8kHDrVXAACAxVjsZ6y2JDl9CjejTkuyO8lvVNXzktyZ5PVJTu7uh6cxn01y8rR8SpIHFzx/11Q7WH3XfuoAAABLYrG3An48swkrDof1md1OeGV3Pz/JF/O3t/0lSaYAdzhC3EFV1cVVtaOqduzevXupdwcAAKxSiw1WJyW5t6puqaqb9j6e4T53JdnV3bdP6zdmFrQ+N93il+nnI9P2h5KcuuD5G6faweob91N/iu6+qru3dPeWDRs2PMO3AwAArHWLvRXw5w/XDrv7s1X1YFV9W3d/IsnZSe6dHtuSvGX6+b7pKTcleV1VXZ/ZRBWPdffDVXVLkv+yYMKKc5K8sbv3VNXjVXVWktuTXJjkVw9X/wAAAPtaVLDq7j+oqm9Osrm7P1hVxyZZN7Dff5/kN6vqqCQPJHl1ZlfPbqiqi5J8Oskrp7E3J3lZkp1JvjSNzRSgfjHJHdO4X9g7kUWS1yZ5V5JjMpu0wsQVAADAklnsrICvyWyq8xMzmx3wlCT/PbOrTYesu/84swkx9vWU15s+b3XJAV7nmiTX7Ke+I8lzn0lvAAAAh2qxn7G6JMmLkjyeJN19f5K/v1RNAQAArCSLDVZfnr5vKklSVeuzDLP2AQAArASLDVZ/UFVvSnJMVf1gkt9O8n+Wri0AAICVY7HB6tLMvtT37iT/JrMJJX5uqZoCAABYSRY7K+BXk/z69AAAAGCBxc4K+Mns5zNV3f0th70jAACAFWaxXxC8cGr0o5P8aGZTrwMAAKx5i/qMVXd/fsHjoe7+lSQvX+LeAAAAVoTF3gp4xoLVr8nsCtZir3YBAACsaosNR/91wfKTST6V5JWHvRsAAIAVaLGzAn7/UjcCAACwUi32VsD/cLDt3f3Lh6cdAACAledQZgX87iQ3Tes/nOSjSe5fiqYAAABWksUGq41JzujuP0+Sqvr5JO/v7p9YqsYAAABWikVNt57k5CRPLFh/YqoBAACseYu9YnVdko9W1f+e1s9Pcu3StAQAALCyLHZWwDdX1QeSfO9UenV337V0bQEAAKwci70VMEmOTfJ4d789ya6qOm2JegIAAFhRFhWsquqyJG9I8sap9LVJ/udSNQUAALCSLPaK1T9L8iNJvpgk3f2nSf7eUjUFAACwkiw2WD3R3Z2kk6SqnrV0LQEAAKwsiw1WN1TV/0hyfFW9JskHk/z60rUFAACwcix2VsC3VdUPJnk8ybcl+U/dvX1JOwMAAFghnjZYVdW6JB/s7u9PIkwBAADs42lvBezuryT5alUdtwz9AAAArDiLuhUwyV8kubuqtmeaGTBJuvsnl6QrAACAFWSxweq90wMAAIB9HDRYVdU3dfdnuvva5WoIAABgpXm6z1j97t6FqvqdJe4FAABgRXq6YFULlr9lKRsBAABYqZ4uWPUBlgEAAJg83eQVz6uqxzO7cnXMtJxpvbv72UvaHQAAwApw0GDV3euWqxEAAICV6mm/IBgAAICDE6wAAAAGCVYAAACDBCsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEGCFQAAwCDBCgAAYJBgBQAAMEiwAgAAGDS3YFVV66rqrqr6vWn9tKq6vap2VtVvVdVRU/3rpvWd0/ZNC17jjVP9E1X10gX1rVNtZ1VdutzvDQAAWFvmecXq9UnuW7D+1iSXd/e3Jnk0yUVT/aIkj071y6dxqarTk1yQ5DuTbE3ya1NYW5fkHUnOTXJ6kldNYwEAAJbEXIJVVW1M8vIk75zWK8lLktw4Dbk2yfnT8nnTeqbtZ0/jz0tyfXd/ubs/mWRnkjOnx87ufqC7n0hy/TQWAABgSczritWvJPnZJF+d1r8hyRe6+8lpfVeSU6blU5I8mCTT9sem8X9T3+c5B6o/RVVdXFU7qmrH7t27R98TAACwRi17sKqqH0rySHffudz73ld3X9XdW7p7y4YNG+bdDgAAsEKtn8M+X5TkR6rqZUmOTvLsJG9PcnxVrZ+uSm1M8tA0/qEkpybZVVXrkxyX5PML6nstfM6B6gAAAIfdsl+x6u43dvfG7t6U2eQTH+ruH0/y4SSvmIZtS/K+afmmaT3T9g91d0/1C6ZZA09LsjnJR5PckWTzNMvgUdM+blqGtwYAAKxR87hidSBvSHJ9Vf1SkruSXD3Vr07y7qramWRPZkEp3X1PVd2Q5N4kTya5pLu/kiRV9boktyRZl+Sa7r5nWd8JAACwpsw1WHX3R5J8ZFp+ILMZ/fYd81dJfvQAz39zkjfvp35zkpsPY6sAAAAHNM/vsQIAAFgVBCsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEGCFQAAwCDBCgAAYJBgBQAAMEiwAgAAGCRYAQAADBKsAAAABglWAAAAgwQrAACAQYIVAADAIMEKAABgkGAFAAAwSLACAAAYJFgBAAAMEqwAAAAGCVYAAACDBCsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEGCFQAAwCDBCgAAYJBgBQAAMEiwAgAAGCRYAQAADBKsAAAABglWAAAAgwQrAACAQYIVAADAIMEKAABgkGAFAAAwSLACAAAYJFgBAAAMEqwAAAAGLXuwqqpTq+rDVXVvVd1TVa+f6idW1faqun/6ecJUr6q6oqp2VtXHquqMBa+1bRp/f1VtW1B/QVXdPT3niqqq5X6fAADA2jGPK1ZPJvmZ7j49yVlJLqmq05NcmuTW7t6c5NZpPUnOTbJ5elyc5MpkFsSSXJbkhUnOTHLZ3jA2jXnNgudtXYb3BQAArFHLHqy6++Hu/qNp+c+T3JfklCTnJbl2GnZtkvOn5fOSXNcztyU5vqqek+SlSbZ3957ufjTJ9iRbp23P7u7buruTXLfgtQAAAA67uX7Gqqo2JXl+ktuTnNzdD0+bPpvk5Gn5lCQPLnjarql2sPqu/dT3t/+Lq2pHVe3YvXv30HsBAADWrrkFq6r6+iS/k+SnuvvxhdumK0291D1091XdvaW7t2zYsGGpdwcAAKxScwlWVfW1mYWq3+zu907lz0238WX6+chUfyjJqQuevnGqHay+cT91AACAJTGPWQErydVJ7uvuX16w6aYke2f225bkfQvqF06zA56V5LHplsFbkpxTVSdMk1ack+SWadvjVXXWtK8LF7wWAADAYbd+Dvt8UZJ/keTuqvrjqfamJG9JckNVXZTk00leOW27OcnLkuxM8qUkr06S7t5TVb+Y5I5p3C90955p+bVJ3pXkmCQfmB4AAABLYtmDVXf/vyQH+l6ps/czvpNccoDXuibJNfup70jy3IE2AQAAFm2uswICAACsBoIVAADAIMEKAABgkGAFAAAwSLACAAAYJFgBAAAMEqwAAAAGCVYAAACDBCsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEGCFQAAwCDBCgAAYJBgBQAAMEiwAgAAGCRYAQAADBKsAAAABglWAAAAgwQrAACAQYIVAADAIMEKAABgkGAFAAAwSLACAAAYJFgBAAAMEqwAAAAGCVYAAACDBCsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIMEKwAAgEHr590AHIpNl75/3i0csT71lpfPuwUAgDXLFSsAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAxatcGqqrZW1SeqamdVXTrvfgAAgNVrVQarqlqX5B1Jzk1yepJXVdXp8+0KAABYrVbrFwSfmWRndz+QJFV1fZLzktw7165gCfny5APz5ckAwFJbrcHqlCQPLljfleSFc+oFmDOh88CETgA4PFZrsFqUqro4ycXT6l9U1Sfm2c8CJyX5s3k3wdw4/mvXsh/7euty7o2DcN6vXY792uXYr0zffKANqzVYPZTk1AXrG6fa39HdVyW5armaWqyq2tHdW+bdB/Ph+K9djv3a5divXY792uXYrz6rcvKKJHck2VxVp1XVUUkuSHLTnHsCAABWqVV5xaq7n6yq1yW5Jcm6JNd09z1zbgsAAFilVmWwSpLuvjnJzfPu4xk64m5PZFk5/muXY792OfZrl2O/djn2q0x197x7AAAAWNFW62esAAAAlo1gdYSpqq1V9Ymq2llVl867Hw6vqjq1qj5cVfdW1T1V9fqpfmJVba+q+6efJ0z1qqorpt+Hj1XVGfN9B4yqqnVVdVdV/d60flpV3T4d49+aJtxJVX3dtL5z2r5pnn0zpqqOr6obq+pPquq+qvoe5/3aUFU/Pf29/3hVvaeqjnber15VdU1VPVJVH19QO+Rzvaq2TePvr6pt83gvHDrB6ghSVeuSvCPJuUlOT/Kqqjp9vl1xmD2Z5Ge6+/QkZyW5ZDrGlya5tbs3J7l1Wk9mvwubp8fFSa5c/pY5zF6f5L4F629Ncnl3f2uSR5NcNNUvSvLoVL98GsfK9fYkv9/d357keZn9DjjvV7mqOiXJTybZ0t3PzWxCrQvivF/N3pVk6z61QzrXq+rEJJcleWGSM5NctjeMcWQTrI4sZybZ2d0PdPcTSa5Pct6ce+Iw6u6Hu/uPpuU/z+wfV6dkdpyvnYZdm+T8afm8JNf1zG1Jjq+q5yxz2xwmVbUxycuTvHNaryQvSXLjNGTfY7/3d+LGJGdP41lhquq4JN+X5Ook6e4nuvsLcd6vFeuTHFNV65Mcm+ThOO9Xre7+wyR79ikf6rn+0iTbu3tPdz+aZHueGtY4AglWR5ZTkjy4YH3XVGMVmm7xeH6S25Oc3N0PT5s+m+TkadnvxOryK0l+NslXp/VvSPKF7n5yWl94fP/m2E/bH5vGs/KclmR3kt+YbgN9Z1U9K877Va+7H0rytiSfySxQPZbkzjjv15pDPdf9DVihBCuYg6r6+iS/k+Snuvvxhdt6NlWn6TpXmar6oSSPdPed8+6FZbc+yRlJruzu5yf5Yv72VqAkzvvVarp967zMwvU3JnlWXHlY05zrq5tgdWR5KMmpC9Y3TjVWkar62sxC1W9293un8uf23uoz/XxkqvudWD1elORHqupTmd3m+5LMPndz/HSLUPJ3j+/fHPtp+3FJPr+cDXPY7Eqyq7tvn9ZvzCxoOe9Xvx9I8snu3t3df53kvZn9LXDery2Heq77G7BCCVZHljuSbJ5mCzoqsw+43jTnnjiMpnvlr05yX3f/8oJNNyXZO+vPtiTvW1C/cJo56Kwkjy24nYAVpLvf2N0bu3tTZuf2h7r7x5N8OMkrpmH7Hvu9vxOvmMb7v5wrUHd/NsmDVfVtU+nsJPfGeb8WfCbJWVV17PT3f++xd96vLYd6rt+S5JyqOmG66nnOVOMI5wuCjzBV9bLMPoexLsk13f3mObfEYVRV/yTJ/01yd/72czZvyuxzVjck+aYkn07yyu7eM/2H+L9lduvIl5K8urt3LHvjHFZV9eIk/7G7f6iqviWzK1gnJrkryU9095er6ugk787sc3h7klzQ3Q/Mq2fGVNU/zmzSkqOSPJDk1Zn9z03n/SpXVf85yY9lNivsXUn+dWafl3Her0JV9Z4kL05yUpLPZTa73+/mEM/1qvpXmf37IEne3N2/sZzvg2dGsAIAABjkVkAAAIBBghUAAMAgwQoAAGCQYAUAADBIsAIAABgkWAEAAAwSrAAAAAYJVgAAAIP+P+YFxsa1RIhxAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "XRb9UAFVqTzI", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "outputId": "ef4a20af-f778-4c58-9ed8-ac4a19689b1d" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 950\n", + "1 950\n", + "2 2401\n", + "3 2088\n", + "4 418\n", + "Name: Calculated_Revenue, dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Calculated_Revenue
0950
1950
22401
32088
4418
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "sales['Calculated_Revenue'] = sales['Cost'] + sales['Profit']\n", + "\n", + "sales['Calculated_Revenue'].head()" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sales['Revenue_per_Age'].plot(kind='hist', figsize=(14,6))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Add and calculate a new `Calculated_Cost` column\n", - "\n", - "Use this formula\n", - "\n", - "$$ Calculated\\_Cost = Order\\_Quantity * Unit\\_Cost $$" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 360\n", - "1 360\n", - "2 1035\n", - "3 900\n", - "4 180\n", - "Name: Calculated_Cost, dtype: int64" + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "5i1NLXQyqTzI", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6ac2136b-87d1-464e-cd2d-ac54b6f97063" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ], + "source": [ + "(sales['Calculated_Revenue'] != sales['Revenue']).sum()" ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales['Calculated_Cost'] = sales['Order_Quantity'] * sales['Unit_Cost']\n", - "\n", - "sales['Calculated_Cost'].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "m5fTLxKjqTzI", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 400 + }, + "outputId": "ef75a742-933e-4242-81f8-94d00bdf29e0" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Day Month Year Customer_Age Age_Group \\\n", + "0 2013-11-26 26 November 2013 19 Youth (<25) \n", + "1 2015-11-26 26 November 2015 19 Youth (<25) \n", + "2 2014-03-23 23 March 2014 49 Adults (35-64) \n", + "3 2016-03-23 23 March 2016 49 Adults (35-64) \n", + "4 2014-05-15 15 May 2014 47 Adults (35-64) \n", + "\n", + " Customer_Gender Country State Product_Category Sub_Category \\\n", + "0 M Canada British Columbia Accessories Bike Racks \n", + "1 M Canada British Columbia Accessories Bike Racks \n", + "2 M Australia New South Wales Accessories Bike Racks \n", + "3 M Australia New South Wales Accessories Bike Racks \n", + "4 F Australia New South Wales Accessories Bike Racks \n", + "\n", + " Product Order_Quantity Unit_Cost Unit_Price Profit Cost \\\n", + "0 Hitch Rack - 4-Bike 8 45 120 590 360 \n", + "1 Hitch Rack - 4-Bike 8 45 120 590 360 \n", + "2 Hitch Rack - 4-Bike 23 45 120 1366 1035 \n", + "3 Hitch Rack - 4-Bike 20 45 120 1188 900 \n", + "4 Hitch Rack - 4-Bike 4 45 120 238 180 \n", + "\n", + " Revenue Calculated_Cost Calculated_Revenue \n", + "0 950 360 950 \n", + "1 950 360 950 \n", + "2 2401 1035 2401 \n", + "3 2088 900 2088 \n", + "4 418 180 418 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateDayMonthYearCustomer_AgeAge_GroupCustomer_GenderCountryStateProduct_CategorySub_CategoryProductOrder_QuantityUnit_CostUnit_PriceProfitCostRevenueCalculated_CostCalculated_Revenue
02013-11-2626November201319Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950360950
12015-11-2626November201519Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845120590360950360950
22014-03-2323March201449Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike234512013661035240110352401
32016-03-2323March201649Adults (35-64)MAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike2045120118890020889002088
42014-05-1515May201447Adults (35-64)FAustraliaNew South WalesAccessoriesBike RacksHitch Rack - 4-Bike445120238180418180418
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "sales" + } + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "sales.head()" ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(sales['Calculated_Cost'] != sales['Cost']).sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see the relationship between `Cost` and `Profit` using a scatter plot:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "Y6fjejk3qTzI", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 302 + }, + "outputId": "c75e3131-1453-47c2-8f98-f8e3f54ad22c" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAH5CAYAAAAvGJ+RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDYUlEQVR4nO3de5hWdb03/vdwmAHUGTwxyBaFtiaSpwTFKe15TLaTTj2Z1IPmgZBy60ZT8ITlD93VDrc+HvNAR7GrzMPzpDtFIcJTKXlASfGAmhoaDmDKjLIVkFm/P9rc2xEqHVkNjK/Xda3r4l7fz/1dn3v1vW6b97XutaqKoigCAAAAACXo1tkNAAAAANB1CZ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDS9OjsBrqKtra2LFq0KJtttlmqqqo6ux0AAACA9aIoirz22msZMGBAunV779cxCZ/Wk0WLFmXgwIGd3QYAAABAKV544YVsu+227/l9wqf1ZLPNNkvy5/8hamtrO7kbAAAAgPWjtbU1AwcOrGQf75XwaT1Z81O72tpa4RMAAADQ5XT0NkNuOA4AAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaXp0dgNsWAZNmv6u6p4/t6nkTgAAAICuwJVPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaYRPAAAAAJRG+AQAAABAaTo1fBo0aFCqqqrW2saPH58kefPNNzN+/PhsueWW2XTTTTNq1KgsXry43RwLFy5MU1NT+vTpk379+uW0007LW2+91a7mzjvvzJ577pmamprssMMOmTZt2lq9XH755Rk0aFB69eqVESNG5P777y/tcwMAAAB8UHRq+PTAAw/kpZdeqmyzZs1KknzhC19IkkyYMCE333xzbrjhhtx1111ZtGhRDj300Mr7V69enaampqxcuTL33ntvrr766kybNi2TJ0+u1Dz33HNpamrK/vvvn3nz5uXkk0/Ol7/85cycObNSc91112XixIk5++yz89BDD2X33XdPY2NjlixZ8nc6EwAAAABdU1VRFEVnN7HGySefnFtuuSVPP/10Wltbs/XWW+eaa67J5z//+STJk08+mZ133jlz5szJPvvsk9tuuy2f/vSns2jRotTX1ydJpk6dmjPOOCNLly5NdXV1zjjjjEyfPj3z58+vHOewww7LsmXLMmPGjCTJiBEjstdee+Wyyy5LkrS1tWXgwIE58cQTM2nSpHfVe2tra+rq6tLS0pLa2tr1eVr+rgZNmv6u6p4/t6nkTgAAAIANwfvNPDaYez6tXLkyP/nJT3LMMcekqqoqc+fOzapVqzJy5MhKzZAhQ7Lddttlzpw5SZI5c+Zk1113rQRPSdLY2JjW1tY89thjlZq3z7GmZs0cK1euzNy5c9vVdOvWLSNHjqzUrMuKFSvS2trabgMAAACgvQ0mfLrpppuybNmyfOlLX0qSNDc3p7q6On379m1XV19fn+bm5krN24OnNeNrxv5aTWtra9544428/PLLWb169Tpr1syxLlOmTEldXV1lGzhw4Hv+zAAAAABd3QYTPv3whz/MQQcdlAEDBnR2K+/KmWeemZaWlsr2wgsvdHZLAAAAABucHp3dQJL84Q9/yK9+9av8/Oc/r+zr379/Vq5cmWXLlrW7+mnx4sXp379/peadT6Vb8zS8t9e88wl5ixcvTm1tbXr37p3u3bune/fu66xZM8e61NTUpKam5r1/WAAAAIAPkA3iyqerrroq/fr1S1PTf9/EetiwYenZs2dmz55d2bdgwYIsXLgwDQ0NSZKGhoY8+uij7Z5KN2vWrNTW1mbo0KGVmrfPsaZmzRzV1dUZNmxYu5q2trbMnj27UgMAAABAx3T6lU9tbW256qqrMmbMmPTo8d/t1NXVZdy4cZk4cWK22GKL1NbW5sQTT0xDQ0P22WefJMmBBx6YoUOH5qijjsp5552X5ubmnHXWWRk/fnzlqqTjjjsul112WU4//fQcc8wxuf3223P99ddn+vT/fqrbxIkTM2bMmAwfPjx77713Lr744ixfvjxjx479+54MAAAAgC6m08OnX/3qV1m4cGGOOeaYtcYuuuiidOvWLaNGjcqKFSvS2NiYK664ojLevXv33HLLLTn++OPT0NCQTTbZJGPGjMk3vvGNSs3gwYMzffr0TJgwIZdcckm23Xbb/OAHP0hjY2OlZvTo0Vm6dGkmT56c5ubm7LHHHpkxY8ZaNyEHAAAA4L2pKoqi6OwmuoLW1tbU1dWlpaUltbW1nd1Ohw2aNP1vFyV5/tymv10EAAAAbPTeb+axQdzzCQAAAICuSfgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGk6PXz64x//mCOPPDJbbrllevfunV133TUPPvhgZbwoikyePDnbbLNNevfunZEjR+bpp59uN8crr7ySI444IrW1tenbt2/GjRuX119/vV3NI488kv322y+9evXKwIEDc955563Vyw033JAhQ4akV69e2XXXXXPrrbeW86EBAAAAPiA6NXx69dVX8/GPfzw9e/bMbbfdlscffzwXXHBBNt9880rNeeedl0svvTRTp07Nfffdl0022SSNjY158803KzVHHHFEHnvsscyaNSu33HJL7r777hx77LGV8dbW1hx44IHZfvvtM3fu3Jx//vk555xz8r3vfa9Sc++99+bwww/PuHHj8vDDD+eQQw7JIYcckvnz5/99TgYAAABAF1RVFEXRWQefNGlS7rnnnvz6179e53hRFBkwYEBOOeWUnHrqqUmSlpaW1NfXZ9q0aTnssMPyxBNPZOjQoXnggQcyfPjwJMmMGTNy8MEH58UXX8yAAQNy5ZVX5utf/3qam5tTXV1dOfZNN92UJ598MkkyevToLF++PLfcckvl+Pvss0/22GOPTJ06da3eVqxYkRUrVlRet7a2ZuDAgWlpaUltbe36OUGdYNCk6e+q7vlzm0ruBAAAANgQtLa2pq6ursOZR6de+fSLX/wiw4cPzxe+8IX069cvH/3oR/P973+/Mv7cc8+lubk5I0eOrOyrq6vLiBEjMmfOnCTJnDlz0rdv30rwlCQjR45Mt27dct9991VqPvGJT1SCpyRpbGzMggUL8uqrr1Zq3n6cNTVrjvNOU6ZMSV1dXWUbOHDg+zwbAAAAAF1Pp4ZPzz77bK688srsuOOOmTlzZo4//vh89atfzdVXX50kaW5uTpLU19e3e199fX1lrLm5Of369Ws33qNHj2yxxRbtatY1x9uP8Zdq1oy/05lnnpmWlpbK9sILL7znzw8AAADQ1fXozIO3tbVl+PDh+fa3v50k+ehHP5r58+dn6tSpGTNmTGe29jfV1NSkpqams9sAAAAA2KB16pVP22yzTYYOHdpu384775yFCxcmSfr3758kWbx4cbuaxYsXV8b69++fJUuWtBt/66238sorr7SrWdccbz/GX6pZMw4AAADAe9ep4dPHP/7xLFiwoN2+p556Kttvv32SZPDgwenfv39mz55dGW9tbc19992XhoaGJElDQ0OWLVuWuXPnVmpuv/32tLW1ZcSIEZWau+++O6tWrarUzJo1KzvttFPlyXoNDQ3tjrOmZs1xAAAAAHjvOjV8mjBhQn7729/m29/+dp555plcc801+d73vpfx48cnSaqqqnLyySfnW9/6Vn7xi1/k0UcfzdFHH50BAwbkkEMOSfLnK6U+9alP5Stf+Uruv//+3HPPPTnhhBNy2GGHZcCAAUmSL37xi6murs64cePy2GOP5brrrssll1ySiRMnVno56aSTMmPGjFxwwQV58sknc8455+TBBx/MCSec8Hc/LwAAAABdRafe82mvvfbKjTfemDPPPDPf+MY3Mnjw4Fx88cU54ogjKjWnn356li9fnmOPPTbLli3LvvvumxkzZqRXr16Vmp/+9Kc54YQTcsABB6Rbt24ZNWpULr300sp4XV1dfvnLX2b8+PEZNmxYttpqq0yePDnHHntspeZjH/tYrrnmmpx11ln52te+lh133DE33XRTdtlll7/PyQAAAADogqqKoig6u4muoLW1NXV1dWlpaUltbW1nt9NhgyZNf1d1z5/bVHInAAAAwIbg/WYenfqzOwAAAAC6NuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQmk4Nn84555xUVVW124YMGVIZf/PNNzN+/PhsueWW2XTTTTNq1KgsXry43RwLFy5MU1NT+vTpk379+uW0007LW2+91a7mzjvvzJ577pmamprssMMOmTZt2lq9XH755Rk0aFB69eqVESNG5P777y/lMwMAAAB8kHT6lU8f+chH8tJLL1W23/zmN5WxCRMm5Oabb84NN9yQu+66K4sWLcqhhx5aGV+9enWampqycuXK3Hvvvbn66qszbdq0TJ48uVLz3HPPpampKfvvv3/mzZuXk08+OV/+8pczc+bMSs11112XiRMn5uyzz85DDz2U3XffPY2NjVmyZMnf5yQAAAAAdFFVRVEUnXXwc845JzfddFPmzZu31lhLS0u23nrrXHPNNfn85z+fJHnyySez8847Z86cOdlnn31y22235dOf/nQWLVqU+vr6JMnUqVNzxhlnZOnSpamurs4ZZ5yR6dOnZ/78+ZW5DzvssCxbtiwzZsxIkowYMSJ77bVXLrvssiRJW1tbBg4cmBNPPDGTJk1aZ+8rVqzIihUrKq9bW1szcODAtLS0pLa2dr2cn84waNL0d1X3/LlNJXcCAAAAbAhaW1tTV1fX4cyj0698evrppzNgwIB86EMfyhFHHJGFCxcmSebOnZtVq1Zl5MiRldohQ4Zku+22y5w5c5Ikc+bMya677loJnpKksbExra2teeyxxyo1b59jTc2aOVauXJm5c+e2q+nWrVtGjhxZqVmXKVOmpK6urrINHDjwfZ4JAAAAgK6nU8OnESNGZNq0aZkxY0auvPLKPPfcc9lvv/3y2muvpbm5OdXV1enbt2+799TX16e5uTlJ0tzc3C54WjO+Zuyv1bS2tuaNN97Iyy+/nNWrV6+zZs0c63LmmWempaWlsr3wwgsdOgcAAAAAXVmPzjz4QQcdVPn3brvtlhEjRmT77bfP9ddfn969e3diZ39bTU1NampqOrsNAAAAgA1ap//s7u369u2bD3/4w3nmmWfSv3//rFy5MsuWLWtXs3jx4vTv3z9J0r9//7Wefrfm9d+qqa2tTe/evbPVVlule/fu66xZMwcAAAAAHbNBhU+vv/56fv/732ebbbbJsGHD0rNnz8yePbsyvmDBgixcuDANDQ1JkoaGhjz66KPtnko3a9as1NbWZujQoZWat8+xpmbNHNXV1Rk2bFi7mra2tsyePbtSAwAAAEDHdGr4dOqpp+auu+7K888/n3vvvTef+9zn0r179xx++OGpq6vLuHHjMnHixNxxxx2ZO3duxo4dm4aGhuyzzz5JkgMPPDBDhw7NUUcdld/97neZOXNmzjrrrIwfP77yk7jjjjsuzz77bE4//fQ8+eSTueKKK3L99ddnwoQJlT4mTpyY73//+7n66qvzxBNP5Pjjj8/y5cszduzYTjkvAAAAAF1Fp97z6cUXX8zhhx+eP/3pT9l6662z77775re//W223nrrJMlFF12Ubt26ZdSoUVmxYkUaGxtzxRVXVN7fvXv33HLLLTn++OPT0NCQTTbZJGPGjMk3vvGNSs3gwYMzffr0TJgwIZdcckm23Xbb/OAHP0hjY2OlZvTo0Vm6dGkmT56c5ubm7LHHHpkxY8ZaNyEHAAAA4L2pKoqi6OwmuoLW1tbU1dWlpaUltbW1nd1Ohw2aNP1d1T1/blPJnQAAAAAbgvebeWxQ93wCAAAAoGsRPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQGuETAAAAAKURPgEAAABQmg6FT88+++z67gMAAACALqhD4dMOO+yQ/fffPz/5yU/y5ptvru+eAAAAAOgiOhQ+PfTQQ9ltt90yceLE9O/fP//8z/+c+++/f333BgAAAMBGrkPh0x577JFLLrkkixYtyo9+9KO89NJL2XfffbPLLrvkwgsvzNKlS9d3nwAAAABshN7XDcd79OiRQw89NDfccEP+/d//Pc8880xOPfXUDBw4MEcffXReeuml9dUnAAAAABuh9xU+Pfjgg/mXf/mXbLPNNrnwwgtz6qmn5ve//31mzZqVRYsW5bOf/ez66hMAAACAjVCPjrzpwgsvzFVXXZUFCxbk4IMPzo9//OMcfPDB6dbtz1nW4MGDM23atAwaNGh99goAAADARqZD4dOVV16ZY445Jl/60peyzTbbrLOmX79++eEPf/i+mgMAAABg49ah8Onpp5/+mzXV1dUZM2ZMR6YHAAAAoIvo0D2frrrqqtxwww1r7b/hhhty9dVXv++mAAAAAOgaOhQ+TZkyJVtttdVa+/v165dvf/vb77spAAAAALqGDoVPCxcuzODBg9fav/3222fhwoXvuykAAAAAuoYOhU/9+vXLI488stb+3/3ud9lyyy3fd1MAAAAAdA0dCp8OP/zwfPWrX80dd9yR1atXZ/Xq1bn99ttz0kkn5bDDDlvfPQIAAACwkerQ0+6++c1v5vnnn88BBxyQHj3+PEVbW1uOPvpo93wCAAAAoKJD4VN1dXWuu+66fPOb38zvfve79O7dO7vuumu233779d0fAAAAABuxDoVPa3z4wx/Ohz/84fXVCwAAAABdTIfCp9WrV2fatGmZPXt2lixZkra2tnbjt99++3ppDgAAAICNW4fCp5NOOinTpk1LU1NTdtlll1RVVa3vvgAAAADoAjoUPl177bW5/vrrc/DBB6/vfgAAAADoQrp15E3V1dXZYYcd1ncvAAAAAHQxHQqfTjnllFxyySUpimJ99wMAAABAF9Khn9395je/yR133JHbbrstH/nIR9KzZ8924z//+c/XS3MAAAAAbNw6FD717ds3n/vc59Z3LwAAAAB0MR0Kn6666qr13QcAAAAAXVCH7vmUJG+99VZ+9atf5bvf/W5ee+21JMmiRYvy+uuvr7fmAAAAANi4dejKpz/84Q/51Kc+lYULF2bFihX5p3/6p2y22Wb593//96xYsSJTp05d330CAAAAsBHq0JVPJ510UoYPH55XX301vXv3ruz/3Oc+l9mzZ3eokXPPPTdVVVU5+eSTK/vefPPNjB8/PltuuWU23XTTjBo1KosXL273voULF6apqSl9+vRJv379ctppp+Wtt95qV3PnnXdmzz33TE1NTXbYYYdMmzZtreNffvnlGTRoUHr16pURI0bk/vvv79DnAAAAAOC/dSh8+vWvf52zzjor1dXV7fYPGjQof/zjH9/zfA888EC++93vZrfddmu3f8KECbn55ptzww035K677sqiRYty6KGHVsZXr16dpqamrFy5Mvfee2+uvvrqTJs2LZMnT67UPPfcc2lqasr++++fefPm5eSTT86Xv/zlzJw5s1Jz3XXXZeLEiTn77LPz0EMPZffdd09jY2OWLFnynj8LAAAAAP+tQ+FTW1tbVq9evdb+F198MZttttl7muv111/PEUccke9///vZfPPNK/tbWlrywx/+MBdeeGE++clPZtiwYbnqqqty77335re//W2S5Je//GUef/zx/OQnP8kee+yRgw46KN/85jdz+eWXZ+XKlUmSqVOnZvDgwbnggguy884754QTTsjnP//5XHTRRZVjXXjhhfnKV76SsWPHZujQoZk6dWr69OmTH/3oRx05PQAAAAD8lw6FTwceeGAuvvjiyuuqqqq8/vrrOfvss3PwwQe/p7nGjx+fpqamjBw5st3+uXPnZtWqVe32DxkyJNttt13mzJmTJJkzZ0523XXX1NfXV2oaGxvT2tqaxx57rFLzzrkbGxsrc6xcuTJz585tV9OtW7eMHDmyUrMuK1asSGtra7sNAAAAgPY6dMPxCy64II2NjRk6dGjefPPNfPGLX8zTTz+drbbaKj/72c/e9TzXXnttHnrooTzwwANrjTU3N6e6ujp9+/Ztt7++vj7Nzc2VmrcHT2vG14z9tZrW1ta88cYbefXVV7N69ep11jz55JN/sfcpU6bkX//1X9/dBwUAAAD4gOpQ+LTtttvmd7/7Xa699to88sgjef311zNu3LgcccQR7W5A/te88MILOemkkzJr1qz06tWrI210qjPPPDMTJ06svG5tbc3AgQM7sSMAAACADU+Hwqck6dGjR4488sgOH3ju3LlZsmRJ9txzz8q+1atX5+67785ll12WmTNnZuXKlVm2bFm7q58WL16c/v37J0n69++/1lPp1jwN7+0173xC3uLFi1NbW5vevXune/fu6d69+zpr1syxLjU1NampqXnvHxwAAADgA6RD4dOPf/zjvzp+9NFH/805DjjggDz66KPt9o0dOzZDhgzJGWeckYEDB6Znz56ZPXt2Ro0alSRZsGBBFi5cmIaGhiRJQ0ND/u3f/i1LlixJv379kiSzZs1KbW1thg4dWqm59dZb2x1n1qxZlTmqq6szbNiwzJ49O4ccckiSP99Qffbs2TnhhBP+5ucAAAAA4C/rUPh00kkntXu9atWq/Od//meqq6vTp0+fdxU+bbbZZtlll13a7dtkk02y5ZZbVvaPGzcuEydOzBZbbJHa2tqceOKJaWhoyD777JPkzzc+Hzp0aI466qicd955aW5uzllnnZXx48dXrko67rjjctlll+X000/PMccck9tvvz3XX399pk+fXjnuxIkTM2bMmAwfPjx77713Lr744ixfvjxjx47tyOkBAAAA4L90KHx69dVX19r39NNP5/jjj89pp532vpta46KLLkq3bt0yatSorFixIo2Njbniiisq4927d88tt9yS448/Pg0NDdlkk00yZsyYfOMb36jUDB48ONOnT8+ECRNyySWXZNttt80PfvCDNDY2VmpGjx6dpUuXZvLkyWlubs4ee+yRGTNmrHUTcgAAAADem6qiKIr1NdmDDz6YI4888q8+Ja6ram1tTV1dXVpaWlJbW9vZ7XTYoEnT/3ZRkufPbSq5EwAAAGBD8H4zj27rs5kePXpk0aJF63NKAAAAADZiHfrZ3S9+8Yt2r4uiyEsvvZTLLrssH//4x9dLYwAAAABs/DoUPq15KtwaVVVV2XrrrfPJT34yF1xwwfroCwAAAIAuoEPhU1tb2/ruAwAAAIAuaL3e8wkAAAAA3q5DVz5NnDjxXddeeOGFHTkEAAAAAF1Ah8Knhx9+OA8//HBWrVqVnXbaKUny1FNPpXv37tlzzz0rdVVVVeunSwAAAAA2Sh0Knz7zmc9ks802y9VXX53NN988SfLqq69m7Nix2W+//XLKKaes1yYBAAAA2Dh16J5PF1xwQaZMmVIJnpJk8803z7e+9S1PuwMAAACgokPhU2tra5YuXbrW/qVLl+a11157300BAAAA0DV0KHz63Oc+l7Fjx+bnP/95Xnzxxbz44ov5f//v/2XcuHE59NBD13ePAAAAAGykOnTPp6lTp+bUU0/NF7/4xaxaterPE/XokXHjxuX8889frw0CAAAAsPHqUPjUp0+fXHHFFTn//PPz+9//Pknyj//4j9lkk03Wa3MAAAAAbNw69LO7NV566aW89NJL2XHHHbPJJpukKIr11RcAAAAAXUCHwqc//elPOeCAA/LhD384Bx98cF566aUkybhx43LKKaes1wYBAAAA2Hh1KHyaMGFCevbsmYULF6ZPnz6V/aNHj86MGTPWW3MAAAAAbNw6dM+nX/7yl5k5c2a23Xbbdvt33HHH/OEPf1gvjQEAAACw8evQlU/Lly9vd8XTGq+88kpqamred1MAAAAAdA0dCp/222+//PjHP668rqqqSltbW84777zsv//+6605AAAAADZuHfrZ3XnnnZcDDjggDz74YFauXJnTTz89jz32WF555ZXcc88967tHAAAAADZSHbryaZdddslTTz2VfffdN5/97GezfPnyHHrooXn44Yfzj//4j+u7RwAAAAA2Uu/5yqdVq1blU5/6VKZOnZqvf/3rZfQEAAAAQBfxnq986tmzZx555JEyegEAAACgi+nQz+6OPPLI/PCHP1zfvQAAAADQxXTohuNvvfVWfvSjH+VXv/pVhg0blk022aTd+IUXXrhemgMAAABg4/aewqdnn302gwYNyvz587PnnnsmSZ566ql2NVVVVeuvOwAAAAA2au8pfNpxxx3z0ksv5Y477kiSjB49Opdeemnq6+tLaQ4AAACAjdt7uudTURTtXt92221Zvnz5em0IAAAAgK6jQzccX+OdYRQAAAAAvN17Cp+qqqrWuqeTezwBAAAA8Je8p3s+FUWRL33pS6mpqUmSvPnmmznuuOPWetrdz3/+8/XXIQAAAAAbrfcUPo0ZM6bd6yOPPHK9NgMAAABA1/KewqerrrqqrD4AAAAA6ILe1w3HAQAAAOCvET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUJpODZ+uvPLK7LbbbqmtrU1tbW0aGhpy2223VcbffPPNjB8/PltuuWU23XTTjBo1KosXL243x8KFC9PU1JQ+ffqkX79+Oe200/LWW2+1q7nzzjuz5557pqamJjvssEOmTZu2Vi+XX355Bg0alF69emXEiBG5//77S/nMAAAAAB8knRo+bbvttjn33HMzd+7cPPjgg/nkJz+Zz372s3nssceSJBMmTMjNN9+cG264IXfddVcWLVqUQw89tPL+1atXp6mpKStXrsy9996bq6++OtOmTcvkyZMrNc8991yampqy//77Z968eTn55JPz5S9/OTNnzqzUXHfddZk4cWLOPvvsPPTQQ9l9993T2NiYJUuW/P1OBgAAAEAXVFUURdHZTbzdFltskfPPPz+f//zns/XWW+eaa67J5z//+STJk08+mZ133jlz5szJPvvsk9tuuy2f/vSns2jRotTX1ydJpk6dmjPOOCNLly5NdXV1zjjjjEyfPj3z58+vHOOwww7LsmXLMmPGjCTJiBEjstdee+Wyyy5LkrS1tWXgwIE58cQTM2nSpHfVd2tra+rq6tLS0pLa2tr1eUr+rgZNmv6u6p4/t6nkTgAAAIANwfvNPDaYez6tXr061157bZYvX56GhobMnTs3q1atysiRIys1Q4YMyXbbbZc5c+YkSebMmZNdd921EjwlSWNjY1pbWytXT82ZM6fdHGtq1syxcuXKzJ07t11Nt27dMnLkyErNuqxYsSKtra3tNgAAAADa6/Tw6dFHH82mm26ampqaHHfccbnxxhszdOjQNDc3p7q6On379m1XX19fn+bm5iRJc3Nzu+Bpzfiasb9W09ramjfeeCMvv/xyVq9evc6aNXOsy5QpU1JXV1fZBg4c2KHPDwAAANCVdXr4tNNOO2XevHm57777cvzxx2fMmDF5/PHHO7utv+nMM89MS0tLZXvhhRc6uyUAAACADU6Pzm6guro6O+ywQ5Jk2LBheeCBB3LJJZdk9OjRWblyZZYtW9bu6qfFixenf//+SZL+/fuv9VS6NU/De3vNO5+Qt3jx4tTW1qZ3797p3r17unfvvs6aNXOsS01NTWpqajr2oQEAAAA+IDr9yqd3amtry4oVKzJs2LD07Nkzs2fProwtWLAgCxcuTENDQ5KkoaEhjz76aLun0s2aNSu1tbUZOnRopebtc6ypWTNHdXV1hg0b1q6mra0ts2fPrtQAAAAA0DGdeuXTmWeemYMOOijbbbddXnvttVxzzTW58847M3PmzNTV1WXcuHGZOHFitthii9TW1ubEE09MQ0ND9tlnnyTJgQcemKFDh+aoo47Keeedl+bm5px11lkZP3585aqk4447LpdddllOP/30HHPMMbn99ttz/fXXZ/r0/36q28SJEzNmzJgMHz48e++9dy6++OIsX748Y8eO7ZTzAgAAANBVdGr4tGTJkhx99NF56aWXUldXl9122y0zZ87MP/3TPyVJLrroonTr1i2jRo3KihUr0tjYmCuuuKLy/u7du+eWW27J8ccfn4aGhmyyySYZM2ZMvvGNb1RqBg8enOnTp2fChAm55JJLsu222+YHP/hBGhsbKzWjR4/O0qVLM3ny5DQ3N2ePPfbIjBkz1roJOQAAAADvTVVRFEVnN9EVtLa2pq6uLi0tLamtre3sdjps0KTpf7soyfPnNpXcCQAAALAheL+ZxwZ3zycAAAAAug7hEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUBrhEwAAAAClET4BAAAAUJpODZ+mTJmSvfbaK5tttln69euXQw45JAsWLGhX8+abb2b8+PHZcssts+mmm2bUqFFZvHhxu5qFCxemqakpffr0Sb9+/XLaaaflrbfealdz5513Zs8990xNTU122GGHTJs2ba1+Lr/88gwaNCi9evXKiBEjcv/996/3zwwAAADwQdKp4dNdd92V8ePH57e//W1mzZqVVatW5cADD8zy5csrNRMmTMjNN9+cG264IXfddVcWLVqUQw89tDK+evXqNDU1ZeXKlbn33ntz9dVXZ9q0aZk8eXKl5rnnnktTU1P233//zJs3LyeffHK+/OUvZ+bMmZWa6667LhMnTszZZ5+dhx56KLvvvnsaGxuzZMmSv8/JAAAAAOiCqoqiKDq7iTWWLl2afv365a677sonPvGJtLS0ZOutt84111yTz3/+80mSJ598MjvvvHPmzJmTffbZJ7fddls+/elPZ9GiRamvr0+STJ06NWeccUaWLl2a6urqnHHGGZk+fXrmz59fOdZhhx2WZcuWZcaMGUmSESNGZK+99spll12WJGlra8vAgQNz4oknZtKkSX+z99bW1tTV1aWlpSW1tbXr+9T83QyaNP1d1T1/blPJnQAAAAAbgvebeWxQ93xqaWlJkmyxxRZJkrlz52bVqlUZOXJkpWbIkCHZbrvtMmfOnCTJnDlzsuuuu1aCpyRpbGxMa2trHnvssUrN2+dYU7NmjpUrV2bu3Lntarp165aRI0dWat5pxYoVaW1tbbcBAAAA0N4GEz61tbXl5JNPzsc//vHssssuSZLm5uZUV1enb9++7Wrr6+vT3NxcqXl78LRmfM3YX6tpbW3NG2+8kZdffjmrV69eZ82aOd5pypQpqaurq2wDBw7s2AcHAAAA6MI2mPBp/PjxmT9/fq699trObuVdOfPMM9PS0lLZXnjhhc5uCQAAAGCD06OzG0iSE044IbfcckvuvvvubLvttpX9/fv3z8qVK7Ns2bJ2Vz8tXrw4/fv3r9S886l0a56G9/aadz4hb/HixamtrU3v3r3TvXv3dO/efZ01a+Z4p5qamtTU1HTsAwMAAAB8QHTqlU9FUeSEE07IjTfemNtvvz2DBw9uNz5s2LD07Nkzs2fPruxbsGBBFi5cmIaGhiRJQ0NDHn300XZPpZs1a1Zqa2szdOjQSs3b51hTs2aO6urqDBs2rF1NW1tbZs+eXakBAAAA4L3r1Cufxo8fn2uuuSb/8R//kc0226xyf6W6urr07t07dXV1GTduXCZOnJgtttgitbW1OfHEE9PQ0JB99tknSXLggQdm6NChOeqoo3Leeeelubk5Z511VsaPH1+5Mum4447LZZddltNPPz3HHHNMbr/99lx//fWZPv2/n+w2ceLEjBkzJsOHD8/ee++diy++OMuXL8/YsWP//icGAAAAoIvo1PDpyiuvTJL8z//5P9vtv+qqq/KlL30pSXLRRRelW7duGTVqVFasWJHGxsZcccUVldru3bvnlltuyfHHH5+GhoZssskmGTNmTL7xjW9UagYPHpzp06dnwoQJueSSS7LtttvmBz/4QRobGys1o0ePztKlSzN58uQ0Nzdnjz32yIwZM9a6CTkAAAAA715VURRFZzfRFbS2tqauri4tLS2pra3t7HY6bNCk6X+7KMnz5zaV3AkAAACwIXi/mccG87Q7AAAAALoe4RMAAAAApRE+AQAAAFAa4RMAAAAApRE+AQAAAFAa4RMAAAAApRE+AQAAAFAa4RMAAAAApRE+AQAAAFAa4RMAAAAApRE+AQAAAFAa4RMAAAAApRE+AQAAAFAa4RMAAAAApenR2Q2wcRo0afq7qnv+3KaSOwEAAAA2ZK58AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAASiN8AgAAAKA0wicAAAAAStOp4dPdd9+dz3zmMxkwYECqqqpy0003tRsviiKTJ0/ONttsk969e2fkyJF5+umn29W88sorOeKII1JbW5u+fftm3Lhxef3119vVPPLII9lvv/3Sq1evDBw4MOedd95avdxwww0ZMmRIevXqlV133TW33nrrev+8AAAAAB80nRo+LV++PLvvvnsuv/zydY6fd955ufTSSzN16tTcd9992WSTTdLY2Jg333yzUnPEEUfksccey6xZs3LLLbfk7rvvzrHHHlsZb21tzYEHHpjtt98+c+fOzfnnn59zzjkn3/ve9yo19957bw4//PCMGzcuDz/8cA455JAccsghmT9/fnkfHgAAAOADoKooiqKzm0iSqqqq3HjjjTnkkEOS/PmqpwEDBuSUU07JqaeemiRpaWlJfX19pk2blsMOOyxPPPFEhg4dmgceeCDDhw9PksyYMSMHH3xwXnzxxQwYMCBXXnllvv71r6e5uTnV1dVJkkmTJuWmm27Kk08+mSQZPXp0li9fnltuuaXSzz777JM99tgjU6dOfVf9t7a2pq6uLi0tLamtrV1fp+XvbtCk6et1vufPbVqv8wEAAAB/X+8389hg7/n03HPPpbm5OSNHjqzsq6ury4gRIzJnzpwkyZw5c9K3b99K8JQkI0eOTLdu3XLfffdVaj7xiU9UgqckaWxszIIFC/Lqq69Wat5+nDU1a46zLitWrEhra2u7DQAAAID2Ntjwqbm5OUlSX1/fbn99fX1lrLm5Of369Ws33qNHj2yxxRbtatY1x9uP8Zdq1oyvy5QpU1JXV1fZBg4c+F4/IgAAAECXt8GGTxu6M888My0tLZXthRde6OyWAAAAADY4G2z41L9//yTJ4sWL2+1fvHhxZax///5ZsmRJu/G33norr7zySruadc3x9mP8pZo14+tSU1OT2tradhsAAAAA7W2w4dPgwYPTv3//zJ49u7KvtbU19913XxoaGpIkDQ0NWbZsWebOnVupuf3229PW1pYRI0ZUau6+++6sWrWqUjNr1qzstNNO2XzzzSs1bz/Ompo1xwEAAACgYzo1fHr99dczb968zJs3L8mfbzI+b968LFy4MFVVVTn55JPzrW99K7/4xS/y6KOP5uijj86AAQMqT8Tbeeed86lPfSpf+cpXcv/99+eee+7JCSeckMMOOywDBgxIknzxi19MdXV1xo0bl8ceeyzXXXddLrnkkkycOLHSx0knnZQZM2bkggsuyJNPPplzzjknDz74YE444YS/9ykBAAAA6FJ6dObBH3zwwey///6V12sCoTFjxmTatGk5/fTTs3z58hx77LFZtmxZ9t1338yYMSO9evWqvOenP/1pTjjhhBxwwAHp1q1bRo0alUsvvbQyXldXl1/+8pcZP358hg0blq222iqTJ0/OscceW6n52Mc+lmuuuSZnnXVWvva1r2XHHXfMTTfdlF122eXvcBYAAAAAuq6qoiiKzm6iK2htbU1dXV1aWlo26vs/DZo0fb3O9/y5Tet1PgAAAODv6/1mHhvsPZ8AAAAA2PgJnwAAAAAojfAJAAAAgNIInwAAAAAojfAJAAAAgNL06OwGIHn3T9nz9DwAAADYuLjyCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKI3wCQAAAIDSCJ8AAAAAKE2Pzm6Arm3QpOmd3QIAAADQiVz5BAAAAEBphE8AAAAAlEb4BAAAAEBphE8AAAAAlEb4BAAAAEBphE8AAAAAlEb4BAAAAEBphE8AAAAAlEb4BAAAAEBphE8AAAAAlEb4BAAAAEBphE8AAAAAlEb4BAAAAEBpenR2A/BeDJo0/V3VPX9uU8mdAAAAAO+G8IkuSUgFAAAAGwY/uwMAAACgNK584gPNFVIAAABQLlc+AQAAAFAa4RMAAAAApfGzO3gX3s3P8/w0DwAAANbmyicAAAAASuPKp3e4/PLLc/7556e5uTm77757vvOd72Tvvffu7Lb4AHIzdAAAALoC4dPbXHfddZk4cWKmTp2aESNG5OKLL05jY2MWLFiQfv36dXZ7bODebVi0oR9XmAUAAMD6JHx6mwsvvDBf+cpXMnbs2CTJ1KlTM3369PzoRz/KpEmT2tWuWLEiK1asqLxuaWlJkrS2tv79Gi5B24r/7OwW6GQb+xoGAABg/Vrzd2JRFB16v/Dpv6xcuTJz587NmWeeWdnXrVu3jBw5MnPmzFmrfsqUKfnXf/3XtfYPHDiw1D6hbHUXd3YHAAAAbIhee+211NXVvef3CZ/+y8svv5zVq1envr6+3f76+vo8+eSTa9WfeeaZmThxYuV1W1tbXnnllWy55Zapqqoqvd8ytLa2ZuDAgXnhhRdSW1vb2e3AOlmnbAysUzYG1ikbA+uUjYF1ysbg/a7Toijy2muvZcCAAR06vvCpg2pqalJTU9NuX9++fTunmfWstrbWlyYbPOuUjYF1ysbAOmVjYJ2yMbBO2Ri8n3XakSue1ujW4Xd2MVtttVW6d++exYsXt9u/ePHi9O/fv5O6AgAAANi4CZ/+S3V1dYYNG5bZs2dX9rW1tWX27NlpaGjoxM4AAAAANl5+dvc2EydOzJgxYzJ8+PDsvffeufjii7N8+fLK0++6upqampx99tlr/ZwQNiTWKRsD65SNgXXKxsA6ZWNgnbIx6Ox1WlV09Dl5XdRll12W888/P83Nzdljjz1y6aWXZsSIEZ3dFgAAAMBGSfgEAAAAQGnc8wkAAACA0gifAAAAACiN8AkAAACA0gifAAAAACiN8ImKyy+/PIMGDUqvXr0yYsSI3H///Z3dEl3E3Xffnc985jMZMGBAqqqqctNNN7UbL4oikydPzjbbbJPevXtn5MiRefrpp9vVvPLKKzniiCNSW1ubvn37Zty4cXn99dfb1TzyyCPZb7/90qtXrwwcODDnnXfeWr3ccMMNGTJkSHr16pVdd901t95663r/vGx8pkyZkr322iubbbZZ+vXrl0MOOSQLFixoV/Pmm29m/Pjx2XLLLbPppptm1KhRWbx4cbuahQsXpqmpKX369Em/fv1y2mmn5a233mpXc+edd2bPPfdMTU1Ndthhh0ybNm2tfnwfsy5XXnlldtttt9TW1qa2tjYNDQ257bbbKuPWKBuic889N1VVVTn55JMr+6xVOts555yTqqqqdtuQIUMq49YoG4o//vGPOfLII7Plllumd+/e2XXXXfPggw9Wxjeqv6MKKIri2muvLaqrq4sf/ehHxWOPPVZ85StfKfr27VssXry4s1ujC7j11luLr3/968XPf/7zIklx4403ths/99xzi7q6uuKmm24qfve73xX/63/9r2Lw4MHFG2+8Uan51Kc+Vey+++7Fb3/72+LXv/51scMOOxSHH354ZbylpaWor68vjjjiiGL+/PnFz372s6J3797Fd7/73UrNPffcU3Tv3r0477zziscff7w466yzip49exaPPvpo6eeADVtjY2Nx1VVXFfPnzy/mzZtXHHzwwcV2221XvP7665Wa4447rhg4cGAxe/bs4sEHHyz22Wef4mMf+1hl/K233ip22WWXYuTIkcXDDz9c3HrrrcVWW21VnHnmmZWaZ599tujTp08xceLE4vHHHy++853vFN27dy9mzJhRqfF9zF/yi1/8opg+fXrx1FNPFQsWLCi+9rWvFT179izmz59fFIU1yobn/vvvLwYNGlTstttuxUknnVTZb63S2c4+++ziIx/5SPHSSy9VtqVLl1bGrVE2BK+88kqx/fbbF1/60peK++67r3j22WeLmTNnFs8880ylZmP6O0r4RFEURbH33nsX48ePr7xevXp1MWDAgGLKlCmd2BVd0TvDp7a2tqJ///7F+eefX9m3bNmyoqampvjZz35WFEVRPP7440WS4oEHHqjU3HbbbUVVVVXxxz/+sSiKorjiiiuKzTffvFixYkWl5owzzih22mmnyuv//b//d9HU1NSunxEjRhT//M//vF4/Ixu/JUuWFEmKu+66qyiKP6/Jnj17FjfccEOl5oknniiSFHPmzCmK4s8ha7du3Yrm5uZKzZVXXlnU1tZW1uXpp59efOQjH2l3rNGjRxeNjY2V176PeS8233zz4gc/+IE1ygbntddeK3bcccdi1qxZxf/4H/+jEj5Zq2wIzj777GL33Xdf55g1yobijDPOKPbdd9+/OL6x/R3lZ3dk5cqVmTt3bkaOHFnZ161bt4wcOTJz5szpxM74IHjuuefS3Nzcbv3V1dVlxIgRlfU3Z86c9O3bN8OHD6/UjBw5Mt26dct9991XqfnEJz6R6urqSk1jY2MWLFiQV199tVLz9uOsqbHOeaeWlpYkyRZbbJEkmTt3blatWtVu/QwZMiTbbbddu3W66667pr6+vlLT2NiY1tbWPPbYY5Wav7YGfR/zbq1evTrXXnttli9fnoaGBmuUDc748ePT1NS01nqyVtlQPP300xkwYEA+9KEP5YgjjsjChQuTWKNsOH7xi19k+PDh+cIXvpB+/frlox/9aL7//e9Xxje2v6OET+Tll1/O6tWr2315Jkl9fX2am5s7qSs+KNassb+2/pqbm9OvX7924z169MgWW2zRrmZdc7z9GH+pxjrn7dra2nLyySfn4x//eHbZZZckf1471dXV6du3b7vad67Tjq7B1tbWvPHGG76P+ZseffTRbLrppqmpqclxxx2XG2+8MUOHDrVG2aBce+21eeihhzJlypS1xqxVNgQjRozItGnTMmPGjFx55ZV57rnnst9+++W1116zRtlgPPvss7nyyiuz4447ZubMmTn++OPz1a9+NVdffXWSje/vqB7vuhIAPgDGjx+f+fPn5ze/+U1ntwJr2WmnnTJv3ry0tLTk//7f/5sxY8bkrrvu6uy2oOKFF17ISSedlFmzZqVXr16d3Q6s00EHHVT592677ZYRI0Zk++23z/XXX5/evXt3Ymfw39ra2jJ8+PB8+9vfTpJ89KMfzfz58zN16tSMGTOmk7t771z5RLbaaqt07959rSc4LF68OP379++krvigWLPG/tr669+/f5YsWdJu/K233sorr7zSrmZdc7z9GH+pxjpnjRNOOCG33HJL7rjjjmy77baV/f3798/KlSuzbNmydvXvXKcdXYO1tbXp3bu372P+purq6uywww4ZNmxYpkyZkt133z2XXHKJNcoGY+7cuVmyZEn23HPP9OjRIz169Mhdd92VSy+9ND169Eh9fb21yganb9+++fCHP5xnnnnG9ykbjG222SZDhw5tt2/nnXeu/ER0Y/s7SvhEqqurM2zYsMyePbuyr62tLbNnz05DQ0MndsYHweDBg9O/f/9266+1tTX33XdfZf01NDRk2bJlmTt3bqXm9ttvT1tbW0aMGFGpufvuu7Nq1apKzaxZs7LTTjtl8803r9S8/ThraqxziqLICSeckBtvvDG33357Bg8e3G582LBh6dmzZ7v1s2DBgixcuLDdOn300Ufb/Qd+1qxZqa2trfwfh7+1Bn0f8161tbVlxYoV1igbjAMOOCCPPvpo5s2bV9mGDx+eI444ovJva5UNzeuvv57f//732WabbXyfssH4+Mc/ngULFrTb99RTT2X77bdPshH+HfWub01Ol3bttdcWNTU1xbRp04rHH3+8OPbYY4u+ffu2e4IDdNRrr71WPPzww8XDDz9cJCkuvPDC4uGHHy7+8Ic/FEXx50eE9u3bt/iP//iP4pFHHik++9nPrvMRoR/96EeL++67r/jNb35T7Ljjju0eEbps2bKivr6+OOqoo4r58+cX1157bdGnT5+1HhHao0eP4v/8n/9TPPHEE8XZZ5/9nh8RStd0/PHHF3V1dcWdd97Z7rHL//mf/1mpOe6444rtttuuuP3224sHH3ywaGhoKBoaGirjax67fOCBBxbz5s0rZsyYUWy99dbrfOzyaaedVjzxxBPF5Zdfvs7HLvs+Zl0mTZpU3HXXXcVzzz1XPPLII8WkSZOKqqqq4pe//GVRFNYoG663P+2uKKxVOt8pp5xS3HnnncVzzz1X3HPPPcXIkSOLrbbaqliyZElRFNYoG4b777+/6NGjR/Fv//ZvxdNPP1389Kc/Lfr06VP85Cc/qdRsTH9HCZ+o+M53vlNst912RXV1dbH33nsXv/3tbzu7JbqIO+64o0iy1jZmzJiiKP78mND/7//7/4r6+vqipqamOOCAA4oFCxa0m+NPf/pTcfjhhxebbrppUVtbW4wdO7Z47bXX2tX87ne/K/bdd9+ipqam+Id/+Ifi3HPPXauX66+/vvjwhz9cVFdXFx/5yEeK6dOnl/a52Xisa30mKa666qpKzRtvvFH8y7/8S7H55psXffr0KT73uc8VL730Urt5nn/++eKggw4qevfuXWy11VbFKaecUqxatapdzR133FHsscceRXV1dfGhD32o3THW8H3MuhxzzDHF9ttvX1RXVxdbb711ccABB1SCp6KwRtlwvTN8slbpbKNHjy622Waborq6uviHf/iHYvTo0cUzzzxTGbdG2VDcfPPNxS677FLU1NQUQ4YMKb73ve+1G9+Y/o6qKoqiePfXSQEAAADAu+eeTwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACURvgEAAAAQGmETwAAAACU5v8HFluneLdYCPUAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "sales['Revenue'].plot(kind='hist', bins=100, figsize=(14,6))" ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAF0CAYAAADiqARmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de5xV1X338c+X24CCgAMBBAyYIaaoSHSiqNF6Sb1H7GOamNZCU61pY1sv7ctL2san6pOoSWNim4tWbdQkXoKJUjUhxEvMBS+jIijEOIoKBBC5iQoIzu/546zBMzPnzGU755yZOd/363Ves/dvr3322htnfq61915LEYGZmVkW/SpdATMz672cRMzMLDMnETMzy8xJxMzMMnMSMTOzzJxEzMwsswGVrkC5jRo1KiZNmlTpapiZ9SpPPvnk6xExunW86pLIpEmTaGhoqHQ1zMx6FUmvFIq7O8vMzDJzEjEzs8ycRMzMLDMnETMzy8xJxMzMMnMSMTOzzJxEzMwsMycRMzPLzEnEzMwycxIxM7PMnETMzPq4dW9u45nlG1n35rZu/+6qGzvLzKya3LNwJRfdtYiB/fqxvamJq0+bxinTx3fb97slYmbWR617cxsX3bWIrdub2LxtB1u3N3HhXYu6tUXiJGJm1ket2LCFgf1a/pkf2K8fKzZs6bZjOImYmfVRE0YOYXtTU4vY9qYmJowc0m3HcBIxM+ujaofWcPVp0xg8sB/DagYweGA/rj5tGrVDa7rtGL6xbmbWh50yfTyH1Y1ixYYtTBg5pFsTCDiJmJn1ebVDa7o9eTRzd5aZmWXmJGJmZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpaZk4iZWQ9SyvnQS6FkSUTSTZJek/RsgW3/JCkkjUrrknStpEZJiyQdkFd2tqQX0md2XvxASYvTPtdKUqnOxcysHO5ZuJLDrnqQM254jMOuepC5C1dWukodKmVL5HvA8a2DkiYCxwKv5oVPAKakz9nAd1LZ3YFLgYOBg4BLJY1M+3wH+Ju8/docy8ystyjHfOilULIkEhGPAOsLbLoGuBCIvNhM4JbIeRQYIWkccBwwPyLWR8QGYD5wfNq2W0Q8GhEB3AKcWqpzMTMrtXLMh14KZb0nImkmsDIinmm1aTywPG99RYq1F19RIF7suGdLapDUsHbt2vdxBmZmpVGO+dBLoWxJRNIuwBeBL5XrmM0i4vqIqI+I+tGjR5f78GZmHSrHfOilUM7pcT8ETAaeSffAJwBPSToIWAlMzCs7IcVWAke2ij+c4hMKlDcz67VKPR96KZStJRIRiyPiAxExKSImkeuCOiAiVgNzgVnpKa0ZwKaIWAXMA46VNDLdUD8WmJe2vSFpRnoqaxZwT7nOxcysVGqH1rD/xBG9IoFAaR/xvQ1YAOwtaYWkM9spfj/wEtAI/DfwBYCIWA9cDjyRPpelGKnMDWmfF4GfluI8zMysOOUebqoe9fX10dDQUOlqmJn1KpKejIj61nG/sW5mZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpaZk4iZmWXmJGJmZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpaZk4iZmWXmJGJmZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZmmTmJmJlZZiVLIpJukvSapGfzYl+V9DtJiyT9RNKIvG2XSGqU9Lyk4/Lix6dYo6SL8+KTJT2W4ndIGlSqczEzs8JK2RL5HnB8q9h8YN+ImAb8HrgEQNJU4HRgn7TPtyX1l9Qf+BZwAjAV+GwqC3AVcE1E1AEbgDNLeC5mZlZAyZJIRDwCrG8V+3lE7EirjwIT0vJM4PaI2BYRy4BG4KD0aYyIlyLiHeB2YKYkAUcDc9L+NwOnlupczMyssEreE/lr4KdpeTywPG/bihQrFq8FNuYlpOZ4QZLOltQgqWHt2rXdVH0zM6tIEpH0L8AO4AflOF5EXB8R9RFRP3r06HIc0sysKgwo9wEl/RVwMnBMREQKrwQm5hWbkGIUia8DRkgakFoj+eXNzKxMytoSkXQ8cCFwSkS8nbdpLnC6pBpJk4EpwOPAE8CU9CTWIHI33+em5PMQ8Km0/2zgnnKdh5mZ5ZTyEd/bgAXA3pJWSDoT+C9gGDBf0kJJ3wWIiOeAO4ElwM+AcyLi3dTK+HtgHrAUuDOVBbgIuEBSI7l7JDeW6lzMzKwwvdejVB3q6+ujoaGh0tUwM+tVJD0ZEfWt435j3czMMnMSMTOzzJxEzMwsMycRMzPLzEnEzMwycxIxM7PMnETMzCwzJxEzM8vMScTMzDJzEjEzs8ycRMzMLDMnETMzy8xJxMzMMnMSMTOzzJxEzMwsMycRMzPLzEnEzMwycxIxM7PMnETMzCwzJxEzM8vMScTMzDJzEjEzs8ycRMzMLDMnETMzy8xJxMzMMnMSMTOzzJxEzMwsMycRMzPLzEnEzMwycxIxM7PMSpZEJN0k6TVJz+bFdpc0X9IL6efIFJekayU1Slok6YC8fWan8i9Imp0XP1DS4rTPtZJUqnMxM7PCStkS+R5wfKvYxcADETEFeCCtA5wATEmfs4HvQC7pAJcCBwMHAZc2J55U5m/y9mt9LDMzK7GSJZGIeARY3yo8E7g5Ld8MnJoXvyVyHgVGSBoHHAfMj4j1EbEBmA8cn7btFhGPRkQAt+R9l5mZlUm574mMiYhVaXk1MCYtjweW55VbkWLtxVcUiBck6WxJDZIa1q5d+/7OwMzMdqrYjfXUgogyHev6iKiPiPrRo0eX45BmZlWh3ElkTeqKIv18LcVXAhPzyk1IsfbiEwrEzcysjMqdROYCzU9YzQbuyYvPSk9pzQA2pW6vecCxkkamG+rHAvPStjckzUhPZc3K+y4zMyuTAaX6Ykm3AUcCoyStIPeU1ZXAnZLOBF4BPp2K3w+cCDQCbwOfA4iI9ZIuB55I5S6LiOab9V8g9wTYEOCn6WNmZmWk3K2J6lFfXx8NDQ2VroaZWa8i6cmIqG8d9xvrZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpaZk4iZmWXmJGJmZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpaZk4iZmWXmJGJmZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpaZk4iZmWVWkSQi6XxJz0l6VtJtkgZLmizpMUmNku6QNCiVrUnrjWn7pLzvuSTFn5d0XCXOxcysmpU9iUgaD/wjUB8R+wL9gdOBq4BrIqIO2ACcmXY5E9iQ4tekckiamvbbBzge+Lak/uU8FzOzatepJCLpsM7EumAAMETSAGAXYBVwNDAnbb8ZODUtz0zrpO3HSFKK3x4R2yJiGdAIHPQ+6mRmZl3U2ZbIf3Yy1qGIWAl8DXiVXPLYBDwJbIyIHanYCmB8Wh4PLE/77kjla/PjBfYxM7MyGNDeRkmHAIcCoyVdkLdpN3LdUF0maSS5VsRkYCPwI3LdUSUj6WzgbIA999yzlIcyM6sqHbVEBgFDySWbYXmfN4BPZTzmJ4BlEbE2IrYDPwYOA0ak7i2ACcDKtLwSmAiQtg8H1uXHC+zTQkRcHxH1EVE/evTojNU2M7PW2m2JRMQvgV9K+l5EvNJNx3wVmCFpF2ALcAzQADxELjHdDswG7knl56b1BWn7gxERkuYCP5T0dWAPYArweDfV0czMOqGj7qxvRMR5wH9JitbbI+KUrh4wIh6TNAd4CtgBPA1cD9wH3C7pihS7Me1yI3CrpEZgPbknsoiI5yTdCSxJ33NORLzb1fqYmVl2imiTG97bKB0QEU9J+uNC21NLpVepr6+PhoaGSlfDzKxXkfRkRNS3jrfbEgG+Sq676cSIuKgkNTMzs16royQyTtKhwCmSbgeUvzEinipZzczMrMfrKIl8Cfg3ck8+fb3VtiD3gqCZmVWpjp7OmgPMkfRvEXF5mepkZma9REctEQAi4nJJpwBHpNDDEXFv6aplZma9QWfHzvoKcC65x2mXAOdK+nIpK2ZmZj1fp1oiwEnA9IhoApB0M7l3Ob5YqoqZmVnP15Wh4EfkLQ/v7oqYmVnv09mWyFeApyU9RO4x3yOAi0tWKzMz6xU6TCJp7o5fAzOAj6XwRRGxupQVMzOznq/DJJIGO7w/IvYjNxiimZkZ0Pl7Ik9J+ljHxczMrJp09p7IwcAZkl4G3iJ3XyQiYlqpKmZmZj1fZ5PIcSWthZmZ9UodzScyGPhboA5YDNyYNw+6mZlVuY7uidwM1JNLICcA/1HyGpmZWa/RUXfW1PRUFpJuxNPPmplZno5aItubF9yNZWZmrXXUEtlf0htpWcCQtN78dNZuJa2dmZn1aB3NJ9K/XBUxM7PepysDMJqZmbXgJGJmZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZVSSJSBohaY6k30laKukQSbtLmi/phfRzZCorSddKapS0SNIBed8zO5V/QdLsSpyLmVk1q1RL5JvAzyLiI8D+wFLgYuCBiJgCPJDWITePyZT0ORv4DoCk3YFLyU3dexBwaXPiMTOz8ih7EpE0HDgCuBEgIt6JiI3ATHKTYJF+npqWZwK3RM6jwAhJ48hN2Ts/ItZHxAZgPnB8GU/FzKzqVaIlMhlYC/yPpKcl3SBpV2BMRKxKZVYDY9LyeGB53v4rUqxY3MzMyqQSSWQAcADwnYj4KPAW73VdAbmJSoDorgNKOltSg6SGtWvXdtfXmplVvUokkRXAioh4LK3PIZdU1qRuKtLP19L2lcDEvP0npFixeBsRcX1E1EdE/ejRo7vtRMzMql3Zk0hErAaWS9o7hY4BlgBzgeYnrGYD96TlucCs9JTWDGBT6vaaBxwraWS6oX5sipmZWZl0ND1uqfwD8ANJg4CXgM+RS2h3SjoTeAX4dCp7P3Ai0Ai8ncoSEeslXQ48kcpdFhHry3cKZmam3O2H6lFfXx8NDQ2VrkaPse7NbazYsIUJI4dQO7Sm09vMrLpIejIi6lvHK9USsR7gnoUrueiuRQzs14/tTU1cfdo0Tpk+vsNtZmbNPOxJlVr35jYuumsRW7c3sXnbDrZub+LCuxax7s1t7W4zM8vnJFKlVmzYwsB+Lf/5B/brx4oNW9rdZmaWz91ZVWrCyCFsb2pqEdve1MSEkUMA2LxtR4ttm7ft2LnNzKyZWyJVqnZoDVefNo3BA/sxrGYAgwf24+rTplE7tIY5T7xacJ9icTOrXm6JVLFTpo/nsLpRbZ7AunvRqoLl7160is8fNaWcVTSzHs5JpMrVDq1p8/juqdPGsXTV5jZlT502rlzVMrNewt1Z1sb/PlNw9JiicTOrXk4i1sZzq9/qUtzMqpeTiLWxz9hduxQ3s+rlJGJt3HvekV2Km1n1chKpcuve3MYzyze2eRt97G6DWqyPa7VuZgZ+OquqFRsf6+6nlrP6jXdalF31xjvc/dRyTj1gYpFvM7Nq5JZIlWpvfKx7F68uuE+xuJlVLyeRKtXe+Fgn7ze24D7F4mZWvZxEqlR7Y2edesDENvdAxu02yF1ZZtaG74lUqeaxsy5sdU+k+e31BV/8E+5+ajn3Ll7NyfuNdQIxs4I8s2GV8+yFZtYZntnQCio0dpaZWWf5nogV1bhmM3MaltO4pu1gjGZm4JaIFfGluxdzy6PvzR8y65A9uWzmfhWskZn1RG6JWBuNaza3SCAAtyx41S0SM2vDScTaWLh8Y5fiZla9nESsjekTR3QpbmbVy0nE2qgbM4xZh+zZIjbrkD2pGzOsQjUys57KN9atoMtm7sesGZNYuHwj0yeOcAIxs4KcRKyoujHDnDzMrF3uzuojis0LYmZWSm6J9AHF5gUxMys1J5FeqnHNZhYu38ik2l12zguyldyovBfetYjD6kZRO7SGo65+gGXrtzJ598E8dOExFa61mfU1TiK90OdvfYJ5z722c31gf7XY3r+fWLFhCwde8YudsWXrtzLp4vt4+cqTWpT1AIxm9n5U7J6IpP6SnpZ0b1qfLOkxSY2S7pA0KMVr0npj2j4p7zsuSfHnJR1XmTMpr9O+/esWCQRg+7stR2J+a9u7fO6mRwvuf9TVD+xcvmfhSg698kE+c90CDr3yQeYuXNn9FTazPq2SN9bPBZbmrV8FXBMRdcAG4MwUPxPYkOLXpHJImgqcDuwDHA98W1L/MtW9IhqWrePJVzd1quz6Le8WjC9bvxXItUAuuPMZtu1oYuuOJrbtaOL8O5/xjXkz65KKJBFJE4CTgBvSuoCjgTmpyM3AqWl5ZlonbT8mlZ8J3B4R2yJiGdAIHFSeM6iM/3ywsdu+a8GL63i3qWUL5t2mYMGL67rtGGbW91WqJfIN4EKgeX7WWmBjROxI6yuA5seLxgPLAdL2Tan8zniBfVqQdLakBkkNa9eu7c7zKKvXNm8puq2r/5CvF2lxFIubmRVS9iQi6WTgtYh4slzHjIjrI6I+IupHjx5drsN2u7846INFt33j9OkMHtiPYTUDGDyw43/Wj9eN6lLczKyQSrREDgNOkfQycDu5bqxvAiMkNT8tNgFovsu7EpgIkLYPB9blxwvs0yedcejkotv2GD6Y31x0NN8/62B+c9HRbZ7CatYc78z4WNfMW8qRX32Ia+YtxcyskIrOsS7pSOCfI+JkST8C7oqI2yV9F1gUEd+WdA6wX0T8raTTgf8TEZ+WtA/wQ3L3QfYAHgCmREThO8pJb55jvWHZOj51XeGnrs76+GQ+uf8eOx/V/cTXHqTx9bbdX3WjhvCLfz5653rz+yatx8eacsl9bM/7T2Og4IWvFE5MZtb39YY51i8Cbpd0BfA0cGOK3wjcKqkRWE/uiSwi4jlJdwJLgB3AOR0lkN7ukRdeL7rtlgWvcMcTy3e+sV4ogQBt4oXGx7pm3tIWCQRge+Ti5x/3R9kqb2Z9UkXHzoqIhyPi5LT8UkQcFBF1EfFnEbEtxbem9bq0/aW8/f9fRHwoIvaOiJ9W6jzK5Ygphe9XSPDOu01s3raDrdubuOCOhew6UAXL1o0a0uFx7lm0uktxM6teHoCxF6mfXMvhdbUtYuOH1zB0UMsG5Y6At1o3JZL8rqyix9lzeJfiZla9nER6mVvPmsG08e91P63ctI03t+1oZ4+WWs+TXmj03z1G7lpw32JxM6teTiK9TMOydSxa2TIRBDCov+hfuAerhfx50u9ZuJLDrnqQM254jMOuem/Yk2LdZsXiZla9nER6mWI312cfOokzP178EeBmC19dD+RaIM2j/zbfS7nwrkWse3NbwW6zw+tqqZ9cW+grzayK9aSns6wTjpgyimsLDH9y3NQxvLzu7Q73//WLuSSyYsMWBvbrt3P4eICB/fqxYsMWaofWcOtZM3hgyWp+vmQNx04dwzFTx3bfSZhZn+GWSC/TXith+sQRHe4/c1ouGUwYOYTtTU0ttm1vamLCyNzTW/csXMk5tz3N/YtXc85tT3uEXzMryC2RXujWs2bQsGwdj7zwOkdMGbWzm6luzDB2GQRvv1N4v4Fi53setUNruPq0aVzYakbE2qE1Lbq6Ck10ZWbWzEmkB+rMRFH1k9veo2hcs7loAhm32yAWfPFPWsROmT6ew+pGtTlWR11dZmbNnER6mKzzpX//t8v42vzni24/58i6gvHaoTVtEkNHXV1mZs18T6QHae+Jqfbs/39/xr/OXcLGIhNRieKDNxZ6T6S5qyt/VODmri4zs3xuifQgKzZsYev2li2ArdubCnYjXffQC9y9aBUTh9ewaWv7Q4ZFKv/5o6a0iLfX6jll+niampq4d/FqTt5vbKdaQ2ZWfSo6im8l9ORRfCddfF/RbflDu9ddch87Mvyz7T1mV+adfySQa4EcdtWDLZLW4IH9+M1FR1M7tIZjr3mY3695q+C+ZlZ9io3i6+6sXubDX8yWQACeX/MWDyzJDaLYfPM8X/PN8weWrG6RQFrva2bWzEmkF/n+b5fxTlPH5drz8yVrgPZvnjeXKbavmVkzJ5Fe4pnlG5nz9Pt/4e+QvXYH2r95fuzUMQX3LRY3s+rlG+u9xBk3PMbb29//nFuTR783AnCx90SOmTqWvcfsyvOt7ol46BMza81JpJfY3IXh3tsz81u/aXGTvtB7IgDzzj/SY2eZWYecRKyoY6aOdfIws3b5nogV1bhmM3MalreZyMrMrJlbIj3Ih0btwouvdzyce2eI3EuGrU2q3aVT+3/p7sXc8uirO9dnHbInl83cr1vqZmZ9h1siPcj7SSDnHrUX+4wbyr5jh/GNT0/jH4/aq2C55qHg29O4ZnOLBAJwy4JX3SIxszbcEukDhg/uz/nH/dHOYd6bffOhl9qUbV2mkPwpdFvH68YMK7jNzKqTWyI9yIThgzLtt2nruzQsW9ciVn/ZzwqWLRbPV2xyq85MemVm1cVJpAc58iPZX+ZrPff6628XfqekWDzf1T9d0qW4mVUvd2f1IPvsMRxYnmnfvUbtwmev+y1LVr/BR8cPZ6Bge4E766N26d/hdz3SuK5LcTOrXk4iPciQgdkahrW7DOS8OxftXH+4cX3Rsg1fOr7D7zuirpaf/+71gnEzs3zuzupGhSZ46ooFLxX/49/ucd/enmm/Yq7/q4O7FDez6uUk0k3uWbiSQ698kM9ct4BDr3yQuQu7PljiTxpWlKBmLf35db/pVLlvnj69xfq1rdbNzMBJpFuse3MbF9z5DNt2NLF1RxPbdjRx/p3PdLlF8k6J6pfv8VcKP76br3ma3nydmabXzKqP74l0gwUvruPdppZ3sd9tCha8uI6T99+jRTx/9sL8gRDLZd9xQzss0zxh1Vbem2+kecIqz7NuZvnK3hKRNFHSQ5KWSHpO0rkpvruk+ZJeSD9HprgkXSupUdIiSQfkfdfsVP4FSbPLfS7Nlq7a1Kl46+lv25sOt1TOOKTwm+z52puwyswsXyW6s3YA/xQRU4EZwDmSpgIXAw9ExBTggbQOcAIwJX3OBr4DuaQDXAocDBwEXNqceMptl0GFG3T58WIJo9yJpDMvDLY3YZWZWb6yd2dFxCpgVVreLGkpMB6YCRyZit0MPAxclOK3REQAj0oaIWlcKjs/ItYDSJoPHA/cVraTSQ6evHuX4t1t1iF7cu4xH+bnz63mpdff5Hu/frngOyJAp4ctKTZhlZlZvoreWJc0Cfgo8BgwJiUYgNVA8+vb42n5Bt6KFCsWL3ScsyU1SGpYu3Ztt9W/2dd+/vuC8cbX3uz2Y7VWM6Af5x7zYWqH1vDZgz/Ihre2F00gAAf8+087/d21Q2vYf+IIJxAzK6piN9YlDQXuAs6LiDck7dwWESGpnT+FXRMR1wPXA9TX13fb90JuxNtHlxV+v+PZP7zRqe+YdPF9DMiYzgf1f++G97o3tzHnqfYfLV6/pand7WZmXVGRloikgeQSyA8i4scpvCZ1U5F+vpbiK4GJebtPSLFi8bL6dWPxls0HOzl3B8COjH/b8294r9iwhUHqYAczs25UiaezBNwILI2Ir+dtmgs0P2E1G7gnLz4rPaU1A9iUur3mAcdKGpluqB+bYmW1sZ23xccNL+3TTK1veE8YOYQd3drOMjNrXyW6sw4D/hJYLGlhin0RuBK4U9KZwCvAp9O2+4ETgUbgbeBzABGxXtLlwBOp3GXNN9nL6f7Fq4pu221IaS/vby46usX9itqhNYwdXsMfNhV/KfADu/rVIDPrPpV4OuvX5GZvLeSYAuUDOKfId90E3NR9teuaxjWb+f1rbxXdvkeJWyIHXfELXmz1wuJJ+47lv3/zStF9Hv+340paJzOrLh725H0oNgNgsz9s2lrS4xeaGWTvccPb3cdT3JpZd3ISeR8WvtpR79l7Nyh+cf4Rpa1M8sPHi7dCoOPEZ2bWFe4gfx9azybY2o8ef4Xz71jICfuMYfguA7v9+DfOOrDFesOydTz1auEhWJp5ilsz605OIu/DwP7tN+T+99ncU8rff7w0Q7zf+KsXOWbq2J3rHSW1WYfs2ek31s3MOsPdWRk1rtnMi6+/XdE6tB7W/Ygpo4qWPWSv3bls5n6lrpKZVRknkYzmPbe60lXgoA+27Jqqn1zL+BGFhyhpXdbMrDs4iWT01SLjZZXT2+/saBM77YCJBUpCyP/UZtb9/JclgykVmAekkEUr2w7wWKxLq72uLjOzrJxEMig+0En3+OO6WsYN73jk3A9/oO3YXPWTazm8rrZF7PC6Wuon17Ypa2b2fvnprB7osZfW8bsvn9ThhFVnHVFXMH7rWTNoWLaOR154nSOmjHICMbOScRLpgbZ2ckTfX/5uNZ+qL3wPpH6yWx9mVnruzurFfrtsQ6WrYGZVzkmki/a+pPQ31T+2526dKnfo5IpMKW9mtpOTSBdtK8N8HUtW5566GtzBv84ff2Rs+wXMzErMSaQHGjaof+7nkPbH2/I4WGZWaU4iPdD6NFviWR+fXOGamJm1z0mkC/7s278qy3E+sFvuHZHPHzWFIQOKT5ruYd3NrNKcRLrgiVffKMtxTvvo+J3LS684kb857IMFy7k7y8wqzUmkB/r50jUt1v/lk/sy65A9W8Q8rLuZ9QR+2bAHen1z24FVLpu5H7NmTGLh8o1MnzjCCcTMegQnkU76/m+Xle1Yp04fVzBeN2aYk4eZ9Sjuzuqkf527pGzHOnn6hLIdy8zs/XAS6YEmjBxS6SqYmXWKk0gPM338btQO7XgYeDOznsBJpEJ+cf4RBeN3/8PhZa6JmVl2TiKd0NG8HlnUjRnGy1eexCf3/QC7DurHJ/f9AC9feVK3H8fMrJT8dFYFXHHK1J3L/3nGxypYEzOz98ctkTIbPrg/ZxzqMbHMrG9wS6RMPjZpJDOnjXMCMbM+xUmkA91xP+Rje+7Gj4MtAlcAAAkbSURBVP720G6ojZlZz9Lru7MkHS/peUmNki6udH0K+dEX/MSVmfVNvTqJSOoPfAs4AZgKfFbS1Pb3Ki8/cWVmfVmvTiLAQUBjRLwUEe8AtwMzK1wnM7Oq0duTyHhged76ihRrQdLZkhokNaxdu7ZslTMz6+t6exLplIi4PiLqI6J+9OjRZTvubjXFZyU0M+sLensSWQlMzFufkGLdZs7nZ2Te98e+oW5mfVxvTyJPAFMkTZY0CDgdmNudB6ifXMvhdbVd3s8zD5pZNejV74lExA5Jfw/MA/oDN0XEc919nFvPmkHDsnV8+rpHaQJ2GQC3nDmDeUvWMHRQf1a/sZXl67cwetgg6j4wjOP2GesEYmZVQRFR6TqUVX19fTQ0NFS6GmZmvYqkJyOivnW8t3dnmZlZBTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpaZk4iZmWXmJGJmZpk5iZiZWWZVN+yJpLXAKxl3HwW83o3V6Ut8bYrztSnM16W4nnhtPhgRbebSqLok8n5Iaig0doz52rTH16YwX5fietO1cXeWmZll5iRiZmaZOYl0zfWVrkAP5mtTnK9NYb4uxfWaa+N7ImZmlplbImZmlpmTSCdIOl7S85IaJV1c6fqUiqSbJL0m6dm82O6S5kt6If0cmeKSdG26JoskHZC3z+xU/gVJs/PiB0panPa5VpLKe4bZSZoo6SFJSyQ9J+ncFK/q6yNpsKTHJT2Trsu/p/hkSY+lc7lD0qAUr0nrjWn7pLzvuiTFn5d0XF68V//+Seov6WlJ96b1vnVtIsKfdj7k5m5/EdgLGAQ8A0ytdL1KdK5HAAcAz+bFrgYuTssXA1el5ROBnwICZgCPpfjuwEvp58i0PDJtezyVVdr3hEqfcxeuzTjggLQ8DPg9MLXar0+q69C0PBB4LJ3DncDpKf5d4O/S8heA76bl04E70vLU9LtVA0xOv3P9+8LvH3AB8EPg3rTep66NWyIdOwhojIiXIuId4HZgZoXrVBIR8QiwvlV4JnBzWr4ZODUvfkvkPAqMkDQOOA6YHxHrI2IDMB84Pm3bLSIejdxvxi1539XjRcSqiHgqLW8GlgLjqfLrk87vzbQ6MH0COBqYk+Ktr0vz9ZoDHJNaXDOB2yNiW0QsAxrJ/e716t8/SROAk4Ab0rroY9fGSaRj44HleesrUqxajImIVWl5NTAmLRe7Lu3FVxSI9zqpm+Gj5P6vu+qvT+quWQi8Ri4pvghsjIgdqUj+uew8/7R9E1BL169Xb/EN4EKgKa3X0seujZOIdVr6P+SqfpxP0lDgLuC8iHgjf1u1Xp+IeDcipgMTyP3f8UcqXKUeQdLJwGsR8WSl61JKTiIdWwlMzFufkGLVYk3qaiH9fC3Fi12X9uITCsR7DUkDySWQH0TEj1PY1yeJiI3AQ8Ah5LrvBqRN+eey8/zT9uHAOrp+vXqDw4BTJL1MrqvpaOCb9LFr4yTSsSeAKemJikHkbnjNrXCdymku0PwE0Wzgnrz4rPQU0gxgU+rWmQccK2lkelLpWGBe2vaGpBmpn3dW3nf1eKnONwJLI+LreZuq+vpIGi1pRFoeAvwJuftFDwGfSsVaX5fm6/Up4MHUgpsLnJ6eUJoMTCH3oEGv/f2LiEsiYkJETCJX7wcj4i/oa9em3Hfye+OH3JM2vyfX1/svla5PCc/zNmAVsJ1c/+qZ5PpkHwBeAH4B7J7KCvhWuiaLgfq87/lrcjf/GoHP5cXrgWfTPv9Fetm1N3yAj5PrqloELEyfE6v9+gDTgKfTdXkW+FKK70XuD10j8COgJsUHp/XGtH2vvO/6l3Tuz5P3ZFpf+P0DjuS9p7P61LXxG+tmZpaZu7PMzCwzJxEzM8vMScTMzDJzEjEzs8ycRMzMLDMnETMzy8xJxKqOpLGSbpf0oqQnJd0v6cPtlH+z2LYOjnNk8/Df7ZSZLunEDN/9sKT6drYPlXRd3jk+LOngDMc5T9IuXd3PqoeTiFWV9Db4T4CHI+JDEXEgcAnvDZxYbtPJvTDW3W4gNyLzlHSOnwNGZfie8wAnESvKScSqzVHA9oj4bnMgIp4Bnpb0gKSnlJsYquCQ2pIuStufkXRliu1sFUgalcZKar3fQZIWpMmJfitp7zRUxWXAZyQtlPQZSbsqNznY46nszLT/kNR6WirpJ8CQYico6UPAwcC/RkRTOsdlEXFf2n6BpGfT57wU21XSfem8nk11+UdgD+AhSQ919UJbdRjQcRGzPmVfoNCoqluBP42INySNAh6VNDfyhnSQdAK5+RoOjoi3Je3eheP+Djg8InZI+gTw5Yg4TdKXyA2J8vfpGF8mN2bSX6cxqR6X9Avg88DbEfFHkqYBT7VzrH2AhRHxbusNkppbJQeTG5rlMUm/JDcUxx8i4qRUbnhEbJJ0AXBURLzehXO1KuIkYpYj4MuSjiA398N4cl1cq/PKfAL4n4h4GyAiWk/g1Z7hwM2SppAbg2tgkXLHkhv59Z/T+mBgT3KzTl6bjrtI0qIuHDvfx4GfRMRbAJJ+DBwO/Az4D0lXkRvj6VcZv9+qjLuzrNo8BxxYIP4XwGjgwMjNjbGG3B/wztjBe79Lxfa5HHgoIvYFPtlOOQGnRcT09NkzIpZ2sh7NngP2l9S/sztExO/JTY28GLgitZDMOuQkYtXmQaBG0tnNgdQ99EFyEwhtl3RUWm9tPvC55qeV8rqzXua9xPSpAvtBriXSPNfDX+XFN5Obs73ZPOAf0gMASPpoij8C/HmK7Utu9NyCIuJFoAH497zvmSTpJOBXwKmSdpG0K/CnwK8k7UGuu+z7wFfJJZRC9TNrwUnEqkq6x/GnwCfS46/PAV8B7gfqJS0mN5fH7wrs+zNy8zU0KDcdbHOX09eAv5P0NMWfgLoa+Eoqk9+N/BAwtfnGOrkWy0BgUarb5ancd4ChkpaSuxnf0Wx5Z5HrjmuU9CzwPXJJ8qm0/Di56X1viIingf3I3X9ZCFwKXJG+53rgZ76xbsV4KHgzM8vMLREzM8vMT2eZ9WKSHgNqWoX/MiIWV6I+Vn3cnWVmZpm5O8vMzDJzEjEzs8ycRMzMLDMnETMzy8xJxMzMMvv//yvqyn/43qEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": { + "id": "Effc4v5jqTzI" + }, + "source": [ + "### Modify all `Unit_Price` values adding 3% tax to them" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sales.plot(kind='scatter', x='Calculated_Cost', y='Profit', figsize=(6,6))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Add and calculate a new `Calculated_Revenue` column\n", - "\n", - "Use this formula\n", - "\n", - "$$ Calculated\\_Revenue = Cost + Profit $$" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 950\n", - "1 950\n", - "2 2401\n", - "3 2088\n", - "4 418\n", - "Name: Calculated_Revenue, dtype: int64" + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "0pD4RVRRqTzJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "outputId": "e6d3f6ab-5ed5-47b9-f0fb-0dbab0fe1963" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 120\n", + "1 120\n", + "2 120\n", + "3 120\n", + "4 120\n", + "Name: Unit_Price, dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unit_Price
0120
1120
2120
3120
4120
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "sales['Unit_Price'].head()" ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales['Calculated_Revenue'] = sales['Cost'] + sales['Profit']\n", - "\n", - "sales['Calculated_Revenue'].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "A7M1movBqTzJ" + }, + "outputs": [], + "source": [ + "#sales['Unit_Price'] = sales['Unit_Price'] * 1.03\n", + "\n", + "sales['Unit_Price'] *= 1.03" ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(sales['Calculated_Revenue'] != sales['Revenue']).sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DateDayMonthYearCustomer_AgeAge_GroupCustomer_GenderCountryStateProduct_Category...ProductOrder_QuantityUnit_CostUnit_PriceProfitCostRevenueRevenue_per_AgeCalculated_CostCalculated_Revenue
02013-11-2626November201319Youth (<25)MCanadaBritish ColumbiaAccessories...Hitch Rack - 4-Bike84512059036095050.000000360950
12015-11-2626November201519Youth (<25)MCanadaBritish ColumbiaAccessories...Hitch Rack - 4-Bike84512059036095050.000000360950
22014-03-2323March201449Adults (35-64)MAustraliaNew South WalesAccessories...Hitch Rack - 4-Bike234512013661035240149.00000010352401
32016-03-2323March201649Adults (35-64)MAustraliaNew South WalesAccessories...Hitch Rack - 4-Bike20451201188900208842.6122459002088
42014-05-1515May201447Adults (35-64)FAustraliaNew South WalesAccessories...Hitch Rack - 4-Bike4451202381804188.893617180418
\n", - "

5 rows × 21 columns

\n", - "
" + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "wZF5d3ZqqTzJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "outputId": "3031ba9c-47b0-41c2-a96d-cd959575e091" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 123.6\n", + "1 123.6\n", + "2 123.6\n", + "3 123.6\n", + "4 123.6\n", + "Name: Unit_Price, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unit_Price
0123.6
1123.6
2123.6
3123.6
4123.6
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 18 + } ], - "text/plain": [ - " Date Day Month Year Customer_Age Age_Group \\\n", - "0 2013-11-26 26 November 2013 19 Youth (<25) \n", - "1 2015-11-26 26 November 2015 19 Youth (<25) \n", - "2 2014-03-23 23 March 2014 49 Adults (35-64) \n", - "3 2016-03-23 23 March 2016 49 Adults (35-64) \n", - "4 2014-05-15 15 May 2014 47 Adults (35-64) \n", - "\n", - " Customer_Gender Country State Product_Category ... \\\n", - "0 M Canada British Columbia Accessories ... \n", - "1 M Canada British Columbia Accessories ... \n", - "2 M Australia New South Wales Accessories ... \n", - "3 M Australia New South Wales Accessories ... \n", - "4 F Australia New South Wales Accessories ... \n", - "\n", - " Product Order_Quantity Unit_Cost Unit_Price Profit Cost \\\n", - "0 Hitch Rack - 4-Bike 8 45 120 590 360 \n", - "1 Hitch Rack - 4-Bike 8 45 120 590 360 \n", - "2 Hitch Rack - 4-Bike 23 45 120 1366 1035 \n", - "3 Hitch Rack - 4-Bike 20 45 120 1188 900 \n", - "4 Hitch Rack - 4-Bike 4 45 120 238 180 \n", - "\n", - " Revenue Revenue_per_Age Calculated_Cost Calculated_Revenue \n", - "0 950 50.000000 360 950 \n", - "1 950 50.000000 360 950 \n", - "2 2401 49.000000 1035 2401 \n", - "3 2088 42.612245 900 2088 \n", - "4 418 8.893617 180 418 \n", - "\n", - "[5 rows x 21 columns]" + "source": [ + "sales['Unit_Price'].head()" ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d9fltLC9qTzJ" + }, + "source": [ + "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", + "\n", + "## Selection & Indexing:" ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAFlCAYAAAAOBLIFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAfAElEQVR4nO3dcbBmZX0f8O9PVhSNCuiGOixmsdnREhsVNohjkiYywoKJ0I6xOGnZsVQylbRx0plkTTIh0WQGO22MtMaECHGxSRBNjFQxZEUnmf6BsEQEAS0rYlkCsnERoqYa9Nc/7rP6Zt1dLgfee3fv/XxmzrzP+Z3nnPd5fYY3+e4573OruwMAAMCj84TlHgAAAMChSJgCAACYQJgCAACYQJgCAACYQJgCAACYQJgCAACYYM1yD2CpPetZz+r169cv9zAAAICD1I033vi33b32kfqtujC1fv36bN++fbmHAQAAHKSq6guL6ecxPwAAgAmEKQAAgAmEKQAAgAmEKQAAgAmEKQAAgAmEKQAAgAmEKQAAgAmEKQAAgAmEKQAAgAmEKQAAgAmEKQAAgAmEKQAAgAmEKQAAgAnWLPcAVrP1Wz6832N3XfTKJRwJAADwaLkzBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMIEwBQAAMMHcwlRVPa+qbprZHqqqN1bV0VW1raruGK9Hjf5VVRdX1Y6qurmqTpy51ubR/46q2jxTP6mqbhnnXFxVNa/PAwAAMGtuYaq7P9vdL+ruFyU5KcnXknwgyZYk13b3hiTXjv0kOSPJhrGdn+SdSVJVRye5MMlLkpyc5MI9AWz0ef3MeZvm9XkAAABmLdVjfqcm+Vx3fyHJWUm2jvrWJGeP9llJLu8F1yU5sqqeneT0JNu6e3d3P5BkW5JN49jTu/u67u4kl89cCwAAYK6WKkydk+SPR/uY7r53tO9LcsxoH5vk7plzdo7ageo791H/LlV1flVtr6rtu3bteiyfAwAAIMkShKmqOjzJq5K8b+9j445Sz3sM3X1Jd2/s7o1r166d99sBAACrwFLcmTojyV939xfH/hfHI3oZr/eP+j1Jjps5b92oHai+bh91AACAuVuKMPXafOcRvyS5KsmeFfk2J/ngTP3csarfKUkeHI8DXpPktKo6aiw8cVqSa8axh6rqlLGK37kz1wIAAJirNfO8eFU9NckrkvzMTPmiJFdW1XlJvpDkNaN+dZIzk+zIwsp/r0uS7t5dVW9JcsPo9+bu3j3ab0jy7iRHJPnI2AAAAOZurmGqu7+a5Jl71b6UhdX99u7bSS7Yz3UuS3LZPurbk7zgcRksAADAo7BUq/kBAACsKMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABMIUAADABHMNU1V1ZFW9v6o+U1W3V9VLq+roqtpWVXeM16NG36qqi6tqR1XdXFUnzlxn8+h/R1VtnqmfVFW3jHMurqqa5+cBAADYY953pt6e5M+7+/lJXpjk9iRbklzb3RuSXDv2k+SMJBvGdn6SdyZJVR2d5MIkL0lycpIL9wSw0ef1M+dtmvPnAQAASDLHMFVVz0jyo0kuTZLu/kZ3fznJWUm2jm5bk5w92mclubwXXJfkyKp6dpLTk2zr7t3d/UCSbUk2jWNP7+7ruruTXD5zLQAAgLma552p45PsSvIHVfXJqnpXVT01yTHdfe/oc1+SY0b72CR3z5y/c9QOVN+5j/p3qarzq2p7VW3ftWvXY/xYAAAA8w1Ta5KcmOSd3f3iJF/Ndx7pS5KMO0o9xzHseZ9Luntjd29cu3btvN8OAABYBeYZpnYm2dndnxj7789CuPrieEQv4/X+cfyeJMfNnL9u1A5UX7ePOgAAwNzNLUx1931J7q6q543SqUluS3JVkj0r8m1O8sHRvirJuWNVv1OSPDgeB7wmyWlVddRYeOK0JNeMYw9V1SljFb9zZ64FAAAwV2vmfP3/mOQPq+rwJHcmeV0WAtyVVXVeki8kec3oe3WSM5PsSPK10Tfdvbuq3pLkhtHvzd29e7TfkOTdSY5I8pGxAQAAzN1cw1R335Rk4z4OnbqPvp3kgv1c57Ikl+2jvj3JCx7jMAEAAB61ef+dKQAAgBVJmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhgrmGqqu6qqluq6qaq2j5qR1fVtqq6Y7weNepVVRdX1Y6qurmqTpy5zubR/46q2jxTP2lcf8c4t+b5eQAAAPZYijtTP97dL+rujWN/S5Jru3tDkmvHfpKckWTD2M5P8s5kIXwluTDJS5KcnOTCPQFs9Hn9zHmb5v9xAAAAlucxv7OSbB3trUnOnqlf3guuS3JkVT07yelJtnX37u5+IMm2JJvGsad393Xd3Ukun7kWAADAXM07THWSv6iqG6vq/FE7prvvHe37khwz2scmuXvm3J2jdqD6zn3UAQAA5m7NnK//w919T1V9b5JtVfWZ2YPd3VXVcx5DRpA7P0me85znzPvtAACAVWCud6a6+57xen+SD2ThN09fHI/oZbzeP7rfk+S4mdPXjdqB6uv2Ud/XOC7p7o3dvXHt2rWP9WMBAADML0xV1VOr6ml72klOS/LpJFcl2bMi3+YkHxztq5KcO1b1OyXJg+NxwGuSnFZVR42FJ05Lcs049lBVnTJW8Tt35loAAABzNc/H/I5J8oGxWvmaJH/U3X9eVTckubKqzkvyhSSvGf2vTnJmkh1JvpbkdUnS3bur6i1Jbhj93tzdu0f7DUneneSIJB8ZGwAAwNzNLUx1951JXriP+peSnLqPeie5YD/XuizJZfuob0/ygsc8WAAAgEdpOZZGBwAAOOQJUwAAABMIUwAAABMIUwAAABMIUwAAABMIUwAAABMIUwAAABMIUwAAABMIUwAAABMIUwAAABMIUwAAABMIUwAAABMIUwAAABMsKkxV1T+f90AAAAAOJYu9M/U7VXV9Vb2hqp4x1xEBAAAcAhYVprr7R5L8dJLjktxYVX9UVa+Y68gAAAAOYov+zVR335HkV5L8YpJ/keTiqvpMVf2reQ0OAADgYLXY30z9YFW9LcntSV6e5Ce7+5+N9tvmOD4AAICD0ppF9vvvSd6V5Je6++/3FLv7b6rqV+YyMgAAgIPYYsPUK5P8fXd/M0mq6glJntzdX+vu98xtdAAAAAepxf5m6qNJjpjZf8qoAQAArEqLDVNP7u6v7NkZ7afMZ0gAAAAHv8WGqa9W1Yl7dqrqpCR/f4D+AAAAK9pifzP1xiTvq6q/SVJJ/kmSfz23UQEAABzkFhWmuvuGqnp+kueN0me7+x/mNywAAICD22LvTCXJDyVZP845sarS3ZfPZVQAAAAHuUWFqap6T5J/muSmJN8c5U4iTAEAAKvSYu9MbUxyQnf3PAcDAABwqFjsan6fzsKiEwAAAGTxd6aeleS2qro+ydf3FLv7VXMZFQAAwEFusWHq1+Y5CAAAgEPNYpdG/8uq+r4kG7r7o1X1lCSHzXdoAAAAB69F/Waqql6f5P1Jfm+Ujk3yZ4s897Cq+mRVfWjsH19Vn6iqHVX13qo6fNSfNPZ3jOPrZ67xplH/bFWdPlPfNGo7qmrLYsYDAADweFjsAhQXJHlZkoeSpLvvSPK9izz355LcPrP/1iRv6+7vT/JAkvNG/bwkD4z620a/VNUJSc5J8gNJNiX5nRHQDkvyjiRnJDkhyWtHXwAAgLlbbJj6end/Y89OVa3Jwt+ZOqCqWpfklUneNfYrycuzcJcrSbYmOXu0zxr7GcdPHf3PSnJFd3+9uz+fZEeSk8e2o7vvHGO7YvQFAACYu8WGqb+sql9KckRVvSLJ+5L8r0Wc99tJfiHJt8b+M5N8ubsfHvs7s/DIYMbr3Ukyjj84+n+7vtc5+6sDAADM3WLD1JYku5LckuRnklyd5FcOdEJV/USS+7v7xsc0wsdBVZ1fVduravuuXbuWezgAAMAKsNjV/L6V5PfHtlgvS/KqqjozyZOTPD3J25McWVVrxt2ndUnuGf3vSXJckp3jMcJnJPnSTH2P2XP2V997/JckuSRJNm7c+IiPJwIAADySxa7m9/mqunPv7UDndPebuntdd6/PwgISH+vun07y8SSvHt02J/ngaF819jOOf6y7e9TPGav9HZ9kQ5Lrk9yQZMNYHfDw8R5XLfJzAwAAPCaL/aO9G2faT07yU0mOnviev5jkiqr6jSSfTHLpqF+a5D1VtSPJ7iyEo3T3rVV1ZZLbkjyc5ILu/maSVNXPJrkmC3/z6rLuvnXimAAAAB6VWrj5M+HEqhu7+6THeTxzt3Hjxt6+fftyDyNJsn7Lh/d77K6LXrmEIwEAAPYYWWfjI/Vb1J2pqjpxZvcJWbhTtdi7WgAAACvOYgPRf5tpP5zkriSvedxHAwAAcIhY7Gp+Pz7vgQAAABxKFvuY388f6Hh3/9bjMxwAAIBDw6NZze+H8p2lx38yC8uT3zGPQQEAABzsFhum1iU5sbv/Lkmq6teSfLi7/828BgYAAHAwW9Qf7U1yTJJvzOx/Y9QAAABWpcXembo8yfVV9YGxf3aSrfMZEgAAwMFvsav5/WZVfSTJj4zS67r7k/MbFgAAwMFtsY/5JclTkjzU3W9PsrOqjp/TmAAAAA56iwpTVXVhkl9M8qZRemKS/zmvQQEAABzsFntn6l8meVWSryZJd/9NkqfNa1AAAAAHu8WGqW90dyfpJKmqp85vSAAAAAe/xYapK6vq95IcWVWvT/LRJL8/v2EBAAAc3Ba7mt9/rapXJHkoyfOS/Gp3b5vryAAAAA5ijximquqwJB/t7h9PIkABAABkEY/5dfc3k3yrqp6xBOMBAAA4JCzqMb8kX0lyS1Vty1jRL0m6+z/NZVQAAAAHucWGqT8dGwAAAHmEMFVVz+nu/9vdW5dqQAAAAIeCR/rN1J/taVTVn8x5LAAAAIeMRwpTNdN+7jwHAgAAcCh5pDDV+2kDAACsao+0AMULq+qhLNyhOmK0M/a7u58+19EBAAAcpA4Yprr7sKUaCAAAwKHkEf9oLwAAAN9NmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhgbmGqqp5cVddX1aeq6taq+vVRP76qPlFVO6rqvVV1+Kg/aezvGMfXz1zrTaP+2ao6faa+adR2VNWWeX0WAACAvc3zztTXk7y8u1+Y5EVJNlXVKUnemuRt3f39SR5Ict7of16SB0b9baNfquqEJOck+YEkm5L8TlUdVlWHJXlHkjOSnJDktaMvAADA3M0tTPWCr4zdJ46tk7w8yftHfWuSs0f7rLGfcfzUqqpRv6K7v97dn0+yI8nJY9vR3Xd29zeSXDH6AgAAzN1cfzM17iDdlOT+JNuSfC7Jl7v74dFlZ5JjR/vYJHcnyTj+YJJnztb3Omd/dQAAgLmba5jq7m9294uSrMvCnaTnz/P99qeqzq+q7VW1fdeuXcsxBAAAYIVZktX8uvvLST6e5KVJjqyqNePQuiT3jPY9SY5LknH8GUm+NFvf65z91ff1/pd098bu3rh27drH5TMBAACr2zxX81tbVUeO9hFJXpHk9iyEqlePbpuTfHC0rxr7Gcc/1t096ueM1f6OT7IhyfVJbkiyYawOeHgWFqm4al6fBwAAYNaaR+4y2bOTbB2r7j0hyZXd/aGqui3JFVX1G0k+meTS0f/SJO+pqh1JdmchHKW7b62qK5PcluThJBd09zeTpKp+Nsk1SQ5Lcll33zrHzwMAAPBtcwtT3X1zkhfvo35nFn4/tXf9/yX5qf1c6zeT/OY+6lcnufoxDxYAAOBRWpLfTAEAAKw0whQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEwhQAAMAEcwtTVXVcVX28qm6rqlur6udG/eiq2lZVd4zXo0a9quriqtpRVTdX1Ykz19o8+t9RVZtn6idV1S3jnIurqub1eQAAAGbN887Uw0n+c3efkOSUJBdU1QlJtiS5trs3JLl27CfJGUk2jO38JO9MFsJXkguTvCTJyUku3BPARp/Xz5y3aY6fBwAA4NvmFqa6+97u/uvR/rsktyc5NslZSbaObluTnD3aZyW5vBdcl+TIqnp2ktOTbOvu3d39QJJtSTaNY0/v7uu6u5NcPnMtAACAuVqS30xV1fokL07yiSTHdPe949B9SY4Z7WOT3D1z2s5RO1B95z7qAAAAczf3MFVV35PkT5K8sbsfmj027ij1Eozh/KraXlXbd+3aNe+3AwAAVoG5hqmqemIWgtQfdvefjvIXxyN6Ga/3j/o9SY6bOX3dqB2ovm4f9e/S3Zd098bu3rh27drH9qEAAAAy39X8KsmlSW7v7t+aOXRVkj0r8m1O8sGZ+rljVb9Tkjw4Hge8JslpVXXUWHjitCTXjGMPVdUp473OnbkWAADAXK2Z47VfluTfJrmlqm4atV9KclGSK6vqvCRfSPKacezqJGcm2ZHka0lelyTdvbuq3pLkhtHvzd29e7TfkOTdSY5I8pGxAQAAzN3cwlR3/+8k+/u7T6fuo38nuWA/17osyWX7qG9P8oLHMEwAAIBJlmQ1PwAAgJVGmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhAmAIAAJhgzXIPgH1bv+XD+z1210WvXMKRAAAA++LOFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwATCFAAAwARzC1NVdVlV3V9Vn56pHV1V26rqjvF61KhXVV1cVTuq6uaqOnHmnM2j/x1VtXmmflJV3TLOubiqal6fBQAAYG/zvDP17iSb9qptSXJtd29Icu3YT5IzkmwY2/lJ3pkshK8kFyZ5SZKTk1y4J4CNPq+fOW/v9wIAAJibuYWp7v6rJLv3Kp+VZOtob01y9kz98l5wXZIjq+rZSU5Psq27d3f3A0m2Jdk0jj29u6/r7k5y+cy1AAAA5m6pfzN1THffO9r3JTlmtI9NcvdMv52jdqD6zn3UAQAAlsSyLUAx7ij1UrxXVZ1fVduravuuXbuW4i0BAIAVbqnD1BfHI3oZr/eP+j1Jjpvpt27UDlRft4/6PnX3Jd29sbs3rl279jF/CAAAgKUOU1cl2bMi3+YkH5ypnztW9TslyYPjccBrkpxWVUeNhSdOS3LNOPZQVZ0yVvE7d+ZaAAAAc7dmXheuqj9O8mNJnlVVO7OwKt9FSa6sqvOSfCHJa0b3q5OcmWRHkq8leV2SdPfuqnpLkhtGvzd3955FLd6QhRUDj0jykbEBAAAsibmFqe5+7X4OnbqPvp3kgv1c57Ikl+2jvj3JCx7LGAEAAKZatgUoAAAADmXCFAAAwATCFAAAwARz+80Uy2P9lg/v99hdF71yCUcCAAArmztTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAEwhTAAAAE6xZ7gHw6K3f8uHlHgIAAKx67kwBAABMIEwBAABMIEwBAABMIEwBAABMIEwBAABMIEwBAABMIEwBAABMIEwBAABMIEwBAABMsGa5B8DSWb/lwwc8ftdFr1yikQAAwKFPmOLbDhS2BC0AAPjHhCkWRdACAIB/zG+mAAAAJjjk70xV1aYkb09yWJJ3dfdFyzykVcddKwAAVqND+s5UVR2W5B1JzkhyQpLXVtUJyzsqAABgNTjU70ydnGRHd9+ZJFV1RZKzkty2rKPi2x5pBcGl5C4ZAACPp0M9TB2b5O6Z/Z1JXrJMY+EQN4/gd6AA5/FIAIBD26Eephalqs5Pcv7Y/UpVfXY5xzPjWUn+drkHsVrUW5ftPR/1PC/HWHlc+G96dTDPq4N5Xj3M9erwaOf5+xbT6VAPU/ckOW5mf92o/SPdfUmSS5ZqUItVVdu7e+Nyj4P5Ms+rh7leHczz6mCeVw9zvTrMa54P6QUoktyQZENVHV9Vhyc5J8lVyzwmAABgFTik70x198NV9bNJrsnC0uiXdfetyzwsAABgFTikw1SSdPfVSa5e7nFMdNA9eshcmOfVw1yvDuZ5dTDPq4e5Xh3mMs/V3fO4LgAAwIp2qP9mCgAAYFkIU8ukqjZV1WerakdVbVnu8fDIquqyqrq/qj49Uzu6qrZV1R3j9ahRr6q6eMzvzVV14sw5m0f/O6pq80z9pKq6ZZxzcVXV0n5CkqSqjquqj1fVbVV1a1X93Kib6xWkqp5cVddX1afGPP/6qB9fVZ8Yc/PesbhRqupJY3/HOL5+5lpvGvXPVtXpM3Xf8weJqjqsqj5ZVR8a++Z5Baqqu8Z3601VtX3UfHevMFV1ZFW9v6o+U1W3V9VLl3Weu9u2xFsWFsv4XJLnJjk8yaeSnLDc47I94rz9aJITk3x6pvZfkmwZ7S1J3jraZyb5SJJKckqST4z60UnuHK9HjfZR49j1o2+Nc89Y7s+8Grckz05y4mg/Lcn/SXKCuV5Z2/jf/ntG+4lJPjHm5Mok54z67yb5D6P9hiS/O9rnJHnvaJ8wvsOflOT48d1+mO/5g2tL8vNJ/ijJh8a+eV6BW5K7kjxrr5rv7hW2Jdma5N+P9uFJjlzOeXZnanmcnGRHd9/Z3d9IckWSs5Z5TDyC7v6rJLv3Kp+Vhf+oM17Pnqlf3guuS3JkVT07yelJtnX37u5+IMm2JJvGsad393W98F/y5TPXYgl1973d/dej/XdJbk9ybMz1ijLm6ytj94lj6yQvT/L+Ud97nvfM//uTnDr+tfKsJFd099e7+/NJdmThO973/EGiqtYleWWSd439inleTXx3ryBV9Yws/OP2pUnS3d/o7i9nGedZmFoexya5e2Z/56hx6Dmmu+8d7fuSHDPa+5vjA9V37qPOMhqP+Lw4C3ctzPUKMx79uinJ/Vn4P6SfS/Ll7n54dJmdm2/P5zj+YJJn5tHPP0vvt5P8QpJvjf1nxjyvVJ3kL6rqxqo6f9R8d68sxyfZleQPxqO776qqp2YZ51mYgsfJ+BcMy2OuEFX1PUn+JMkbu/uh2WPmemXo7m9294uSrMvCHYbnL/OQeJxV1U8kub+7b1zusbAkfri7T0xyRpILqupHZw/67l4R1mThJxfv7O4XJ/lqFh7r+7alnmdhannck+S4mf11o8ah54vjlnDG6/2jvr85PlB93T7qLIOqemIWgtQfdvefjrK5XqHGIyIfT/LSLDwCsudvMM7Ozbfncxx/RpIv5dHPP0vrZUleVVV3ZeERvJcneXvM84rU3feM1/uTfCAL/0jiu3tl2ZlkZ3d/Yuy/PwvhatnmWZhaHjck2TBWEzo8Cz9yvWqZx8Q0VyXZswLM5iQfnKmfO1aROSXJg+P28zVJTquqo8ZKM6cluWYce6iqThnP5587cy2W0Pjf/9Ikt3f3b80cMtcrSFWtraojR/uIJK/Iwu/jPp7k1aPb3vO8Z/5fneRj418/r0pyTi2sAnd8kg1Z+PGy7/mDQHe/qbvXdff6LMzBx7r7p2OeV5yqempVPW1POwvfuZ+O7+4VpbvvS3J3VT1vlE5NcluWc54Xu3KG7XFfieTMLKwS9rkkv7zc47Etas7+OMm9Sf4hC/8ycl4WnqW/NskdST6a5OjRt5K8Y8zvLUk2zlzn32Xhx8s7krxupr4xC1/8n0vyPzL+qLZtyef5h7PweMDNSW4a25nmemVtSX4wySfHPH86ya+O+nOz8P8k70jyviRPGvUnj/0d4/hzZ671y2MuP5uZVZ98zx9cW5Ify3dW8zPPK2wbc/qpsd26Zy58d6+8LcmLkmwf399/loXV+JZtnmucBAAAwKPgMT8AAIAJhCkAAIAJhCkAAIAJhCkAAIAJhCkAAIAJhCkAAIAJhCkAAIAJhCkAAIAJ/j+dG5eIJZ9S8AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": { + "id": "NlsxSkilqTzJ" + }, + "source": [ + "### Get all the sales made in the state of `Kentucky`" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sales['Revenue'].plot(kind='hist', bins=100, figsize=(14,6))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Modify all `Unit_Price` values adding 3% tax to them" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 120\n", - "1 120\n", - "2 120\n", - "3 120\n", - "4 120\n", - "Name: Unit_Price, dtype: int64" + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "zo1JpTWQqTzJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 774 + }, + "outputId": "d1a555cb-eb69-44e3-e298-cba30eade124" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Day Month Year Customer_Age Age_Group \\\n", + "0 2013-11-26 26 November 2013 19 Youth (<25) \n", + "1 2015-11-26 26 November 2015 19 Youth (<25) \n", + "14 2013-08-02 2 August 2013 29 Young Adults (25-34) \n", + "15 2015-08-02 2 August 2015 29 Young Adults (25-34) \n", + "16 2013-09-02 2 September 2013 29 Young Adults (25-34) \n", + "... ... ... ... ... ... ... \n", + "112885 2016-07-05 5 July 2016 38 Adults (35-64) \n", + "112952 2013-08-18 18 August 2013 31 Young Adults (25-34) \n", + "112953 2015-08-18 18 August 2015 31 Young Adults (25-34) \n", + "112954 2013-09-21 21 September 2013 31 Young Adults (25-34) \n", + "112955 2015-09-21 21 September 2015 31 Young Adults (25-34) \n", + "\n", + " Customer_Gender Country State Product_Category \\\n", + "0 M Canada British Columbia Accessories \n", + "1 M Canada British Columbia Accessories \n", + "14 M Canada British Columbia Accessories \n", + "15 M Canada British Columbia Accessories \n", + "16 M Canada British Columbia Accessories \n", + "... ... ... ... ... \n", + "112885 M Canada British Columbia Clothing \n", + "112952 F Canada British Columbia Clothing \n", + "112953 F Canada British Columbia Clothing \n", + "112954 F Canada British Columbia Clothing \n", + "112955 F Canada British Columbia Clothing \n", + "\n", + " Sub_Category Product Order_Quantity Unit_Cost \\\n", + "0 Bike Racks Hitch Rack - 4-Bike 8 45 \n", + "1 Bike Racks Hitch Rack - 4-Bike 8 45 \n", + "14 Bike Racks Hitch Rack - 4-Bike 5 45 \n", + "15 Bike Racks Hitch Rack - 4-Bike 7 45 \n", + "16 Bike Racks Hitch Rack - 4-Bike 2 45 \n", + "... ... ... ... ... \n", + "112885 Vests Classic Vest, L 14 24 \n", + "112952 Vests Classic Vest, L 13 24 \n", + "112953 Vests Classic Vest, L 11 24 \n", + "112954 Vests Classic Vest, L 15 24 \n", + "112955 Vests Classic Vest, L 16 24 \n", + "\n", + " Unit_Price Profit Cost Revenue Calculated_Cost Calculated_Revenue \n", + "0 123.60 590 360 950.0 360 950 \n", + "1 123.60 590 360 950.0 360 950 \n", + "14 123.60 369 225 594.0 225 594 \n", + "15 123.60 517 315 832.0 315 832 \n", + "16 123.60 148 90 238.0 90 238 \n", + "... ... ... ... ... ... ... \n", + "112885 65.92 551 336 887.0 336 887 \n", + "112952 65.92 512 312 824.0 312 824 \n", + "112953 65.92 433 264 697.0 264 697 \n", + "112954 65.92 590 360 950.0 360 950 \n", + "112955 65.92 630 384 1014.0 384 1014 \n", + "\n", + "[14178 rows x 20 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateDayMonthYearCustomer_AgeAge_GroupCustomer_GenderCountryStateProduct_CategorySub_CategoryProductOrder_QuantityUnit_CostUnit_PriceProfitCostRevenueCalculated_CostCalculated_Revenue
02013-11-2626November201319Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845123.60590360950.0360950
12015-11-2626November201519Youth (<25)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike845123.60590360950.0360950
142013-08-022August201329Young Adults (25-34)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike545123.60369225594.0225594
152015-08-022August201529Young Adults (25-34)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike745123.60517315832.0315832
162013-09-022September201329Young Adults (25-34)MCanadaBritish ColumbiaAccessoriesBike RacksHitch Rack - 4-Bike245123.6014890238.090238
...............................................................
1128852016-07-055July201638Adults (35-64)MCanadaBritish ColumbiaClothingVestsClassic Vest, L142465.92551336887.0336887
1129522013-08-1818August201331Young Adults (25-34)FCanadaBritish ColumbiaClothingVestsClassic Vest, L132465.92512312824.0312824
1129532015-08-1818August201531Young Adults (25-34)FCanadaBritish ColumbiaClothingVestsClassic Vest, L112465.92433264697.0264697
1129542013-09-2121September201331Young Adults (25-34)FCanadaBritish ColumbiaClothingVestsClassic Vest, L152465.92590360950.0360950
1129552015-09-2121September201531Young Adults (25-34)FCanadaBritish ColumbiaClothingVestsClassic Vest, L162465.926303841014.03841014
\n", + "

14178 rows × 20 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"sales\",\n \"rows\": 14178,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2011-01-01 00:00:00\",\n \"max\": \"2016-07-31 00:00:00\",\n \"num_unique_values\": 1172,\n \"samples\": [\n \"2013-12-09 00:00:00\",\n \"2014-06-25 00:00:00\",\n \"2014-06-20 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Day\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8,\n \"min\": 1,\n \"max\": 31,\n \"num_unique_values\": 31,\n \"samples\": [\n 5,\n 20,\n 10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Month\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 12,\n \"samples\": [\n \"April\",\n \"July\",\n \"November\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 2011,\n \"max\": 2016,\n \"num_unique_values\": 6,\n \"samples\": [\n 2013,\n 2015,\n 2011\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Customer_Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 11,\n \"min\": 17,\n \"max\": 74,\n \"num_unique_values\": 52,\n \"samples\": [\n 42,\n 64,\n 22\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age_Group\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Young Adults (25-34)\",\n \"Seniors (64+)\",\n \"Youth (<25)\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Customer_Gender\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"F\",\n \"M\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Country\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Canada\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"State\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"British Columbia\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Product_Category\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Accessories\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sub_Category\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 17,\n \"samples\": [\n \"Bike Racks\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Product\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 111,\n \"samples\": [\n \"Patch Kit/8 Patches\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Order_Quantity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9,\n \"min\": 1,\n \"max\": 32,\n \"num_unique_values\": 32,\n \"samples\": [\n 28\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Unit_Cost\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 408,\n \"min\": 1,\n \"max\": 2171,\n \"num_unique_values\": 33,\n \"samples\": [\n 755\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Unit_Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 700.560567637831,\n \"min\": 2.06,\n \"max\": 3685.34,\n \"num_unique_values\": 35,\n \"samples\": [\n 2.06\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Profit\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 451,\n \"min\": 1,\n \"max\": 5628,\n \"num_unique_values\": 417,\n \"samples\": [\n 303\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cost\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 673,\n \"min\": 1,\n \"max\": 8684,\n \"num_unique_values\": 341,\n \"samples\": [\n 1482\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Revenue\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1108.4958452174626,\n \"min\": 2.0,\n \"max\": 14312.0,\n \"num_unique_values\": 432,\n \"samples\": [\n 634.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Calculated_Cost\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 673,\n \"min\": 1,\n \"max\": 8684,\n \"num_unique_values\": 341,\n \"samples\": [\n 1482\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Calculated_Revenue\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1108,\n \"min\": 2,\n \"max\": 14312,\n \"num_unique_values\": 432,\n \"samples\": [\n 634\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "sales.loc[sales['Country'] == 'Canada']" ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales['Unit_Price'].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "#sales['Unit_Price'] = sales['Unit_Price'] * 1.03\n", - "\n", - "sales['Unit_Price'] *= 1.03" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 123.6\n", - "1 123.6\n", - "2 123.6\n", - "3 123.6\n", - "4 123.6\n", - "Name: Unit_Price, dtype: float64" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LcWUpWZUqTzK" + }, + "source": [ + "### Get the mean revenue of the `Adults (35-64)` sales group" ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales['Unit_Price'].head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![green-divider](https://user-images.githubusercontent.com/7065401/52071924-c003ad80-2562-11e9-8297-1c6595f8a7ff.png)\n", - "\n", - "## Selection & Indexing:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get all the sales made in the state of `Kentucky`" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DateDayMonthYearCustomer_AgeAge_GroupCustomer_GenderCountryStateProduct_Category...ProductOrder_QuantityUnit_CostUnit_PriceProfitCostRevenueRevenue_per_AgeCalculated_CostCalculated_Revenue
1562013-11-044November201340Adults (35-64)MUnited StatesKentuckyAccessories...Hitch Rack - 4-Bike145123.6063451082.70045108
1572015-11-044November201540Adults (35-64)MUnited StatesKentuckyAccessories...Hitch Rack - 4-Bike145123.6063451082.70045108
238262014-04-1616April201440Adults (35-64)MUnited StatesKentuckyAccessories...Fender Set - Mountain12822.66142962385.95096238
238272016-04-1616April201640Adults (35-64)MUnited StatesKentuckyAccessories...Fender Set - Mountain14822.661651122776.925112277
314462014-04-1616April201440Adults (35-64)MUnited StatesKentuckyAccessories...Sport-100 Helmet, Blue291336.0553737791422.850377914
314472016-04-1616April201640Adults (35-64)MUnited StatesKentuckyAccessories...Sport-100 Helmet, Blue311336.0557440397724.425403977
796702014-04-1616April201440Adults (35-64)MUnited StatesKentuckyAccessories...ML Mountain Tire21130.903222541.3502254
796712014-04-1616April201440Adults (35-64)MUnited StatesKentuckyAccessories...ML Mountain Tire211130.9033623156714.175231567
796722016-04-1616April201640Adults (35-64)MUnited StatesKentuckyAccessories...ML Mountain Tire11130.901611270.6751127
796732016-04-1616April201640Adults (35-64)MUnited StatesKentuckyAccessories...ML Mountain Tire181130.9028819848612.150198486
\n", - "

10 rows × 21 columns

\n", - "
" + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "u7koGSdXqTzK", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "dac6dae2-ba00-4383-cd8d-d3dbbf22289b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "769.3162152479221" + ] + }, + "metadata": {}, + "execution_count": 27 + } ], - "text/plain": [ - " Date Day Month Year Customer_Age Age_Group \\\n", - "156 2013-11-04 4 November 2013 40 Adults (35-64) \n", - "157 2015-11-04 4 November 2015 40 Adults (35-64) \n", - "23826 2014-04-16 16 April 2014 40 Adults (35-64) \n", - "23827 2016-04-16 16 April 2016 40 Adults (35-64) \n", - "31446 2014-04-16 16 April 2014 40 Adults (35-64) \n", - "31447 2016-04-16 16 April 2016 40 Adults (35-64) \n", - "79670 2014-04-16 16 April 2014 40 Adults (35-64) \n", - "79671 2014-04-16 16 April 2014 40 Adults (35-64) \n", - "79672 2016-04-16 16 April 2016 40 Adults (35-64) \n", - "79673 2016-04-16 16 April 2016 40 Adults (35-64) \n", - "\n", - " Customer_Gender Country State Product_Category ... \\\n", - "156 M United States Kentucky Accessories ... \n", - "157 M United States Kentucky Accessories ... \n", - "23826 M United States Kentucky Accessories ... \n", - "23827 M United States Kentucky Accessories ... \n", - "31446 M United States Kentucky Accessories ... \n", - "31447 M United States Kentucky Accessories ... \n", - "79670 M United States Kentucky Accessories ... \n", - "79671 M United States Kentucky Accessories ... \n", - "79672 M United States Kentucky Accessories ... \n", - "79673 M United States Kentucky Accessories ... \n", - "\n", - " Product Order_Quantity Unit_Cost Unit_Price Profit \\\n", - "156 Hitch Rack - 4-Bike 1 45 123.60 63 \n", - "157 Hitch Rack - 4-Bike 1 45 123.60 63 \n", - "23826 Fender Set - Mountain 12 8 22.66 142 \n", - "23827 Fender Set - Mountain 14 8 22.66 165 \n", - "31446 Sport-100 Helmet, Blue 29 13 36.05 537 \n", - "31447 Sport-100 Helmet, Blue 31 13 36.05 574 \n", - "79670 ML Mountain Tire 2 11 30.90 32 \n", - "79671 ML Mountain Tire 21 11 30.90 336 \n", - "79672 ML Mountain Tire 1 11 30.90 16 \n", - "79673 ML Mountain Tire 18 11 30.90 288 \n", - "\n", - " Cost Revenue Revenue_per_Age Calculated_Cost Calculated_Revenue \n", - "156 45 108 2.700 45 108 \n", - "157 45 108 2.700 45 108 \n", - "23826 96 238 5.950 96 238 \n", - "23827 112 277 6.925 112 277 \n", - "31446 377 914 22.850 377 914 \n", - "31447 403 977 24.425 403 977 \n", - "79670 22 54 1.350 22 54 \n", - "79671 231 567 14.175 231 567 \n", - "79672 11 27 0.675 11 27 \n", - "79673 198 486 12.150 198 486 \n", - "\n", - "[10 rows x 21 columns]" + "source": [ + "sales.loc[sales['Age_Group'] == 'Adults (35-64)', 'Revenue'].mean()" ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.loc[sales['State'] == 'Kentucky']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the mean revenue of the `Adults (35-64)` sales group" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "762.8287654055604" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hQmpMYbyqTzK" + }, + "source": [ + "### How many records belong to Age Group `Youth (<25)` or `Adults (35-64)`?" ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.loc[sales['Age_Group'] == 'Adults (35-64)', 'Revenue'].mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How many records belong to Age Group `Youth (<25)` or `Adults (35-64)`?" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "73652" + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "fwvWUygNqTzK", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "07b3cc55-124b-4d4c-d297-6c6421f90d25" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "73652" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ], + "source": [ + "sales.loc[(sales['Age_Group'] == 'Youth (<25)') | (sales['Age_Group'] == 'Adults (35-64)')].shape[0]" ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.loc[(sales['Age_Group'] == 'Youth (<25)') | (sales['Age_Group'] == 'Adults (35-64)')].shape[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the mean revenue of the sales group `Adults (35-64)` in `United States`" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "726.7260473588342" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9B2DpdvPqTzL" + }, + "source": [ + "### Get the mean revenue of the sales group `Adults (35-64)` in `United States`" ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.loc[(sales['Age_Group'] == 'Adults (35-64)') & (sales['Country'] == 'United States'), 'Revenue'].mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Increase the revenue by 10% to every sale made in France" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "50 787\n", - "51 787\n", - "52 2957\n", - "53 2851\n", - "60 626\n", - "Name: Revenue, dtype: int64" + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "id": "_GOWT1ITqTzL", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c798aaee-e2f7-4a73-9bf5-3116b89ccf61" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "726.7260473588342" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ], + "source": [ + "sales.loc[(sales['Age_Group'] == 'Adults (35-64)') & (sales['Country'] == 'United States'), 'Revenue'].mean()" ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sales.loc[sales['Country'] == 'France', 'Revenue'].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "#sales.loc[sales['Country'] == 'France', 'Revenue'] = sales.loc[sales['Country'] == 'France', 'Revenue'] * 1.1\n", - "\n", - "sales.loc[sales['Country'] == 'France', 'Revenue'] *= 1.1" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "50 865.7\n", - "51 865.7\n", - "52 3252.7\n", - "53 3136.1\n", - "60 688.6\n", - "Name: Revenue, dtype: float64" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7fAu1nSaqTzL" + }, + "source": [ + "### Increase the revenue by 10% to every sale made in France" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "76CQf3fWqTzL", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "outputId": "3c1d6bbc-42f2-40e2-9ba3-a4b161648daf" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "50 787\n", + "51 787\n", + "52 2957\n", + "53 2851\n", + "60 626\n", + "Name: Revenue, dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Revenue
50787
51787
522957
532851
60626
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "sales.loc[sales['Country'] == 'France', 'Revenue'].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "ggPevRaFqTzM", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "68bcadaf-e829-4711-eaa9-746ad26d8ee3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":3: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[ 865.7 865.7 3252.7 ... 473. 1386. 1327.7]' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.\n", + " sales.loc[sales['Country'] == 'France', 'Revenue'] *= 1.1\n" + ] + } + ], + "source": [ + "#sales.loc[sales['Country'] == 'France', 'Revenue'] = sales.loc[sales['Country'] == 'France', 'Revenue'] * 1.1\n", + "\n", + "sales.loc[sales['Country'] == 'France', 'Revenue'] *= 1.1" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "7ID9VHmzqTzM", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "outputId": "cd79d44b-d787-4cf3-ad9c-eb9f00ec5c17" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "50 865.7\n", + "51 865.7\n", + "52 3252.7\n", + "53 3136.1\n", + "60 688.6\n", + "Name: Revenue, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Revenue
50865.7
51865.7
523252.7
533136.1
60688.6
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "source": [ + "sales.loc[sales['Country'] == 'France', 'Revenue'].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LbranRo5qTzM" + }, + "source": [ + "![purple-divider](https://user-images.githubusercontent.com/7065401/52071927-c1cd7100-2562-11e9-908a-dde91ba14e59.png)" ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "sales.loc[sales['Country'] == 'France', 'Revenue'].head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![purple-divider](https://user-images.githubusercontent.com/7065401/52071927-c1cd7100-2562-11e9-908a-dde91ba14e59.png)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + }, + "colab": { + "provenance": [], + "include_colab_link": true + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.1" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file