Skip to content

Commit d4a3c7b

Browse files
committed
Merge branch 's0tt-master' into dev
2 parents 6445b3a + b6542ab commit d4a3c7b

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

55 files changed

+1679
-573
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,5 @@
11
*pyc
2+
*.vscode
23
.idea
34
.ipynb_checkpoints
45
*~

.travis.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ after_success:
2222
matrix:
2323
include:
2424
install:
25-
- pip install numpy==1.13 scikit-learn==0.18 scipy==0.18
25+
- pip install numpy==1.20 scikit-learn==0.18 scipy==0.18 torch==1.8.1
2626
- pip install codecov
2727
- pip install coverage
2828
- pip install .

examples/active_regression.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,11 +2,11 @@
22
Active regression example with Gaussian processes.
33
"""
44

5-
import numpy as np
65
import matplotlib.pyplot as plt
7-
from sklearn.gaussian_process import GaussianProcessRegressor
8-
from sklearn.gaussian_process.kernels import WhiteKernel, RBF
6+
import numpy as np
97
from modAL.models import ActiveLearner
8+
from sklearn.gaussian_process import GaussianProcessRegressor
9+
from sklearn.gaussian_process.kernels import RBF, WhiteKernel
1010

1111

1212
# query strategy for regression

examples/bagging.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,11 +2,12 @@
22
This example shows how to build models with bagging using the Committee model.
33
"""
44

5-
import numpy as np
65
from itertools import product
6+
7+
import numpy as np
78
from matplotlib import pyplot as plt
8-
from sklearn.neighbors import KNeighborsClassifier
99
from modAL.models import ActiveLearner, Committee
10+
from sklearn.neighbors import KNeighborsClassifier
1011

1112
# creating the dataset
1213
im_width = 500
@@ -90,4 +91,4 @@
9091
plt.subplot(1, n_learners, learner_idx+1)
9192
plt.imshow(learner.predict(X_pool).reshape(im_height, im_width))
9293
plt.title('Learner no. %d after refitting' % (learner_idx + 1))
93-
plt.show()
94+
plt.show()

examples/bayesian_optimization.py

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,12 @@
1-
import numpy as np
2-
import matplotlib.pyplot as plt
31
from functools import partial
2+
3+
import matplotlib.pyplot as plt
4+
import numpy as np
5+
from modAL.acquisition import (max_EI, max_PI, max_UCB, optimizer_EI,
6+
optimizer_PI, optimizer_UCB)
7+
from modAL.models import BayesianOptimizer
48
from sklearn.gaussian_process import GaussianProcessRegressor
59
from sklearn.gaussian_process.kernels import Matern
6-
from modAL.models import BayesianOptimizer
7-
from modAL.acquisition import optimizer_PI, optimizer_EI, optimizer_UCB, max_PI, max_EI, max_UCB
8-
910

1011
# generating the data
1112
X = np.linspace(0, 20, 1000).reshape(-1, 1)

examples/bayesian_optimization_multidim.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,8 @@
11
import numpy as np
2+
from modAL.acquisition import max_EI
3+
from modAL.models import BayesianOptimizer
24
from sklearn.gaussian_process import GaussianProcessRegressor
35
from sklearn.gaussian_process.kernels import Matern
4-
from modAL.models import BayesianOptimizer
5-
from modAL.acquisition import max_EI
6-
76

87
# generating the data
98
x1, x2 = np.linspace(0, 10, 11).reshape(-1, 1), np.linspace(0, 10, 11).reshape(-1, 1)

examples/custom_query_strategies.py

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -25,18 +25,16 @@ def custom_query_strategy(classifier, X, a_keyword_argument=42):
2525
and classifier margin.
2626
"""
2727

28-
import numpy as np
2928
import matplotlib.pyplot as plt
30-
29+
import numpy as np
30+
from modAL.models import ActiveLearner
31+
from modAL.uncertainty import classifier_margin, classifier_uncertainty
3132
from modAL.utils.combination import make_linear_combination, make_product
3233
from modAL.utils.selection import multi_argmax
33-
from modAL.uncertainty import classifier_uncertainty, classifier_margin
34-
from modAL.models import ActiveLearner
3534
from sklearn.datasets import make_blobs
3635
from sklearn.gaussian_process import GaussianProcessClassifier
3736
from sklearn.gaussian_process.kernels import RBF
3837

39-
4038
# generating the data
4139
centers = np.asarray([[-2, 3], [0.5, 5], [1, 1.5]])
4240
X, y = make_blobs(

examples/deep_bayesian_active_learning.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,14 @@
22
import numpy as np
33
from keras import backend as K
44
from keras.datasets import mnist
5+
from keras.layers import (Activation, Conv2D, Dense, Dropout, Flatten,
6+
MaxPooling2D)
57
from keras.models import Sequential
6-
from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
78
from keras.regularizers import l2
89
from keras.wrappers.scikit_learn import KerasClassifier
910
from modAL.models import ActiveLearner
1011

12+
1113
def create_keras_model():
1214
model = Sequential()
1315
model.add(Conv2D(32, (4, 4), activation='relu'))

examples/ensemble.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
1-
import numpy as np
21
from itertools import product
2+
3+
import numpy as np
34
from matplotlib import pyplot as plt
4-
from sklearn.ensemble import RandomForestClassifier
55
from modAL.models import ActiveLearner, Committee
6+
from sklearn.ensemble import RandomForestClassifier
67

78
# creating the dataset
89
im_width = 500

examples/ensemble_regression.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
1-
import numpy as np
21
import matplotlib.pyplot as plt
3-
from sklearn.gaussian_process import GaussianProcessRegressor
4-
from sklearn.gaussian_process.kernels import WhiteKernel, RBF
5-
from modAL.models import ActiveLearner, CommitteeRegressor
2+
import numpy as np
63
from modAL.disagreement import max_std_sampling
4+
from modAL.models import ActiveLearner, CommitteeRegressor
5+
from sklearn.gaussian_process import GaussianProcessRegressor
6+
from sklearn.gaussian_process.kernels import RBF, WhiteKernel
77

88
# generating the data
99
X = np.concatenate((np.random.rand(100)-1, np.random.rand(100)))

0 commit comments

Comments
 (0)