diff --git a/src/oss/langgraph/local-server.mdx b/src/oss/langgraph/local-server.mdx
index f9836d4570..d2a0432be9 100644
--- a/src/oss/langgraph/local-server.mdx
+++ b/src/oss/langgraph/local-server.mdx
@@ -129,14 +129,18 @@ The `langgraph dev` command starts Agent Server in an in-memory mode. This mode
> - LangGraph Studio Web UI: https://smith.langchain.com/studio/?baseUrl=http://127.0.0.1:2024
```
-For an Agent Server running on a custom host/port, update the baseURL parameter.
+For an Agent Server running on a custom host/port, update the `baseUrl` query parameter in the URL. For example, if your server is running on `http://myhost:3000`:
+
+```
+https://smith.langchain.com/studio/?baseUrl=http://myhost:3000
+```
- Use the `--tunnel` flag with your command to create a secure tunnel, as Safari has limitations when connecting to localhost servers:
+ Use the `--tunnel` flag with your command to create a secure tunnel, as Safari has limitations when connecting to localhost servers:
- ```shell
- langgraph dev --tunnel
- ```
+ ```shell
+ langgraph dev --tunnel
+ ```
## 7. Test the API
@@ -145,60 +149,60 @@ For an Agent Server running on a custom host/port, update the baseURL parameter.
1. Install the LangGraph Python SDK:
- ```shell
- pip install langgraph-sdk
- ```
+ ```shell
+ pip install langgraph-sdk
+ ```
2. Send a message to the assistant (threadless run):
- ```python
- from langgraph_sdk import get_client
- import asyncio
-
- client = get_client(url="http://localhost:2024")
-
- async def main():
- async for chunk in client.runs.stream(
- None, # Threadless run
- "agent", # Name of assistant. Defined in langgraph.json.
- input={
- "messages": [{
- "role": "human",
- "content": "What is LangGraph?",
- }],
- },
- ):
- print(f"Receiving new event of type: {chunk.event}...")
- print(chunk.data)
- print("\n\n")
-
- asyncio.run(main())
- ```
+ ```python
+ from langgraph_sdk import get_client
+ import asyncio
+
+ client = get_client(url="http://localhost:2024")
+
+ async def main():
+ async for chunk in client.runs.stream(
+ None, # Threadless run
+ "agent", # Name of assistant. Defined in langgraph.json.
+ input={
+ "messages": [{
+ "role": "human",
+ "content": "What is LangGraph?",
+ }],
+ },
+ ):
+ print(f"Receiving new event of type: {chunk.event}...")
+ print(chunk.data)
+ print("\n\n")
+
+ asyncio.run(main())
+ ```
1. Install the LangGraph Python SDK:
- ```shell
- pip install langgraph-sdk
- ```
+ ```shell
+ pip install langgraph-sdk
+ ```
2. Send a message to the assistant (threadless run):
- ```python
- from langgraph_sdk import get_sync_client
-
- client = get_sync_client(url="http://localhost:2024")
-
- for chunk in client.runs.stream(
- None, # Threadless run
- "agent", # Name of assistant. Defined in langgraph.json.
- input={
- "messages": [{
- "role": "human",
- "content": "What is LangGraph?",
- }],
- },
- stream_mode="messages-tuple",
- ):
- print(f"Receiving new event of type: {chunk.event}...")
- print(chunk.data)
- print("\n\n")
- ```
+ ```python
+ from langgraph_sdk import get_sync_client
+
+ client = get_sync_client(url="http://localhost:2024")
+
+ for chunk in client.runs.stream(
+ None, # Threadless run
+ "agent", # Name of assistant. Defined in langgraph.json.
+ input={
+ "messages": [{
+ "role": "human",
+ "content": "What is LangGraph?",
+ }],
+ },
+ stream_mode="messages-tuple",
+ ):
+ print(f"Receiving new event of type: {chunk.event}...")
+ print(chunk.data)
+ print("\n\n")
+ ```
```bash
@@ -226,9 +230,9 @@ For an Agent Server running on a custom host/port, update the baseURL parameter.
1. Install the LangGraph JS SDK:
- ```shell
- npm install @langchain/langgraph-sdk
- ```
+ ```shell
+ npm install @langchain/langgraph-sdk
+ ```
2. Send a message to the assistant (threadless run):
```js
const { Client } = await import("@langchain/langgraph-sdk");