|
| 1 | +# Copyright 2022 The KerasNLP Authors |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +"""GPT-2 model configurable class, preconfigured versions, and task heads.""" |
| 16 | + |
| 17 | +import tensorflow as tf |
| 18 | +from tensorflow import keras |
| 19 | + |
| 20 | +from keras_nlp.layers import PositionEmbedding |
| 21 | +from keras_nlp.layers import TransformerDecoder |
| 22 | + |
| 23 | + |
| 24 | +def _gpt_2_kernel_initializer(stddev=0.02): |
| 25 | + return keras.initializers.RandomNormal(stddev=stddev) |
| 26 | + |
| 27 | + |
| 28 | +class Gpt2Custom(keras.Model): |
| 29 | + """GPT-2 core network with customizable hyperparameters. |
| 30 | +
|
| 31 | + This network implements a Transformer-based decoder network, |
| 32 | + Generative Pretrained Transformer-2 (GPT-2), as described in |
| 33 | + ["Language Models are Unsupervised Multitask Learners"](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf). |
| 34 | + It includes the embedding lookups and transformer layers. |
| 35 | +
|
| 36 | + This class gives a fully customizable GPT-2 model with any number of layers, |
| 37 | + heads, and embedding dimensions. For specific GPT-2 architectures |
| 38 | + defined in the paper, see, for example, `keras_nlp.models.Gpt2Base`. |
| 39 | +
|
| 40 | + Args: |
| 41 | + vocabulary_size: int. The size of the token vocabulary. |
| 42 | + num_layers: int. The number of transformer layers. |
| 43 | + num_heads: int. The number of attention heads for each transformer. |
| 44 | + The hidden size must be divisible by the number of attention heads. |
| 45 | + hidden_dim: int. The size of the transformer encoding and pooler layers. |
| 46 | + intermediate_dim: int. The output dimension of the first Dense layer in |
| 47 | + a two-layer feedforward network for each transformer. |
| 48 | + dropout: float. Dropout probability for the Transformer encoder. |
| 49 | + max_sequence_length: int. The maximum sequence length that this encoder |
| 50 | + can consume. If None, `max_sequence_length` uses the value from |
| 51 | + sequence length. This determines the variable shape for positional |
| 52 | + embeddings. |
| 53 | + name: string, optional. Name of the model. |
| 54 | + trainable: boolean, optional. If the model's variables should be |
| 55 | + trainable. |
| 56 | +
|
| 57 | + Example usage: |
| 58 | + ```python |
| 59 | + # Randomly initialized GPT-2 decoder |
| 60 | + model = keras_nlp.models.Gpt2Custom( |
| 61 | + vocabulary_size=50257, |
| 62 | + num_layers=12, |
| 63 | + num_heads=12, |
| 64 | + hidden_dim=768, |
| 65 | + intermediate_dim=3072, |
| 66 | + max_sequence_length=1024, |
| 67 | + name="encoder", |
| 68 | + ) |
| 69 | +
|
| 70 | + # Call encoder on the inputs |
| 71 | + input_data = { |
| 72 | + "token_ids": tf.random.uniform( |
| 73 | + shape=(1, 12), dtype=tf.int64, maxval=model.vocabulary_size |
| 74 | + ), |
| 75 | + "padding_mask": tf.constant( |
| 76 | + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], shape=(1, 12) |
| 77 | + ), |
| 78 | + } |
| 79 | + output = model(input_data) |
| 80 | + ``` |
| 81 | + """ |
| 82 | + |
| 83 | + def __init__( |
| 84 | + self, |
| 85 | + vocabulary_size, |
| 86 | + num_layers, |
| 87 | + num_heads, |
| 88 | + hidden_dim, |
| 89 | + intermediate_dim, |
| 90 | + dropout=0.1, |
| 91 | + max_sequence_length=1024, |
| 92 | + name=None, |
| 93 | + trainable=True, |
| 94 | + ): |
| 95 | + |
| 96 | + # Inputs |
| 97 | + token_ids = keras.Input(shape=(None,), dtype="int32", name="token_ids") |
| 98 | + padding_mask = keras.Input( |
| 99 | + shape=(None,), dtype="int32", name="padding_mask" |
| 100 | + ) |
| 101 | + |
| 102 | + # Embed tokens, positions. |
| 103 | + token_embedding = keras.layers.Embedding( |
| 104 | + input_dim=vocabulary_size, |
| 105 | + output_dim=hidden_dim, |
| 106 | + embeddings_initializer=_gpt_2_kernel_initializer(stddev=0.01), |
| 107 | + name="token_embedding", |
| 108 | + )(token_ids) |
| 109 | + |
| 110 | + # Can't use `TokenAndPositionEmbedding` layer here because of different |
| 111 | + # initializers. |
| 112 | + position_embedding = PositionEmbedding( |
| 113 | + initializer=_gpt_2_kernel_initializer(stddev=0.02), |
| 114 | + sequence_length=max_sequence_length, |
| 115 | + name="position_embedding", |
| 116 | + )(token_embedding) |
| 117 | + |
| 118 | + # Sum and apply dropout to embeddings. |
| 119 | + x = keras.layers.Add()((token_embedding, position_embedding)) |
| 120 | + x = keras.layers.Dropout( |
| 121 | + dropout, |
| 122 | + name="embeddings_dropout", |
| 123 | + )(x) |
| 124 | + |
| 125 | + # Apply successive transformer decoder blocks. |
| 126 | + for i in range(num_layers): |
| 127 | + x = TransformerDecoder( |
| 128 | + intermediate_dim=intermediate_dim, |
| 129 | + num_heads=num_heads, |
| 130 | + dropout=dropout, |
| 131 | + activation=lambda x: keras.activations.gelu( |
| 132 | + x, approximate=True |
| 133 | + ), |
| 134 | + layer_norm_epsilon=1e-05, |
| 135 | + kernel_initializer=_gpt_2_kernel_initializer(stddev=0.02), |
| 136 | + normalize_first=True, |
| 137 | + name=f"transformer_layer_{i}", |
| 138 | + )(x, decoder_padding_mask=padding_mask) |
| 139 | + |
| 140 | + sequence_output = keras.layers.LayerNormalization( |
| 141 | + name="layer_norm", |
| 142 | + axis=-1, |
| 143 | + epsilon=1e-05, |
| 144 | + dtype=tf.float32, |
| 145 | + )(x) |
| 146 | + |
| 147 | + # Instantiate using Functional API Model constructor |
| 148 | + super().__init__( |
| 149 | + inputs={ |
| 150 | + "token_ids": token_ids, |
| 151 | + "padding_mask": padding_mask, |
| 152 | + }, |
| 153 | + outputs=sequence_output, |
| 154 | + name=name, |
| 155 | + trainable=trainable, |
| 156 | + ) |
| 157 | + # All references to `self` below this line |
| 158 | + self.vocabulary_size = vocabulary_size |
| 159 | + self.num_layers = num_layers |
| 160 | + self.num_heads = num_heads |
| 161 | + self.hidden_dim = hidden_dim |
| 162 | + self.intermediate_dim = intermediate_dim |
| 163 | + self.dropout = dropout |
| 164 | + self.max_sequence_length = max_sequence_length |
| 165 | + |
| 166 | + def get_config(self): |
| 167 | + config = super().get_config() |
| 168 | + config.update( |
| 169 | + { |
| 170 | + "vocabulary_size": self.vocabulary_size, |
| 171 | + "num_layers": self.num_layers, |
| 172 | + "num_heads": self.num_heads, |
| 173 | + "hidden_dim": self.hidden_dim, |
| 174 | + "intermediate_dim": self.intermediate_dim, |
| 175 | + "dropout": self.dropout, |
| 176 | + "max_sequence_length": self.max_sequence_length, |
| 177 | + } |
| 178 | + ) |
| 179 | + return config |
| 180 | + |
| 181 | + |
| 182 | +MODEL_DOCSTRING = """GPT-2 "{type}" architecture. |
| 183 | +
|
| 184 | + This network implements a Transformer-based decoder as |
| 185 | + described in |
| 186 | + ["Language Models are Unsupervised Multitask Learners"](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf). |
| 187 | + It includes the embedding lookups and transformer layers. |
| 188 | +
|
| 189 | + Args: |
| 190 | + vocabulary_size: int, optional. The size of the token vocabulary. |
| 191 | + name: String, optional. Name of the model. |
| 192 | + trainable: boolean, optional. If the model's variables should be |
| 193 | + trainable. |
| 194 | +
|
| 195 | + Example usage: |
| 196 | + ```python |
| 197 | + # Randomly initialized Gpt2{type} encoder |
| 198 | + model = keras_nlp.models.Gpt2{type}(vocabulary_size=10000) |
| 199 | +
|
| 200 | + # Call encoder on the inputs. |
| 201 | + input_data = {{ |
| 202 | + "token_ids": tf.random.uniform( |
| 203 | + shape=(1, 1024), dtype=tf.int64, maxval=model.vocabulary_size |
| 204 | + ), |
| 205 | + "padding_mask": tf.constant([1] * 1024, shape=(1, 1024)), |
| 206 | + }} |
| 207 | + output = model(input_data) |
| 208 | +""" |
| 209 | + |
| 210 | + |
| 211 | +def Gpt2Base(vocabulary_size, name=None, trainable=True): |
| 212 | + return Gpt2Custom( |
| 213 | + vocabulary_size=vocabulary_size, |
| 214 | + num_layers=12, |
| 215 | + num_heads=12, |
| 216 | + hidden_dim=768, |
| 217 | + intermediate_dim=3072, |
| 218 | + dropout=0.1, |
| 219 | + max_sequence_length=1024, |
| 220 | + name=name, |
| 221 | + trainable=trainable, |
| 222 | + ) |
| 223 | + |
| 224 | + |
| 225 | +def Gpt2Medium(vocabulary_size, name=None, trainable=True): |
| 226 | + return Gpt2Custom( |
| 227 | + vocabulary_size=vocabulary_size, |
| 228 | + num_layers=24, |
| 229 | + num_heads=16, |
| 230 | + hidden_dim=1024, |
| 231 | + intermediate_dim=4096, |
| 232 | + dropout=0.1, |
| 233 | + max_sequence_length=1024, |
| 234 | + name=name, |
| 235 | + trainable=trainable, |
| 236 | + ) |
| 237 | + |
| 238 | + |
| 239 | +def Gpt2Large(vocabulary_size, name=None, trainable=True): |
| 240 | + return Gpt2Custom( |
| 241 | + vocabulary_size=vocabulary_size, |
| 242 | + num_layers=36, |
| 243 | + num_heads=20, |
| 244 | + hidden_dim=1280, |
| 245 | + intermediate_dim=5120, |
| 246 | + dropout=0.1, |
| 247 | + max_sequence_length=1024, |
| 248 | + name=name, |
| 249 | + trainable=trainable, |
| 250 | + ) |
| 251 | + |
| 252 | + |
| 253 | +def Gpt2ExtraLarge(vocabulary_size, name=None, trainable=True): |
| 254 | + return Gpt2Custom( |
| 255 | + vocabulary_size=vocabulary_size, |
| 256 | + num_layers=48, |
| 257 | + num_heads=25, |
| 258 | + hidden_dim=1600, |
| 259 | + intermediate_dim=6400, |
| 260 | + dropout=0.1, |
| 261 | + max_sequence_length=1024, |
| 262 | + name=name, |
| 263 | + trainable=trainable, |
| 264 | + ) |
| 265 | + |
| 266 | + |
| 267 | +setattr( |
| 268 | + Gpt2Base, |
| 269 | + "__doc__", |
| 270 | + MODEL_DOCSTRING.format(type="Base"), |
| 271 | +) |
| 272 | +setattr( |
| 273 | + Gpt2Medium, |
| 274 | + "__doc__", |
| 275 | + MODEL_DOCSTRING.format(type="Medium"), |
| 276 | +) |
| 277 | +setattr( |
| 278 | + Gpt2Large, |
| 279 | + "__doc__", |
| 280 | + MODEL_DOCSTRING.format(type="Large"), |
| 281 | +) |
| 282 | +setattr( |
| 283 | + Gpt2ExtraLarge, |
| 284 | + "__doc__", |
| 285 | + MODEL_DOCSTRING.format(type="ExtraLarge"), |
| 286 | +) |
0 commit comments