|
| 1 | +import math |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | + |
| 6 | +from flopy.utils.channel_utils import ( |
| 7 | + get_depth, |
| 8 | + get_discharge, |
| 9 | + get_discharge_rect, |
| 10 | + get_segment_wetted_area, |
| 11 | + get_segment_wetted_perimeter, |
| 12 | + get_segment_wetted_station, |
| 13 | + get_wetted_area, |
| 14 | + get_wetted_perimeter, |
| 15 | +) |
| 16 | + |
| 17 | + |
| 18 | +def test_get_segment_wetted_station_all_dry(): |
| 19 | + depth = 10 |
| 20 | + p0 = (0, 12) |
| 21 | + p1 = (10, 11) |
| 22 | + x0, x1 = get_segment_wetted_station( |
| 23 | + x0=p0[0], x1=p1[0], h0=p0[1], h1=p1[1], depth=depth |
| 24 | + ) |
| 25 | + # zero-length segment at x0 |
| 26 | + assert x0 == x1 == p0[0] |
| 27 | + |
| 28 | + |
| 29 | +def test_get_segment_wetted_station_partial(): |
| 30 | + depth = 10 |
| 31 | + |
| 32 | + # left bank (sloping downwards to the right) |
| 33 | + p0 = (0, 12) |
| 34 | + p1 = (10, 8) |
| 35 | + x0, x1 = get_segment_wetted_station( |
| 36 | + x0=p0[0], x1=p1[0], h0=p0[1], h1=p1[1], depth=depth |
| 37 | + ) |
| 38 | + # left endpoint should be moved to the right |
| 39 | + assert x0 != x1 |
| 40 | + assert x0 != p0[0] |
| 41 | + assert x1 == p1[0] |
| 42 | + assert x0 == (p1[0] - p0[0]) / 2 |
| 43 | + |
| 44 | + # right bank (sloping upwards to the right) |
| 45 | + p0 = (0, 8) |
| 46 | + p1 = (10, 12) |
| 47 | + x0, x1 = get_segment_wetted_station( |
| 48 | + x0=p0[0], x1=p1[0], h0=p0[1], h1=p1[1], depth=depth |
| 49 | + ) |
| 50 | + # right endpoint should be moved to the left |
| 51 | + assert x0 != x1 |
| 52 | + assert x0 == p0[0] |
| 53 | + assert x1 != p1[0] |
| 54 | + assert x1 == (p1[0] - p0[0]) / 2 |
| 55 | + |
| 56 | + |
| 57 | +def test_get_segment_wetted_station_submerged(): |
| 58 | + depth = 13 |
| 59 | + p0 = (0, 12) |
| 60 | + p1 = (10, 11) |
| 61 | + x0, x1 = get_segment_wetted_station( |
| 62 | + x0=p0[0], x1=p1[0], h0=p0[1], h1=p1[1], depth=depth |
| 63 | + ) |
| 64 | + # entire segment should be returned |
| 65 | + assert x0 == p0[0] |
| 66 | + assert x1 == p1[0] |
| 67 | + |
| 68 | + |
| 69 | +def test_get_segment_wetted_perimeter_dry(): |
| 70 | + depth = 10 |
| 71 | + p0 = (0, 12) |
| 72 | + p1 = (10, 11) |
| 73 | + perim = get_segment_wetted_perimeter( |
| 74 | + x0=p0[0], x1=p1[0], h0=p0[1], h1=p1[1], depth=depth |
| 75 | + ) |
| 76 | + assert perim == 0 |
| 77 | + |
| 78 | + |
| 79 | +point_lists = [ |
| 80 | + # single segments |
| 81 | + [(0, -1), (1, -1)], |
| 82 | + [(0, 0), (1, 1)], |
| 83 | + [(0, 1), (2, -1)], |
| 84 | + [(0, -1), (2, 1)], |
| 85 | + [(0, 1), (1, 0)], |
| 86 | + # channels with multiple segments |
| 87 | + [(0, -1), (1, -1), (2, -1)], # flat |
| 88 | + [(0, 0), (1, -1), (2, 0)], # triangular |
| 89 | + [(0, -1), (1, -2), (2, -2), (3, -1)], # trapezoidal |
| 90 | + [(0, -1), (1, -2), (2, -4), (3, -4), (4, -1)], # complex |
| 91 | +] |
| 92 | + |
| 93 | + |
| 94 | +@pytest.mark.parametrize( |
| 95 | + "depth, p0, p1", |
| 96 | + [ |
| 97 | + (0, point_lists[0][0], point_lists[0][1]), |
| 98 | + (0, point_lists[1][0], point_lists[1][1]), |
| 99 | + (0, point_lists[2][0], point_lists[2][1]), |
| 100 | + (3, point_lists[3][0], point_lists[3][1]), |
| 101 | + ], |
| 102 | +) |
| 103 | +def test_get_segment_wetted_perimeter(depth, p0, p1): |
| 104 | + wp = get_segment_wetted_perimeter( |
| 105 | + x0=p0[0], x1=p1[0], h0=p0[1], h1=p1[1], depth=depth |
| 106 | + ) |
| 107 | + |
| 108 | + xlen = abs(p1[0] - p0[0]) |
| 109 | + hlen = abs(p1[1] - p0[1]) |
| 110 | + hmax = max([p0[1], p1[1]]) |
| 111 | + hmin = min([p0[1], p1[1]]) |
| 112 | + seg_len = math.sqrt(hlen**2 + xlen**2) |
| 113 | + |
| 114 | + # if segment is fully wetted, wetted perimeter is just its length |
| 115 | + if depth >= hmax: |
| 116 | + # expect perimeter 0 if the water surface is level with a flat segment |
| 117 | + if depth == hmin == hmax: |
| 118 | + assert wp == 0 |
| 119 | + else: |
| 120 | + assert wp == seg_len |
| 121 | + |
| 122 | + # if segment is partially submerged, wetted perimeter should be |
| 123 | + # less than the length of the segment but greater than zero |
| 124 | + elif depth > hmin: |
| 125 | + assert wp > 0 |
| 126 | + assert wp < seg_len |
| 127 | + |
| 128 | + # if segment is completely dry, wetted perimeter should be zero |
| 129 | + else: |
| 130 | + assert wp == 0 |
| 131 | + |
| 132 | + |
| 133 | +@pytest.mark.parametrize( |
| 134 | + "depth, p0, p1", |
| 135 | + [ |
| 136 | + (0, point_lists[0][0], point_lists[0][1]), |
| 137 | + (0, point_lists[1][0], point_lists[1][1]), |
| 138 | + (0, point_lists[2][0], point_lists[2][1]), |
| 139 | + (3, point_lists[3][0], point_lists[3][1]), |
| 140 | + ], |
| 141 | +) |
| 142 | +def test_get_segment_wetted_area(depth, p0, p1): |
| 143 | + wa = get_segment_wetted_area( |
| 144 | + x0=p0[0], x1=p1[0], h0=p0[1], h1=p1[1], depth=depth |
| 145 | + ) |
| 146 | + |
| 147 | + xlen = abs(p1[0] - p0[0]) |
| 148 | + hlen = abs(p1[1] - p0[1]) |
| 149 | + hmax = max([p0[1], p1[1]]) |
| 150 | + hmin = min([p0[1], p1[1]]) |
| 151 | + seg_len = math.sqrt(hlen**2 + xlen**2) |
| 152 | + tri_area = 0 if hlen == 0 else (0.5 * hlen * xlen) |
| 153 | + |
| 154 | + # if segment is submerged wetted area is that of quadrilateral |
| 155 | + # formed by the segment, the water surface, and vertical sides |
| 156 | + if depth > hmax: |
| 157 | + rect_area = xlen * (depth - hmax) |
| 158 | + expected = rect_area + tri_area * (0.5 if p0[1] != p1[1] else 1) |
| 159 | + assert wa == expected |
| 160 | + |
| 161 | + # if segment is partially submerged, wetted area should be |
| 162 | + # less than the area of the triangle formed by the segment |
| 163 | + # and the water surface, with one vertical side |
| 164 | + elif depth > hmin: |
| 165 | + assert wa > 0 |
| 166 | + assert wa < tri_area |
| 167 | + |
| 168 | + # if segment is completely dry, wetted area should be zero |
| 169 | + else: |
| 170 | + assert wa == 0 |
| 171 | + |
| 172 | + |
| 173 | +def test_get_wetted_perimeter_rectangular(): |
| 174 | + depth = 0 |
| 175 | + points = np.array([[0, -0.2], [0, -1.4], [1.5, -1.4], [1.5, -0.2]]) |
| 176 | + perim = get_wetted_perimeter(points[:, 0], points[:, 1], depth) |
| 177 | + assert perim == 1.5 |
| 178 | + |
| 179 | + |
| 180 | +@pytest.mark.parametrize("points", [np.array(pts) for pts in point_lists]) |
| 181 | +@pytest.mark.parametrize("depth", [0, 1, -1, -2]) |
| 182 | +def test_get_wetted_perimeter(depth, points): |
| 183 | + def total_perim(pts): |
| 184 | + return sum( |
| 185 | + [ |
| 186 | + math.sqrt( |
| 187 | + (pts[i][0] - pts[i - 1][0]) ** 2 |
| 188 | + + (pts[i][1] - pts[i - 1][1]) ** 2 |
| 189 | + ) |
| 190 | + for i in range(1, len(pts)) |
| 191 | + ] |
| 192 | + ) |
| 193 | + |
| 194 | + wp = get_wetted_perimeter( |
| 195 | + x=points[:, 0], h=points[:, 1], depth=depth, verbose=True |
| 196 | + ) |
| 197 | + |
| 198 | + hmax = max(points[:, 1]) |
| 199 | + hmin = min(points[:, 1]) |
| 200 | + total_perim = total_perim(points) |
| 201 | + |
| 202 | + # if all segments are submerged, wetted perimeter is total perimeter |
| 203 | + if depth >= hmax: |
| 204 | + # expect perimeter 0 if the water surface is level with a flat channel |
| 205 | + if all(p == depth for p in points[:, 1]): |
| 206 | + assert wp == 0 |
| 207 | + else: |
| 208 | + assert wp == total_perim |
| 209 | + |
| 210 | + # if at least some segments are at least partially submerged... |
| 211 | + elif depth > hmin: |
| 212 | + assert wp > 0 |
| 213 | + assert wp < total_perim |
| 214 | + |
| 215 | + def patch(x0, x1, h0, h1, depth): |
| 216 | + # TODO: refactor get_segment_wetted_perimeter() to handle partial wetting |
| 217 | + # internally so separate get_segment_wetted_station() is no longer needed? |
| 218 | + |
| 219 | + x0, x1 = get_segment_wetted_station( |
| 220 | + x0=x0, x1=x1, h0=h0, h1=h1, depth=depth |
| 221 | + ) |
| 222 | + return get_segment_wetted_perimeter( |
| 223 | + x0=x0, x1=x1, h0=h0, h1=h1, depth=depth |
| 224 | + ) |
| 225 | + |
| 226 | + assert np.isclose( |
| 227 | + wp, |
| 228 | + sum( |
| 229 | + [ |
| 230 | + patch( |
| 231 | + x0=points[i][0], |
| 232 | + x1=points[i + 1][0], |
| 233 | + h0=points[i][1], |
| 234 | + h1=points[i + 1][1], |
| 235 | + depth=depth, |
| 236 | + ) |
| 237 | + for i in range(0, len(points) - 1) |
| 238 | + ] |
| 239 | + ), |
| 240 | + ) |
| 241 | + |
| 242 | + # if all segments are dry, wetted perimeter is zero |
| 243 | + else: |
| 244 | + assert wp == 0 |
| 245 | + |
| 246 | + |
| 247 | +def test_get_wetted_area_rectangular(): |
| 248 | + depth = 0 |
| 249 | + points = np.array([[0, -0.2], [0, -1.4], [1.5, -1.4], [1.5, -0.2]]) |
| 250 | + expected = 1.5 * 1.4 |
| 251 | + area = get_wetted_area(points[:, 0], points[:, 1], depth) |
| 252 | + assert area == expected |
| 253 | + |
| 254 | + |
| 255 | +def test_get_discharge_rect(): |
| 256 | + # adapted from https://www.youtube.com/watch?v=R-Vhs_AH8mA |
| 257 | + |
| 258 | + width = 0.5 |
| 259 | + depth = 0.25 |
| 260 | + n = 0.022 |
| 261 | + s = 0.005 |
| 262 | + k = 1.0 |
| 263 | + expected = 0.1 |
| 264 | + q = get_discharge_rect(width, depth, n, s, k) |
| 265 | + assert np.isclose(expected, q, rtol=1e-2) |
| 266 | + |
| 267 | + |
| 268 | +def test_get_discharge_rectangular(): |
| 269 | + # adapted from https://www.youtube.com/watch?v=R-Vhs_AH8mA |
| 270 | + |
| 271 | + # x and h as ints (width and height) |
| 272 | + width = 0.5 |
| 273 | + depth = 0.25 |
| 274 | + n = 0.022 |
| 275 | + s = 0.005 |
| 276 | + k = 1.0 |
| 277 | + expected = 0.1 |
| 278 | + q = get_discharge(width, depth, depth, n, s, k) |
| 279 | + assert np.isclose(expected, q, rtol=1e-2) |
| 280 | + |
| 281 | + # x and h as arrays |
| 282 | + x = np.array([0, 0, width, width]) |
| 283 | + h = np.array([depth, 0, 0, depth]) |
| 284 | + q = get_discharge(x, h, depth, n, s, k) |
| 285 | + assert np.isclose(expected, q, rtol=1e-2) |
| 286 | + |
| 287 | + |
| 288 | +def test_get_discharge_trapezoidal(): |
| 289 | + # adapted from https://www.youtube.com/watch?v=ucLa9_DDWPA |
| 290 | + |
| 291 | + x = np.array([0, 2, 4, 8, 10, 12]) |
| 292 | + h = np.array([2, 1, 0, 0, 1, 2]) |
| 293 | + n = 0.015 |
| 294 | + s = 0.002 |
| 295 | + k = 1.0 |
| 296 | + depth = 1.3 |
| 297 | + expected = 23.4 |
| 298 | + q = get_discharge(x, h, depth, n, s, k) |
| 299 | + assert np.isclose(expected, q, rtol=0.1) |
| 300 | + |
| 301 | + |
| 302 | +@pytest.mark.xfail(reason="debug complex array input case") |
| 303 | +def test_get_discharge_compound_rectangular(): |
| 304 | + # adapted from https://www.youtube.com/watch?v=BJZ73WWEc3M |
| 305 | + |
| 306 | + # manually sum over discharge for each rectangle |
| 307 | + n = 0.016 |
| 308 | + s = 0.001 |
| 309 | + k = 1.0 |
| 310 | + expected = 3.3 |
| 311 | + q0 = get_discharge(3, 0.2, roughness=n, slope=s, conv=k) |
| 312 | + q1 = get_discharge(1.5, 1.4, roughness=n, slope=s, conv=k) |
| 313 | + q2 = get_discharge(3, 0.2, roughness=n, slope=s, conv=k) |
| 314 | + sm = q0 + q1 + q2 |
| 315 | + assert np.isclose(expected, sm, rtol=1e-2) |
| 316 | + |
| 317 | + # check single rectangular segment with array input for x and h |
| 318 | + x = np.array([0, 0, 3, 3]) |
| 319 | + h = np.array([0, -0.2, -0.2, 0]) |
| 320 | + q = get_discharge(x, h, 0, n, s, k) |
| 321 | + assert np.isclose(q, q0, rtol=1e-3) |
| 322 | + |
| 323 | + # check multiple rectangles with array input |
| 324 | + x = np.array([0, 0, 3, 3, 4.5, 4.5, 7.5, 7.5]) |
| 325 | + h = np.array([0, -0.2, -0.2, -1.4, -1.4, -0.2, -0.2, 0]) |
| 326 | + q = get_discharge(x, h, 0, n, s, k) |
| 327 | + assert np.isclose(expected, q, rtol=1e-2) |
| 328 | + |
| 329 | + |
| 330 | +def test_get_depth(): |
| 331 | + # adapted from https://www.youtube.com/watch?v=t9ywTXEcScE |
| 332 | + |
| 333 | + width = 5 |
| 334 | + x = np.array([0, 0, width, width]) |
| 335 | + h = np.array([2, 0, 0, 2]) |
| 336 | + q = 6.5 |
| 337 | + n = 0.02 |
| 338 | + s = 0.0005 |
| 339 | + k = 1.0 |
| 340 | + expected = 1.3 |
| 341 | + depth = get_depth(x, h, q, n, s, k) |
| 342 | + assert np.isclose(expected, depth, rtol=1e-1) |
| 343 | + |
| 344 | + |
| 345 | +@pytest.mark.skip(reason="todo") |
| 346 | +def test_get_depths(): |
| 347 | + pass |
0 commit comments