|
| 1 | +"""Module for the Normalizer callback.""" |
| 2 | + |
| 3 | +import torch |
| 4 | +from lightning.pytorch import Callback |
| 5 | +from ..label_tensor import LabelTensor |
| 6 | +from ..utils import check_consistency, is_function |
| 7 | +from ..condition import InputTargetCondition |
| 8 | +from ..data.dataset import PinaGraphDataset |
| 9 | + |
| 10 | + |
| 11 | +class NormalizerDataCallback(Callback): |
| 12 | + r""" |
| 13 | + A Callback used to normalize the dataset inputs or targets according to |
| 14 | + user-provided scale and shift functions. |
| 15 | +
|
| 16 | + The transformation is applied as: |
| 17 | +
|
| 18 | + .. math:: |
| 19 | +
|
| 20 | + x_{\text{new}} = \frac{x - \text{shift}}{\text{scale}} |
| 21 | +
|
| 22 | + :Example: |
| 23 | +
|
| 24 | + >>> NormalizerDataCallback() |
| 25 | + >>> NormalizerDataCallback( |
| 26 | + ... scale_fn: torch.std, |
| 27 | + ... shift_fn: torch.mean, |
| 28 | + ... stage: "all", |
| 29 | + ... apply_to: "input", |
| 30 | + ... ) |
| 31 | + """ |
| 32 | + |
| 33 | + def __init__( |
| 34 | + self, |
| 35 | + scale_fn=torch.std, |
| 36 | + shift_fn=torch.mean, |
| 37 | + stage="all", |
| 38 | + apply_to="input", |
| 39 | + ): |
| 40 | + """ |
| 41 | + Initialization of the :class:`NormalizerDataCallback` class. |
| 42 | +
|
| 43 | + :param Callable scale_fn: The function to compute the scaling factor. |
| 44 | + Default is ``torch.std``. |
| 45 | + :param Callable shift_fn: The function to compute the shifting factor. |
| 46 | + Default is ``torch.mean``. |
| 47 | + :param str stage: The stage in which normalization is applied. |
| 48 | + Accepted values are "train", "validate", "test", or "all". |
| 49 | + Default is ``"all"``. |
| 50 | + :param str apply_to: Whether to normalize "input" or "target" data. |
| 51 | + Default is ``"input"``. |
| 52 | + :raises ValueError: If ``scale_fn`` is not callable. |
| 53 | + :raises ValueError: If ``shift_fn`` is not callable. |
| 54 | + """ |
| 55 | + super().__init__() |
| 56 | + |
| 57 | + # Validate parameters |
| 58 | + self.apply_to = self._validate_apply_to(apply_to) |
| 59 | + self.stage = self._validate_stage(stage) |
| 60 | + |
| 61 | + # Validate functions |
| 62 | + if not is_function(scale_fn): |
| 63 | + raise ValueError(f"scale_fn must be Callable, got {scale_fn}") |
| 64 | + if not is_function(shift_fn): |
| 65 | + raise ValueError(f"shift_fn must be Callable, got {shift_fn}") |
| 66 | + self.scale_fn = scale_fn |
| 67 | + self.shift_fn = shift_fn |
| 68 | + |
| 69 | + # Initialize normalizer dictionary |
| 70 | + self._normalizer = {} |
| 71 | + |
| 72 | + def _validate_apply_to(self, apply_to): |
| 73 | + """ |
| 74 | + Validate the ``apply_to`` parameter. |
| 75 | +
|
| 76 | + :param str apply_to: The candidate value for the ``apply_to`` parameter. |
| 77 | + :raises ValueError: If ``apply_to`` is neither "input" nor "target". |
| 78 | + :return: The validated ``apply_to`` value. |
| 79 | + :rtype: str |
| 80 | + """ |
| 81 | + check_consistency(apply_to, str) |
| 82 | + if apply_to not in {"input", "target"}: |
| 83 | + raise ValueError( |
| 84 | + f"apply_to must be either 'input' or 'target', got {apply_to}" |
| 85 | + ) |
| 86 | + |
| 87 | + return apply_to |
| 88 | + |
| 89 | + def _validate_stage(self, stage): |
| 90 | + """ |
| 91 | + Validate the ``stage`` parameter. |
| 92 | +
|
| 93 | + :param str stage: The candidate value for the ``stage`` parameter. |
| 94 | + :raises ValueError: If ``stage`` is not one of "train", "validate", |
| 95 | + "test", or "all". |
| 96 | + :return: The validated ``stage`` value. |
| 97 | + :rtype: str |
| 98 | + """ |
| 99 | + check_consistency(stage, str) |
| 100 | + if stage not in {"train", "validate", "test", "all"}: |
| 101 | + raise ValueError( |
| 102 | + "stage must be one of 'train', 'validate', 'test', or 'all'," |
| 103 | + f" got {stage}" |
| 104 | + ) |
| 105 | + |
| 106 | + return stage |
| 107 | + |
| 108 | + def setup(self, trainer, pl_module, stage): |
| 109 | + """ |
| 110 | + Apply normalization during setup. |
| 111 | +
|
| 112 | + :param Trainer trainer: A :class:`~pina.trainer.Trainer` instance. |
| 113 | + :param SolverInterface pl_module: A |
| 114 | + :class:`~pina.solver.solver.SolverInterface` instance. |
| 115 | + :param str stage: The current stage. |
| 116 | + :raises RuntimeError: If the training dataset is not available when |
| 117 | + computing normalization parameters. |
| 118 | + :return: The result of the parent setup. |
| 119 | + :rtype: Any |
| 120 | +
|
| 121 | + :raises NotImplementedError: If the dataset is graph-based. |
| 122 | + """ |
| 123 | + |
| 124 | + # Ensure datsets are not graph-based |
| 125 | + if isinstance(trainer.datamodule.train_dataset, PinaGraphDataset): |
| 126 | + raise NotImplementedError( |
| 127 | + "NormalizerDataCallback is not compatible with " |
| 128 | + "graph-based datasets." |
| 129 | + ) |
| 130 | + |
| 131 | + # Extract conditions |
| 132 | + conditions_to_normalize = [ |
| 133 | + name |
| 134 | + for name, cond in pl_module.problem.conditions.items() |
| 135 | + if isinstance(cond, InputTargetCondition) |
| 136 | + ] |
| 137 | + |
| 138 | + # Compute scale and shift parameters |
| 139 | + if not self.normalizer: |
| 140 | + if not trainer.datamodule.train_dataset: |
| 141 | + raise RuntimeError( |
| 142 | + "Training dataset is not available. Cannot compute " |
| 143 | + "normalization parameters." |
| 144 | + ) |
| 145 | + self._compute_scale_shift( |
| 146 | + conditions_to_normalize, trainer.datamodule.train_dataset |
| 147 | + ) |
| 148 | + |
| 149 | + # Apply normalization based on the specified stage |
| 150 | + if stage == "fit" and self.stage in ["train", "all"]: |
| 151 | + self.normalize_dataset(trainer.datamodule.train_dataset) |
| 152 | + if stage == "fit" and self.stage in ["validate", "all"]: |
| 153 | + self.normalize_dataset(trainer.datamodule.val_dataset) |
| 154 | + if stage == "test" and self.stage in ["test", "all"]: |
| 155 | + self.normalize_dataset(trainer.datamodule.test_dataset) |
| 156 | + |
| 157 | + return super().setup(trainer, pl_module, stage) |
| 158 | + |
| 159 | + def _compute_scale_shift(self, conditions, dataset): |
| 160 | + """ |
| 161 | + Compute scale and shift parameters for each condition in the dataset. |
| 162 | +
|
| 163 | + :param list conditions: The list of condition names. |
| 164 | + :param dataset: The `~pina.data.dataset.PinaDataset` dataset. |
| 165 | + """ |
| 166 | + for cond in conditions: |
| 167 | + if cond in dataset.conditions_dict: |
| 168 | + data = dataset.conditions_dict[cond][self.apply_to] |
| 169 | + shift = self.shift_fn(data) |
| 170 | + scale = self.scale_fn(data) |
| 171 | + self._normalizer[cond] = { |
| 172 | + "shift": shift, |
| 173 | + "scale": scale, |
| 174 | + } |
| 175 | + |
| 176 | + @staticmethod |
| 177 | + def _norm_fn(value, scale, shift): |
| 178 | + """ |
| 179 | + Normalize a value according to the scale and shift parameters. |
| 180 | +
|
| 181 | + :param value: The input tensor to normalize. |
| 182 | + :type value: torch.Tensor | LabelTensor |
| 183 | + :param float scale: The scaling factor. |
| 184 | + :param float shift: The shifting factor. |
| 185 | + :return: The normalized tensor. |
| 186 | + :rtype: torch.Tensor | LabelTensor |
| 187 | + """ |
| 188 | + scaled_value = (value - shift) / scale |
| 189 | + if isinstance(value, LabelTensor): |
| 190 | + scaled_value = LabelTensor(scaled_value, value.labels) |
| 191 | + |
| 192 | + return scaled_value |
| 193 | + |
| 194 | + def normalize_dataset(self, dataset): |
| 195 | + """ |
| 196 | + Apply in-place normalization to the dataset. |
| 197 | +
|
| 198 | + :param PinaDataset dataset: The dataset to be normalized. |
| 199 | + """ |
| 200 | + # Initialize update dictionary |
| 201 | + update_dataset_dict = {} |
| 202 | + |
| 203 | + # Iterate over conditions and apply normalization |
| 204 | + for cond, norm_params in self.normalizer.items(): |
| 205 | + points = dataset.conditions_dict[cond][self.apply_to] |
| 206 | + scale = norm_params["scale"] |
| 207 | + shift = norm_params["shift"] |
| 208 | + normalized_points = self._norm_fn(points, scale, shift) |
| 209 | + update_dataset_dict[cond] = { |
| 210 | + self.apply_to: ( |
| 211 | + LabelTensor(normalized_points, points.labels) |
| 212 | + if isinstance(points, LabelTensor) |
| 213 | + else normalized_points |
| 214 | + ) |
| 215 | + } |
| 216 | + |
| 217 | + # Update the dataset in-place |
| 218 | + dataset.update_data(update_dataset_dict) |
| 219 | + |
| 220 | + @property |
| 221 | + def normalizer(self): |
| 222 | + """ |
| 223 | + Get the dictionary of normalization parameters. |
| 224 | +
|
| 225 | + :return: The dictionary of normalization parameters. |
| 226 | + :rtype: dict |
| 227 | + """ |
| 228 | + return self._normalizer |
0 commit comments