|
1 |
| - |
2 |
| -# Documents Similarity using NLTK and Gensim library |
3 | 1 | import gensim
|
4 |
| -import nltk |
5 | 2 | from nltk.tokenize import word_tokenize
|
6 | 3 |
|
7 |
| -raw_documents = ["I'm taking the show on the road.", |
8 |
| - "My socks are a force multiplier.", |
9 |
| - "I am the barber who cuts everyone's hair who doesn't cut their own.", |
10 |
| - "Legend has it that the mind is a mad monkey.", |
| 4 | +class GensimSimilarity: |
| 5 | + def __init__(self): |
| 6 | + self.raw_documents = ["I'm taking the show on the road.", |
| 7 | + "My socks are a force multiplier.", |
| 8 | + "I am the barber who cuts everyone's hair who doesn't cut their own.", |
| 9 | + "Legend has it that the mind is a mad monkey.", |
11 | 10 | "I make my own fun."]
|
12 |
| -print("Number of documents:",len(raw_documents)) |
13 |
| - |
14 |
| -gen_docs = [[w.lower() for w in word_tokenize(text)] |
15 |
| - for text in raw_documents] |
16 |
| -print(gen_docs) |
17 |
| - |
18 |
| -dictionary = gensim.corpora.Dictionary(gen_docs) |
19 |
| -print(dictionary[5]) |
20 |
| -print(dictionary.token2id['road']) |
21 |
| -print("Number of words in dictionary:",len(dictionary)) |
22 |
| -for i in range(len(dictionary)): |
23 |
| - print(i, dictionary[i]) |
24 |
| - |
25 |
| -corpus = [dictionary.doc2bow(gen_doc) for gen_doc in gen_docs] |
26 |
| -print(corpus) |
27 |
| - |
28 |
| -tf_idf = gensim.models.TfidfModel(corpus) |
29 |
| -print(tf_idf) |
30 |
| -s = 0 |
31 |
| -for i in corpus: |
32 |
| - s += len(i) |
33 |
| -print(s) |
34 |
| - |
35 |
| -sims = gensim.similarities.Similarity('workdir/',tf_idf[corpus], |
36 |
| - num_features=len(dictionary)) |
37 |
| -print(sims) |
38 |
| -print(type(sims)) |
39 |
| - |
40 |
| -query_doc = [w.lower() for w in word_tokenize("Socks are a force for good.")] |
41 |
| -print(query_doc) |
42 |
| -query_doc_bow = dictionary.doc2bow(query_doc) |
43 |
| -print(query_doc_bow) |
44 |
| -query_doc_tf_idf = tf_idf[query_doc_bow] |
45 |
| -print(query_doc_tf_idf) |
46 |
| -print(sims[query_doc_tf_idf]) |
| 11 | + |
| 12 | + def getSimilarity(gen): |
| 13 | + gen_docs = [[w.lower() for w in word_tokenize(text)] |
| 14 | + for text in gen.raw_documents] |
| 15 | + print(gen_docs) |
| 16 | + dictionary = gensim.corpora.Dictionary(gen_docs) |
| 17 | + print("Number of words in dictionary:",len(dictionary)) |
| 18 | + |
| 19 | + for i in range(len(dictionary)): |
| 20 | + print(i, dictionary[i]) |
| 21 | + |
| 22 | + corpus = [dictionary.doc2bow(gen_doc) for gen_doc in gen_docs] |
| 23 | + print(corpus) |
| 24 | + |
| 25 | + tf_idf = gensim.models.TfidfModel(corpus) |
| 26 | + print(tf_idf) |
| 27 | + s = 0 |
| 28 | + for i in corpus: |
| 29 | + s += len(i) |
| 30 | + print(s) |
| 31 | + |
| 32 | + sims = gensim.similarities.Similarity('workdir/',tf_idf[corpus],num_features=len(dictionary)) |
| 33 | + |
| 34 | + query_doc = [w.lower() for w in word_tokenize("Socks are a force for good.")] |
| 35 | + print(query_doc) |
| 36 | + query_doc_bow = dictionary.doc2bow(query_doc) |
| 37 | + print(query_doc_bow) |
| 38 | + query_doc_tf_idf = tf_idf[query_doc_bow] |
| 39 | + print(f'Result: {sims[query_doc_tf_idf]}') |
| 40 | + |
| 41 | +similarity = GensimSimilarity() |
| 42 | +similarity.getSimilarity() |
0 commit comments