Skip to content

Releases: marcpinet/neuralnetlib

neuralnetlib 3.3.7

22 Nov 16:47
4799e40

Choose a tag to compare

  • docs: remove useless comments
  • fix(Transformer): too much things to tell
  • feat: even more precise floating point for metrics and loss
  • refactor: special tokens now passed via init for Transformer
  • feat: enhance beam search and token prediction mechanisms
  • docs: update readme
  • fix(Transformer): vanishing gradient fix
  • fix(Transformer): still on it (wip)
  • fix(Transformer): another fix
  • fix(Transformer): special token indices
  • fix(Transformer): normalization IS the issue
  • docs: update readme
  • fix(Transformer): cross attention weights
  • fix: LearningRateScheduler
  • fix: LearningRateScheduler
  • fix: normalization in data preparation
  • fix: different vocab size for different tokenizations
  • fix(PositionalEncoding): scaling
  • fix(AddNorm): better normalization
  • fix(TransformerEncoderLayer): huge improvements
  • perf(SequenceCrossEntropy): add vectorization
  • fix(Tokenizer+Transformer): tokenization alignement for special tokens
  • fix(transformer): investigate and address gradient instability and explosion
  • fix(sce): label smoothing
  • refactor: gradient clipping
  • fix(Transformer): gradient explosion
  • fix(Transformer): tokens padding and max sequence
  • test: tried with a better dataset
  • fix(sce): y_pred treated as logits instead of probs
  • fix(TransformerEncoderLayer): remove arbitrary scaling
  • fix(Transformer): sce won't ignore sos and eos tokens
  • fix: sce extending lossfunction
  • fix(sce): softmax not necessary
  • feat: add BLEU, ROUGE-L and ROUGE-N scores
  • fix: validation data in fit method and shuffle in train_test_split
  • docs: modifies example to use validation split and bleu score
  • fix(PositionalEncoding): better positional scaling
  • ci: bump version to 3.3.7

neuralnetlib 3.3.6

18 Nov 20:39
a140262

Choose a tag to compare

  • feat: add Transformer model and layer architecture (wip)
  • fix(Transformer): gradient propagation between layers
  • fix(Transformer): tokenization, sequence handling and shapes
  • fix(callbacks): now compatible with every model architecture
  • fix_later: find why the Transformer output won't work
  • ci: bump version to 3.3.6

neuralnetlib 3.3.5

17 Nov 21:19
75c31f7

Choose a tag to compare

  • feat(autoencoder): add VAE image generation
  • refactor: imports organization
  • refactor: examples folder tree organization
  • docs: fix typo
  • feat(preprocessing): add ImageDataGenerator
  • ci: bump version to 3.3.5

neuralnetlib 3.3.4

17 Nov 12:14
0cad840

Choose a tag to compare

  • docs: update readme
  • docs: remove useless comments
  • fix(convolution): stride parameter
  • feat(layer): add UpSampling2D"
  • docs: update readme
  • perf: changed NCHW to NHWC for CPU efficiency
  • docs: update readme
  • perf: switch from NCL to NLC for CPU efficiency
  • ci: bump version to 3.3.4

neuralnetlib 3.3.3

15 Nov 13:01
663df7f

Choose a tag to compare

  • fix(example): weight init
  • docs(examples): fresh run
  • docs: update readme
  • fix(layers): encoder and decoder layers
  • fix(conv2d): align output shape calculation between im2col and convolve
  • ci: bump version to 3.3.3

neuralnetlib 3.3.2

14 Nov 18:50
950eb36

Choose a tag to compare

  • fix(model): save method
  • docs: update readme
  • docs: update readme
  • feat(autoencoder): add variational autoencoder (VAE)
  • ci: bump version to 3.3.2

neuralnetlib 3.3.1

14 Nov 17:55
fd6c02e

Choose a tag to compare

  • docs: update todo
  • feat(preprocessing): add cosine similarity
  • docs: update todo
  • feat(callbacks): add LearningRateScheduler
  • ci: bump version to 3.3.1

neuralnetlib 3.3.0

14 Nov 17:49
1e98cab

Choose a tag to compare

  • docs: update readme
  • docs: update readme
  • docs: update readme
  • docs: remove useless comments
  • docs: update readme
  • docs: update readme
  • refactor: code cleanup and formatting
  • fix(config): layers and model config
  • fix(metrics): pr auc and roc auc
  • refactor(PCA): add explained variance ratio
  • feat(Model): add autoencoder model
  • feat(preprocessing): add t-SNE
  • feat(layers): update compatibility dict
  • ci: bump version to 3.3.0

neuralnetlib 3.2.2

12 Nov 19:47
7fef429

Choose a tag to compare

  • docs: update readme
  • refactor: change model -> models for future implementations
  • ci: bump version to 3.2.1
  • ci: bump version to 3.2.2

neuralnetlib 3.2.1

12 Nov 19:44
e74a043

Choose a tag to compare

  • docs: update readme
  • refactor: change model -> models for future implementations
  • ci: bump version to 3.2.1