@@ -70,12 +70,9 @@ def soft_shrink(x, threshold=0.5):
7070def hard_shrink (x , threshold = 0.5 ):
7171 x = get_ov_output (x )
7272 et = x .get_element_type ()
73-
7473 thr = get_ov_output (threshold , et )
7574 zero = get_ov_output (0.0 , et )
76-
7775 cond = ov_opset .greater (ov_opset .abs (x ), thr )
78-
7976 out = ov_opset .select (cond , x , zero )
8077 return OpenVINOKerasTensor (out .output (0 ))
8178
@@ -116,13 +113,10 @@ def leaky_relu(x, negative_slope=0.2):
116113def sparse_sigmoid (x ):
117114 x = get_ov_output (x )
118115 et = x .get_element_type ()
119-
120116 one = get_ov_output (1.0 , et )
121117 neg_one = get_ov_output (- 1.0 , et )
122118 half = get_ov_output (0.5 , et )
123-
124119 y = ov_opset .minimum (ov_opset .maximum (x , neg_one ), one )
125-
126120 out = ov_opset .multiply (half , ov_opset .add (y , one ))
127121 return OpenVINOKerasTensor (out .output (0 ))
128122
@@ -193,17 +187,13 @@ def log_softmax(x, axis=-1):
193187def squareplus (x , b = 4 ):
194188 x = get_ov_output (x )
195189 et = x .get_element_type ()
196-
197190 b = get_ov_output (b , et )
198191 two = get_ov_output (2.0 , et )
199-
200192 x_squared = ov_opset .multiply (x , x )
201193 inside = ov_opset .add (x_squared , b )
202194 root = ov_opset .sqrt (inside )
203195 summed = ov_opset .add (x , root )
204-
205196 out = ov_opset .divide (summed , two )
206-
207197 return OpenVINOKerasTensor (out .output (0 ))
208198
209199
@@ -234,14 +224,10 @@ def sparse_plus(x):
234224def threshold (x , threshold , default_value ):
235225 x = get_ov_output (x )
236226 et = x .get_element_type ()
237-
238227 thr = get_ov_output (threshold , et )
239228 dv = get_ov_output (default_value , et )
240-
241229 cond = ov_opset .greater (x , thr )
242-
243230 out = ov_opset .select (cond , x , dv )
244-
245231 return OpenVINOKerasTensor (out .output (0 ))
246232
247233
0 commit comments