We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent d24b5f0 commit c7be214Copy full SHA for c7be214
neuralnetlib/models.py
@@ -2558,7 +2558,7 @@ def fit(
2558
fixed_noise: np.ndarray | None = None,
2559
n_gen_samples: int | None = None
2560
) -> dict:
2561
-
+
2562
history = History({
2563
'discriminator_loss': [],
2564
'generator_loss': [],
@@ -2646,10 +2646,10 @@ def fit(
2646
d_error += d_loss
2647
g_error += g_loss
2648
2649
+ batch_metrics = {}
2650
if metrics is not None:
2651
noise = self._generate_latent_points(len(x_batch))
2652
generated_samples = self.forward_pass(noise, training=False)
- batch_metrics = {}
2653
for metric in metrics:
2654
metric_value = metric(generated_samples, x_batch)
2655
metric_values[f'generator_{metric.name}'] += metric_value
0 commit comments