Skip to content

Maybe we need consider intergration MP4 as vector storage #14

@spring-ai-tech

Description

@spring-ai-tech

introduction

Specifically, it employs an ingenious encoding scheme: each block of text is converted into a QR code image, and these images are assembled as frames in a video. By leveraging MP4’s video compression algorithms, this approach achieves a compression ratio up to 10 times higher than traditional text storage methods. Meanwhile, the system generates a companion JSON index file that records the position of each text block within the video.

The most innovative part lies in its semantic search capability: it uses sentence-transformers to generate text embeddings and FAISS for similarity search. From a technical architecture standpoint, Memvid is essentially a hybrid system—video files are used to store the raw data, while a vector index powers efficient retrieval. In effect, this means you can fit an entire library into a single MP4 file and instantly locate any piece of information using natural language.

具体来说,它采用了一种巧妙的编码方案:每个文本块被转换成QR码图像,这些图像成为视频的帧。通过利用MP4的视频压缩算法,可以实现比传统文本存储高10倍的压缩率。同时,系统会生成一个配套的JSON索引文件,记录每个文本块在视频中的位置信息。最关键的是,它使用sentence-transformers生成文本嵌入,通过FAISS进行相似度计算,实现语义搜索功能。从技术架构来看,Memvid实际上是一个混合系统:视频文件负责存储原始数据,而向量索引负责实现快速检索。这意味着,你可以把整个图书馆装进一个MP4文件里,然后用自然语言瞬间找到任何信息。

https://github.com/Olow304/memvid

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions