|
17 | 17 | "\n", |
18 | 18 | "from neuralnetlib.preprocessing import one_hot_encode\n", |
19 | 19 | "from neuralnetlib.models import Sequential, GAN\n", |
20 | | - "from neuralnetlib.layers import Input, Dense, Conv2D, Reshape, Flatten, UpSampling2D" |
| 20 | + "from neuralnetlib.layers import Input, Dense, Conv2D, Reshape, Flatten, Conv2DTranspose" |
21 | 21 | ] |
22 | 22 | }, |
23 | 23 | { |
|
67 | 67 | "generator.add(Input(noise_dim))\n", |
68 | 68 | "generator.add(Dense(7 * 7 * 128))\n", |
69 | 69 | "generator.add(Reshape((7, 7, 128)))\n", |
70 | | - "generator.add(UpSampling2D(size=(2, 2))) # 14x14\n", |
71 | | - "generator.add(Conv2D(64, kernel_size=3, padding='same', activation='relu'))\n", |
72 | | - "generator.add(UpSampling2D(size=(2, 2))) # 28x28\n", |
73 | | - "generator.add(Conv2D(32, kernel_size=3, padding='same', activation='relu'))\n", |
| 70 | + "generator.add(Conv2DTranspose(64, kernel_size=3, strides=2, padding='same', activation='relu'))\n", |
| 71 | + "generator.add(Conv2DTranspose(32, kernel_size=3, strides=2, padding='same', activation='relu'))\n", |
74 | 72 | "generator.add(Conv2D(1, kernel_size=3, padding='same', activation='sigmoid'))" |
75 | 73 | ] |
76 | 74 | }, |
|
0 commit comments