Skip to content
This repository was archived by the owner on Jan 5, 2025. It is now read-only.

Commit 06be054

Browse files
committed
C10/S03翻訳 (#53)
1 parent 2b938be commit 06be054

File tree

2 files changed

+34
-6
lines changed

2 files changed

+34
-6
lines changed

GLOSSARY.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -21,6 +21,7 @@
2121
| cauchy sequence | コーシー列 |
2222
| closed sets | 閉集合 |
2323
| closure | 閉包 |
24+
| change-of-variables | 変数変換 |
2425
| chapter ||
2526
| cluster point | 集積点 |
2627
| codomain | 終域 |
@@ -43,6 +44,7 @@
4344
| distributive lattice | 分配束 |
4445
| divisibility relation | 整除関係 |
4546
| domain | 始域 |
47+
| dominated convergence theorem | 優収束定理 |
4648
| entourage | 近縁 |
4749
| eta-reduction | η簡約 |
4850
| Euclidean algorithm | ユークリッドの互助法 |
@@ -80,6 +82,7 @@
8082
| least upper bound | 最小上界 |
8183
| library | Mathlib(Mathlibを指していることが明白である場合) |
8284
| logical connective | 論理結合子 |
85+
| mass | 体積量 |
8386
| measure theory | 測度論 |
8487
| meet | 交わり |
8588
| metric space | 距離空間 |

MIL/C11_Integration_and_Measure_Theory/S03_Integration.lean

Lines changed: 31 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -15,12 +15,19 @@ noncomputable section
1515
variable {α : Type*} [MeasurableSpace α]
1616
variable {μ : Measure α}
1717

18+
/- OMIT:
19+
Integration
20+
-----------
21+
22+
OMIT. -/
1823
/- TEXT:
1924
.. _integration:
2025
21-
Integration
26+
積分
2227
-----------
2328
29+
TEXT. -/
30+
/- OMIT:
2431
Now that we have measurable spaces and measures we can consider integrals.
2532
As explained above, Mathlib uses a very general notion of
2633
integration that allows any Banach space as the target.
@@ -29,6 +36,9 @@ carry around assumptions, so we define integration in such a way
2936
that an integral is equal to zero if the function in question is
3037
not integrable.
3138
Most lemmas having to do with integrals have integrability assumptions.
39+
OMIT. -/
40+
/- TEXT:
41+
可測空間と測度を得たので,積分を考えることができます.上記で説明したように,Mathlibは非常に一般的な積分の概念を使っており,どのようなバナッハ空間でも積分の対象とすることができます.いつものように,仮定をいちいち持ち出す記法は避けたいので,対象の関数が可積分でなければ0に等しくなるように積分を定義します.積分に関連するほとんどの補題は可積分の仮定を持っています.
3242
EXAMPLES: -/
3343
-- QUOTE:
3444
section
@@ -39,24 +49,30 @@ example {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) :
3949
integral_add hf hg
4050
-- QUOTE.
4151

42-
/- TEXT:
52+
/- OMIT:
4353
As an example of the complex interactions between our various conventions, let us see how to integrate constant functions.
4454
Recall that a measure ``μ`` takes values in ``ℝ≥0∞``, the type of extended non-negative reals.
4555
There is a function ``ENNReal.toReal : ℝ≥0∞ → ℝ`` which sends ``⊤``,
4656
the point at infinity, to zero.
4757
For any ``s : Set α``, if ``μ s = ⊤``, then nonzero constant functions are not integrable on ``s``.
4858
In that case, their integrals are equal to zero by definition, as is ``(μ s).toReal``.
4959
So in all cases we have the following lemma.
60+
OMIT. -/
61+
/- TEXT:
62+
これまで見てきた諸々の事実を複雑に組み合わせた例として,定数関数の積分方法を見てみましょう.測度 ``μ`` は非負実数を拡張した型である ``ℝ≥0∞`` の値をとることを思い出してください.関数 ``ENNReal.toReal : ℝ≥0∞ → ℝ`` は無限遠点 ``⊤`` を0に送ります.任意の ``s : Set α`` に対して,もし ``μ s = ⊤`` ならば,非零定数関数は ``s`` 上で積分できません.その場合,積分は定義から ``(μ s).toReal`` となり,0に等しくなります.したがって,すべての場合において次の補題が成り立ちます.
5063
EXAMPLES: -/
5164
-- QUOTE:
5265
example {s : Set α} (c : E) : ∫ x in s, c ∂μ = (μ s).toReal • c :=
5366
setIntegral_const c
5467
-- QUOTE.
5568

56-
/- TEXT:
69+
/- OMIT:
5770
We now quickly explain how to access the most important theorems in integration theory, starting
5871
with the dominated convergence theorem. There are several versions in Mathlib,
5972
and here we only show the most basic one.
73+
OMIT. -/
74+
/- TEXT:
75+
ここでは積分理論の最も重要な定理を導く方法を,優収束定理から手短に説明します.Mathlibにはいくつかバリエーションが存在しますが,ここでは最も基本的なものだけを紹介します.
6076
EXAMPLES: -/
6177
-- QUOTE:
6278
open Filter
@@ -68,8 +84,11 @@ example {F : ℕ → α → E} {f : α → E} (bound : α → ℝ) (hmeas : ∀
6884
tendsto_integral_of_dominated_convergence bound hmeas hint hbound hlim
6985
-- QUOTE.
7086

71-
/- TEXT:
87+
/- OMIT:
7288
Then we have Fubini's theorem for integrals on product type.
89+
OMIT. -/
90+
/- TEXT:
91+
これによって直積型の積分に対するフビニの定理が得られます.
7392
EXAMPLES: -/
7493
-- QUOTE:
7594
example {α : Type*} [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ] {β : Type*}
@@ -80,9 +99,12 @@ example {α : Type*} [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ] {β
8099

81100
end
82101

83-
/- TEXT:
102+
/- OMIT:
84103
There is a very general version of convolution that applies to any
85104
continuous bilinear form.
105+
OMIT. -/
106+
/- TEXT:
107+
畳み込みには任意の連続双線形形式に適用できる非常に一般的なバージョンがあります.
86108
EXAMPLES: -/
87109
section
88110

@@ -102,12 +124,15 @@ example (f : G → E) (g : G → E') (L : E →L[𝕜] E' →L[𝕜] F) (μ : Me
102124

103125
end
104126

105-
/- TEXT:
127+
/- OMIT:
106128
Finally, Mathlib has a very general version of the change-of-variables formula.
107129
In the statement below, ``BorelSpace E`` means the
108130
:math:`\sigma`-algebra on ``E`` is generated by the open sets of ``E``,
109131
and ``IsAddHaarMeasure μ`` means that the measure ``μ`` is left-invariant,
110132
gives finite mass to compact sets, and give positive mass to open sets.
133+
OMIT. -/
134+
/- TEXT:
135+
最後に,Mathlibには非常に一般的な変数変換の公式があります.以下の文において, ``BorelSpace E`` は ``E`` 上の :math:`\sigma`-代数が ``E`` 開集合によって生成されることを意味し, ``IsAddHaarMeasure μ`` は ``μ`` が左不変であり,コンパクト集合に有限の体積量を与え,開集合に正の体積量を与えることを意味します.
111136
EXAMPLES: -/
112137
-- QUOTE:
113138
example {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] [FiniteDimensional ℝ E]

0 commit comments

Comments
 (0)