Skip to content

Commit 629909a

Browse files
authored
Create /autonotebook command for AI generated notebooks (#90)
* Initial autonotebook work. * Working autonotebook. * Adding first autogenerated notebook example. * Removing file. * Adding second autonotebook example. * Cleaning up code, renaming autonotebook to generate. * Minor fixes, adding new example notebook. * Renaming examples subdir.
1 parent e6a78ad commit 629909a

File tree

6 files changed

+1563
-1
lines changed

6 files changed

+1563
-1
lines changed
Lines changed: 360 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,360 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"id": "c46fd5c5",
6+
"metadata": {},
7+
"source": [
8+
"# Creating Random Arrays with Numpy"
9+
]
10+
},
11+
{
12+
"cell_type": "markdown",
13+
"id": "a2a4149f",
14+
"metadata": {},
15+
"source": [
16+
"## Introduction"
17+
]
18+
},
19+
{
20+
"cell_type": "markdown",
21+
"id": "4b488198",
22+
"metadata": {},
23+
"source": [
24+
"This notebook was created by [Jupyter AI](https://github.com/jupyterlab/jupyter-ai) with the following prompt:\n",
25+
"\n",
26+
"> /generate Create a Jupyter notebook that shows how to create a random array using numpy."
27+
]
28+
},
29+
{
30+
"cell_type": "markdown",
31+
"id": "c6460605",
32+
"metadata": {},
33+
"source": [
34+
"This Jupyter notebook demonstrates how to create a random array using numpy. It covers topics such as importing necessary packages, creating a random array, setting the array size and shape, setting the data type of the array, and generating a random array with specified parameters. Each section includes sample code for creating a random array and printing the results. This notebook is useful for anyone looking to generate random arrays in their data analysis or machine learning projects."
35+
]
36+
},
37+
{
38+
"cell_type": "markdown",
39+
"id": "9cfcc84c",
40+
"metadata": {},
41+
"source": [
42+
"## Creating a random array"
43+
]
44+
},
45+
{
46+
"cell_type": "code",
47+
"execution_count": 1,
48+
"id": "4c50ec33",
49+
"metadata": {
50+
"tags": []
51+
},
52+
"outputs": [],
53+
"source": [
54+
"import numpy as np"
55+
]
56+
},
57+
{
58+
"cell_type": "code",
59+
"execution_count": 2,
60+
"id": "02a9481d",
61+
"metadata": {
62+
"tags": []
63+
},
64+
"outputs": [],
65+
"source": [
66+
"np.random.seed(123)\n",
67+
"random_array = np.random.rand(3, 4)"
68+
]
69+
},
70+
{
71+
"cell_type": "code",
72+
"execution_count": 3,
73+
"id": "5ed2a6c8",
74+
"metadata": {
75+
"tags": []
76+
},
77+
"outputs": [
78+
{
79+
"name": "stdout",
80+
"output_type": "stream",
81+
"text": [
82+
"Random array:\n",
83+
" [[0.69646919 0.28613933 0.22685145 0.55131477]\n",
84+
" [0.71946897 0.42310646 0.9807642 0.68482974]\n",
85+
" [0.4809319 0.39211752 0.34317802 0.72904971]]\n"
86+
]
87+
}
88+
],
89+
"source": [
90+
"print(\"Random array:\\n\", random_array)"
91+
]
92+
},
93+
{
94+
"cell_type": "markdown",
95+
"id": "2e9d4225",
96+
"metadata": {},
97+
"source": [
98+
"## Setting the array size and shape"
99+
]
100+
},
101+
{
102+
"cell_type": "code",
103+
"execution_count": 4,
104+
"id": "15bfe3cb",
105+
"metadata": {
106+
"tags": []
107+
},
108+
"outputs": [],
109+
"source": [
110+
"import numpy as np"
111+
]
112+
},
113+
{
114+
"cell_type": "code",
115+
"execution_count": 5,
116+
"id": "2aedfee5",
117+
"metadata": {
118+
"tags": []
119+
},
120+
"outputs": [],
121+
"source": [
122+
"# Set the size and shape of the random array\n",
123+
"array_size = (3, 4) # number of rows and columns"
124+
]
125+
},
126+
{
127+
"cell_type": "code",
128+
"execution_count": 6,
129+
"id": "6dc9a89a",
130+
"metadata": {
131+
"tags": []
132+
},
133+
"outputs": [],
134+
"source": [
135+
"# Create the random array using the specified size and shape\n",
136+
"random_array = np.random.rand(*array_size) # *array_size unpacks the tuple"
137+
]
138+
},
139+
{
140+
"cell_type": "code",
141+
"execution_count": 7,
142+
"id": "7b4b2ae5",
143+
"metadata": {
144+
"tags": []
145+
},
146+
"outputs": [
147+
{
148+
"name": "stdout",
149+
"output_type": "stream",
150+
"text": [
151+
"Random array:\n",
152+
" [[0.43857224 0.0596779 0.39804426 0.73799541]\n",
153+
" [0.18249173 0.17545176 0.53155137 0.53182759]\n",
154+
" [0.63440096 0.84943179 0.72445532 0.61102351]]\n"
155+
]
156+
}
157+
],
158+
"source": [
159+
"# Print the random array\n",
160+
"print(\"Random array:\\n\", random_array)"
161+
]
162+
},
163+
{
164+
"cell_type": "markdown",
165+
"id": "863dd179",
166+
"metadata": {},
167+
"source": [
168+
"## Setting the data type of the array"
169+
]
170+
},
171+
{
172+
"cell_type": "code",
173+
"execution_count": 8,
174+
"id": "fed55a87",
175+
"metadata": {
176+
"tags": []
177+
},
178+
"outputs": [],
179+
"source": [
180+
"import numpy as np"
181+
]
182+
},
183+
{
184+
"cell_type": "code",
185+
"execution_count": 9,
186+
"id": "d2fa2a10",
187+
"metadata": {
188+
"tags": []
189+
},
190+
"outputs": [],
191+
"source": [
192+
"# Set the data type of the random array to be created\n",
193+
"dtype = np.int32"
194+
]
195+
},
196+
{
197+
"cell_type": "code",
198+
"execution_count": 10,
199+
"id": "9c462fdb",
200+
"metadata": {
201+
"tags": []
202+
},
203+
"outputs": [],
204+
"source": [
205+
"# Set the size and shape of the random array\n",
206+
"array_size = (3, 4) # number of rows and columns"
207+
]
208+
},
209+
{
210+
"cell_type": "code",
211+
"execution_count": 11,
212+
"id": "ddcf206e",
213+
"metadata": {
214+
"tags": []
215+
},
216+
"outputs": [],
217+
"source": [
218+
"# Create the random array using the specified size, shape, and data type\n",
219+
"random_array = np.random.randint(low=0, high=10, size=array_size, dtype=dtype)"
220+
]
221+
},
222+
{
223+
"cell_type": "code",
224+
"execution_count": 12,
225+
"id": "fcc3d78c",
226+
"metadata": {
227+
"tags": []
228+
},
229+
"outputs": [
230+
{
231+
"name": "stdout",
232+
"output_type": "stream",
233+
"text": [
234+
"Random array:\n",
235+
" [[4 6 1 5]\n",
236+
" [6 2 1 8]\n",
237+
" [3 5 0 2]]\n"
238+
]
239+
}
240+
],
241+
"source": [
242+
"# Print the random array\n",
243+
"print(\"Random array:\\n\", random_array)"
244+
]
245+
},
246+
{
247+
"cell_type": "markdown",
248+
"id": "f1c81186",
249+
"metadata": {},
250+
"source": [
251+
"## Generating a random array with specified parameters"
252+
]
253+
},
254+
{
255+
"cell_type": "code",
256+
"execution_count": 13,
257+
"id": "b0526789",
258+
"metadata": {
259+
"tags": []
260+
},
261+
"outputs": [],
262+
"source": [
263+
"import numpy as np"
264+
]
265+
},
266+
{
267+
"cell_type": "code",
268+
"execution_count": 14,
269+
"id": "9ebd784c",
270+
"metadata": {
271+
"tags": []
272+
},
273+
"outputs": [],
274+
"source": [
275+
"array_size = (5, 7) \n",
276+
"min_val = -10\n",
277+
"max_val = 10"
278+
]
279+
},
280+
{
281+
"cell_type": "code",
282+
"execution_count": 15,
283+
"id": "56567059",
284+
"metadata": {
285+
"tags": []
286+
},
287+
"outputs": [],
288+
"source": [
289+
"def create_random_array(size, low, high):\n",
290+
" return np.random.randint(low=low, high=high, size=size)"
291+
]
292+
},
293+
{
294+
"cell_type": "code",
295+
"execution_count": 16,
296+
"id": "57c8282d",
297+
"metadata": {
298+
"tags": []
299+
},
300+
"outputs": [],
301+
"source": [
302+
"random_array = create_random_array(array_size, min_val, max_val)"
303+
]
304+
},
305+
{
306+
"cell_type": "code",
307+
"execution_count": 17,
308+
"id": "a2c9d87f",
309+
"metadata": {
310+
"tags": []
311+
},
312+
"outputs": [
313+
{
314+
"name": "stdout",
315+
"output_type": "stream",
316+
"text": [
317+
"Random array:\n",
318+
" [[ 0 3 8 -6 5 1 2]\n",
319+
" [-4 3 9 6 -4 4 -3]\n",
320+
" [ 1 -3 -9 1 -5 8 7]\n",
321+
" [ 2 8 7 -9 9 2 -1]\n",
322+
" [ 6 7 -7 -7 1 -3 -1]]\n"
323+
]
324+
}
325+
],
326+
"source": [
327+
"print(\"Random array:\\n\", random_array)"
328+
]
329+
},
330+
{
331+
"cell_type": "code",
332+
"execution_count": null,
333+
"id": "0abd2b89-c2e1-4083-9d4a-29da5a2096c3",
334+
"metadata": {},
335+
"outputs": [],
336+
"source": []
337+
}
338+
],
339+
"metadata": {
340+
"kernelspec": {
341+
"display_name": "Python 3 (ipykernel)",
342+
"language": "python",
343+
"name": "python3"
344+
},
345+
"language_info": {
346+
"codemirror_mode": {
347+
"name": "ipython",
348+
"version": 3
349+
},
350+
"file_extension": ".py",
351+
"mimetype": "text/x-python",
352+
"name": "python",
353+
"nbconvert_exporter": "python",
354+
"pygments_lexer": "ipython3",
355+
"version": "3.9.16"
356+
}
357+
},
358+
"nbformat": 4,
359+
"nbformat_minor": 5
360+
}

0 commit comments

Comments
 (0)