|
| 1 | +import torch |
| 2 | +from torch import nn |
| 3 | +import torch.nn.functional as F |
| 4 | + |
| 5 | +def ema_inplace(moving_avg, new, decay): |
| 6 | + moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay)) |
| 7 | + |
| 8 | +def laplace_smoothing(x, n_categories, eps=1e-5): |
| 9 | + return (x + eps) / (x.sum() + n_categories * eps) |
| 10 | + |
| 11 | +class VectorQuantize(nn.Module): |
| 12 | + def __init__(self, dim, n_embed, decay=0.8, commitment=1., eps=1e-5): |
| 13 | + super().__init__() |
| 14 | + |
| 15 | + self.dim = dim |
| 16 | + self.n_embed = n_embed |
| 17 | + self.decay = decay |
| 18 | + self.eps = eps |
| 19 | + self.commitment = commitment |
| 20 | + |
| 21 | + embed = torch.randn(dim, n_embed) |
| 22 | + self.register_buffer('embed', embed) |
| 23 | + self.register_buffer('cluster_size', torch.zeros(n_embed)) |
| 24 | + self.register_buffer('embed_avg', embed.clone()) |
| 25 | + |
| 26 | + def forward(self, input): |
| 27 | + dtype = input.dtype |
| 28 | + flatten = input.reshape(-1, self.dim) |
| 29 | + dist = ( |
| 30 | + flatten.pow(2).sum(1, keepdim=True) |
| 31 | + - 2 * flatten @ self.embed |
| 32 | + + self.embed.pow(2).sum(0, keepdim=True) |
| 33 | + ) |
| 34 | + _, embed_ind = (-dist).max(1) |
| 35 | + embed_onehot = F.one_hot(embed_ind, self.n_embed).type(dtype) |
| 36 | + embed_ind = embed_ind.view(*input.shape[:-1]) |
| 37 | + quantize = F.embedding(embed_ind, self.embed.transpose(0, 1)) |
| 38 | + |
| 39 | + if self.training: |
| 40 | + ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) |
| 41 | + embed_sum = flatten.transpose(0, 1) @ embed_onehot |
| 42 | + ema_inplace(self.embed_avg, embed_sum, self.decay) |
| 43 | + cluster_size = laplace_smoothing(self.cluster_size, self.n_embed, self.eps) * self.cluster_size.sum() |
| 44 | + embed_normalized = self.embed_avg / cluster_size.unsqueeze(0) |
| 45 | + self.embed.data.copy_(embed_normalized) |
| 46 | + |
| 47 | + loss = F.mse_loss(quantize.detach(), input) * self.commitment |
| 48 | + quantize = input + (quantize - input).detach() |
| 49 | + return quantize, loss |
0 commit comments