Skip to content

Commit d4f0665

Browse files
committed
Dead code replacement is actually based on the exponential moving average
1 parent cbb5339 commit d4f0665

File tree

1 file changed

+31
-29
lines changed

1 file changed

+31
-29
lines changed

vector_quantize_pytorch/vector_quantize_pytorch.py

Lines changed: 31 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,8 @@ def __init__(
6767
kmeans_init = False,
6868
kmeans_iters = 10,
6969
decay = 0.8,
70-
eps = 1e-5
70+
eps = 1e-5,
71+
threshold_ema_dead_code = 2
7172
):
7273
super().__init__()
7374
self.decay = decay
@@ -77,6 +78,7 @@ def __init__(
7778
self.codebook_size = codebook_size
7879
self.kmeans_iters = kmeans_iters
7980
self.eps = eps
81+
self.threshold_ema_dead_code = threshold_ema_dead_code
8082

8183
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
8284
self.register_buffer('cluster_size', torch.zeros(codebook_size))
@@ -97,6 +99,15 @@ def replace(self, samples, mask):
9799
)
98100
self.embed.data.copy_(modified_codebook)
99101

102+
def expire_codes_(self, batch_samples):
103+
if self.threshold_ema_dead_code == 0:
104+
return
105+
106+
expired_codes = self.cluster_size < self.threshold_ema_dead_code
107+
if torch.any(expired_codes):
108+
batch_samples = rearrange(batch_samples, '... d -> (...) d')
109+
self.replace(batch_samples, mask = expired_codes)
110+
100111
def forward(self, x):
101112
shape, dtype = x.shape, x.dtype
102113
flatten = rearrange(x, '... d -> (...) d')
@@ -112,7 +123,7 @@ def forward(self, x):
112123
)
113124

114125
embed_ind = dist.max(dim = -1).indices
115-
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(x.dtype)
126+
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
116127
embed_ind = embed_ind.view(*shape[:-1])
117128
quantize = F.embedding(embed_ind, self.embed)
118129

@@ -123,6 +134,7 @@ def forward(self, x):
123134
cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum()
124135
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
125136
self.embed.data.copy_(embed_normalized)
137+
self.expire_codes_(x)
126138

127139
return quantize, embed_ind
128140

@@ -134,7 +146,8 @@ def __init__(
134146
kmeans_init = False,
135147
kmeans_iters = 10,
136148
decay = 0.8,
137-
eps = 1e-5
149+
eps = 1e-5,
150+
threshold_ema_dead_code = 2
138151
):
139152
super().__init__()
140153
self.decay = decay
@@ -147,6 +160,7 @@ def __init__(
147160
self.codebook_size = codebook_size
148161
self.kmeans_iters = kmeans_iters
149162
self.eps = eps
163+
self.threshold_ema_dead_code = threshold_ema_dead_code
150164

151165
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
152166
self.register_buffer('embed', embed)
@@ -166,6 +180,15 @@ def replace(self, samples, mask):
166180
)
167181
self.embed.data.copy_(modified_codebook)
168182

183+
def expire_codes_(self, batch_samples):
184+
if self.threshold_ema_dead_code == 0:
185+
return
186+
187+
expired_codes = self.cluster_size < self.threshold_ema_dead_code
188+
if torch.any(expired_codes):
189+
batch_samples = rearrange(batch_samples, '... d -> (...) d')
190+
self.replace(batch_samples, mask = expired_codes)
191+
169192
def forward(self, x):
170193
shape, dtype = x.shape, x.dtype
171194
flatten = rearrange(x, '... d -> (...) d')
@@ -193,6 +216,7 @@ def forward(self, x):
193216
embed_normalized = torch.where(zero_mask[..., None], embed,
194217
embed_normalized)
195218
ema_inplace(self.embed, embed_normalized, self.decay)
219+
self.expire_codes_(x)
196220

197221
return quantize, embed_ind
198222

@@ -211,7 +235,7 @@ def __init__(
211235
kmeans_init = False,
212236
kmeans_iters = 10,
213237
use_cosine_sim = False,
214-
max_codebook_misses_before_expiry = 0
238+
threshold_ema_dead_code = 0
215239
):
216240
super().__init__()
217241
n_embed = default(n_embed, codebook_size)
@@ -229,44 +253,23 @@ def __init__(
229253
codebook_class = EuclideanCodebook if not use_cosine_sim \
230254
else CosineSimCodebook
231255

232-
self._codebook = klass(
256+
self._codebook = codebook_class(
233257
dim = codebook_dim,
234258
codebook_size = n_embed,
235259
kmeans_init = kmeans_init,
236260
kmeans_iters = kmeans_iters,
237261
decay = decay,
238-
eps = eps
262+
eps = eps,
263+
threshold_ema_dead_code = threshold_ema_dead_code
239264
)
240265

241266
self.codebook_size = codebook_size
242-
self.max_codebook_misses_before_expiry = max_codebook_misses_before_expiry
243-
244-
if max_codebook_misses_before_expiry > 0:
245-
codebook_misses = torch.zeros(codebook_size)
246-
self.register_buffer('codebook_misses', codebook_misses)
247267

248268
@property
249269
def codebook(self):
250270
return self._codebook.codebook
251271

252-
def expire_codes_(self, embed_ind, batch_samples):
253-
if self.max_codebook_misses_before_expiry == 0:
254-
return
255-
256-
embed_ind = rearrange(embed_ind, '... -> (...)')
257-
misses = torch.bincount(embed_ind, minlength = self.codebook_size) == 0
258-
self.codebook_misses += misses
259-
260-
expired_codes = self.codebook_misses >= self.max_codebook_misses_before_expiry
261-
if not torch.any(expired_codes):
262-
return
263-
264-
self.codebook_misses.masked_fill_(expired_codes, 0)
265-
batch_samples = rearrange(batch_samples, '... d -> (...) d')
266-
self._codebook.replace(batch_samples, mask = expired_codes)
267-
268272
def forward(self, x):
269-
dtype = x.dtype
270273
x = self.project_in(x)
271274

272275
quantize, embed_ind = self._codebook(x)
@@ -276,7 +279,6 @@ def forward(self, x):
276279
if self.training:
277280
commit_loss = F.mse_loss(quantize.detach(), x) * self.commitment
278281
quantize = x + (quantize - x).detach()
279-
self.expire_codes_(embed_ind, x)
280282

281283
quantize = self.project_out(quantize)
282284
return quantize, embed_ind, commit_loss

0 commit comments

Comments
 (0)