Skip to content
This repository was archived by the owner on Jan 5, 2025. It is now read-only.

Commit 22dc928

Browse files
committed
C09/S01翻訳 (#45)
* C09/S01翻訳 * 表現微修正
1 parent 2416ee1 commit 22dc928

File tree

2 files changed

+41
-8
lines changed

2 files changed

+41
-8
lines changed

GLOSSARY.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -33,6 +33,8 @@
3333
| curly brackets | 波括弧 |
3434
| dense | 稠密 |
3535
| dependent type theory | 依存型理論 |
36+
| derivative function | 導関数 |
37+
| derivative of ~ | ~での微分係数 |
3638
| direct image | 順像 |
3739
| disjunction | 選言 |
3840
| distributive lattice | 分配束 |

MIL/C10_Differential_Calculus/S01_Elementary_Differential_Calculus.lean

Lines changed: 39 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -8,18 +8,28 @@ open Topology Filter Classical Real
88

99
noncomputable section
1010

11+
/- OMIT:
12+
Elementary Differential Calculus
13+
--------------------------------
14+
15+
OMIT. -/
1116
/- TEXT:
1217
.. index:: elementary calculus
1318
1419
.. _elementary_differential_calculus:
1520
16-
Elementary Differential Calculus
21+
初等的な微分法
1722
--------------------------------
1823
24+
TEXT. -/
25+
/- OMIT:
1926
Let ``f`` be a function from the reals to the reals. There is a difference
2027
between talking about the derivative of ``f`` at a single point and
2128
talking about the derivative function.
2229
In Mathlib, the first notion is represented as follows.
30+
OMIT. -/
31+
/- TEXT:
32+
``f`` を実数から実数への関数としたとき,ある1点における ``f`` の微分係数について話すのと導関数について話すのとでは違いがあります.Mathlibでは,前者の概念は次のように表現されます.
2333
EXAMPLES: -/
2434
-- QUOTE:
2535
open Real
@@ -28,26 +38,32 @@ open Real
2838
example : HasDerivAt sin 1 0 := by simpa using hasDerivAt_sin 0
2939
-- QUOTE.
3040

31-
/- TEXT:
41+
/- OMIT:
3242
We can also express that ``f`` is differentiable at a point without
3343
specifying its derivative there
3444
by writing ``DifferentiableAt ℝ``.
3545
We specify ``ℝ`` explicitly because in a slightly more general context,
3646
when talking about functions from ``ℂ`` to ``ℂ``,
3747
we want to be able to distinguish between being differentiable in the real sense
3848
and being differentiable in the sense of the complex derivative.
49+
OMIT. -/
50+
/- TEXT:
51+
また,特定の点での微分を指定せずに ``f`` が微分可能であることも表現でき, ``DifferentiableAt ℝ`` と書きます.ここで, ``ℝ`` を明示的に指定しているのは,もう少し一般的な文脈において ``ℂ`` から ``ℂ`` までの関数について話す時に,実数的な意味で微分可能であることと,複素微分の意味で微分可能であることを区別できるようにしたいからです.
3952
EXAMPLES: -/
4053
-- QUOTE:
4154
example (x : ℝ) : DifferentiableAt ℝ sin x :=
4255
(hasDerivAt_sin x).differentiableAt
4356
-- QUOTE.
4457

45-
/- TEXT:
58+
/- OMIT:
4659
It would be inconvenient to have to provide a proof of differentiability
4760
every time we want to refer to a derivative.
4861
So Mathlib provides a function ``deriv f : ℝ → ℝ`` that is defined for any
4962
function ``f : ℝ → ℝ``
5063
but is defined to take the value ``0`` at any point where ``f`` is not differentiable.
64+
OMIT. -/
65+
/- TEXT:
66+
微分について言及するたびに微分可能性の証明をしなければならないのは不便です.そこで,Mathlibは関数 ``deriv f : ℝ → ℝ`` を提供しています.これは任意の関数 ``f : ℝ → ℝ`` に対して定義されますが, ``f`` が微分不可能な点では ``0`` をとるように定義されています.
5167
EXAMPLES: -/
5268
-- QUOTE:
5369
example {f : ℝ → ℝ} {x a : ℝ} (h : HasDerivAt f a x) : deriv f x = a :=
@@ -57,33 +73,42 @@ example {f : ℝ → ℝ} {x : ℝ} (h : ¬DifferentiableAt ℝ f x) : deriv f x
5773
deriv_zero_of_not_differentiableAt h
5874
-- QUOTE.
5975

60-
/- TEXT:
76+
/- OMIT:
6177
Of course there are many lemmas about ``deriv`` that do require differentiability assumptions.
6278
For instance, you should think about a counterexample to the next lemma without the
6379
differentiability assumptions.
80+
OMIT. -/
81+
/- TEXT:
82+
もちろん ``deriv`` に関する補題で微分可能性の仮定を必要とするものはたくさんあります.例えば,微分可能性の仮定がない場合の次の補題の反例を考えてみるといいでしょう.
6483
EXAMPLES: -/
6584
-- QUOTE:
6685
example {f g : ℝ → ℝ} {x : ℝ} (hf : DifferentiableAt ℝ f x) (hg : DifferentiableAt ℝ g x) :
6786
deriv (f + g) x = deriv f x + deriv g x :=
6887
deriv_add hf hg
6988
-- QUOTE.
7089

71-
/- TEXT:
90+
/- OMIT:
7291
Interestingly, however, there are statements that can avoid differentiability
7392
assumptions by taking advantage
7493
of the fact that the value of ``deriv`` defaults to zero when the function is
7594
not differentiable.
7695
So making sense of the following statement requires knowing the precise
7796
definition of ``deriv``.
97+
OMIT. -/
98+
/- TEXT:
99+
しかし興味深いことに,関数が微分可能でない場合, ``deriv`` の値がデフォルトで0になるという事実を利用することで,微分可能性の仮定を回避できる文が存在します.そのため,以下の文の意味を理解するには ``deriv`` の正確な定義を知る必要があります.
78100
EXAMPLES: -/
79101
-- QUOTE:
80102
example {f : ℝ → ℝ} {a : ℝ} (h : IsLocalMin f a) : deriv f a = 0 :=
81103
h.deriv_eq_zero
82104
-- QUOTE.
83105

84-
/- TEXT:
106+
/- OMIT:
85107
We can even state Rolle's theorem without any differentiability assumptions, which
86108
seems even weirder.
109+
OMIT. -/
110+
/- TEXT:
111+
より奇妙に見えるでしょうが,微分可能性の仮定なしにロルの定理を示すことさえできます.
87112
EXAMPLES: -/
88113
-- QUOTE:
89114
open Set
@@ -93,17 +118,23 @@ example {f : ℝ → ℝ} {a b : ℝ} (hab : a < b) (hfc : ContinuousOn f (Icc a
93118
exists_deriv_eq_zero hab hfc hfI
94119
-- QUOTE.
95120

96-
/- TEXT:
121+
/- OMIT:
97122
Of course, this trick does not work for the general mean value theorem.
123+
OMIT. -/
124+
/- TEXT:
125+
もちろん,この技法は一般的な平均値の定理には通用しません.
98126
EXAMPLES: -/
99127
-- QUOTE:
100128
example (f : ℝ → ℝ) {a b : ℝ} (hab : a < b) (hf : ContinuousOn f (Icc a b))
101129
(hf' : DifferentiableOn ℝ f (Ioo a b)) : ∃ c ∈ Ioo a b, deriv f c = (f b - f a) / (b - a) :=
102130
exists_deriv_eq_slope f hab hf hf'
103131
-- QUOTE.
104132

105-
/- TEXT:
133+
/- OMIT:
106134
Lean can automatically compute some simple derivatives using the ``simp`` tactic.
135+
OMIT. -/
136+
/- TEXT:
137+
Leanは ``simp`` タクティクを使って簡単な微分係数を自動的に計算することができます.
107138
EXAMPLES: -/
108139
-- QUOTE:
109140
example : deriv (fun x : ℝ ↦ x ^ 5) 6 = 5 * 6 ^ 4 := by simp

0 commit comments

Comments
 (0)