-
-
Notifications
You must be signed in to change notification settings - Fork 18
Binary Trees
Nazmul Idris edited this page Jul 13, 2018
·
10 revisions
data class Node<T>(val value: T,
var leftNode: Node<T>?,
var rightNode: Node<T>?,
var depth: Int = 0) {
fun link(left: Node<T>?, right: Node<T>?) = this.apply {
linkLeft(left).linkRight(right)
}
fun linkLeft(left: Node<T>?) = this.apply { leftNode = left }
fun linkRight(right: Node<T>?) = this.apply { rightNode = right }
fun depth(value: Int) = this.apply { depth = value }
/**
* Nodes on the left are in yellow, and those on the right are blue.
*/
override fun toString(): String {
return StringBuffer().apply {
append("{${value.toString().green()}")
if (leftNode != null)
append(", ${leftNode.toString().yellow()}")
if (rightNode != null)
append(", ${rightNode.toString().blue()}}")
}.toString()
}
}
The tree shown in the diagram above is built in code as follows.
fun buildTree(): Node<Char> {
val a = Node('a', null, null)
val b = Node('b', null, null)
val c = Node('c', null, null)
val d = Node('d', null, null)
val e = Node('e', null, null)
val f = Node('f', null, null)
val g = Node('g', null, null)
val h = Node('h', null, null)
val i = Node('i', null, null)
a.link(b, c)
b.link(d, e)
c.link(f, g)
g.link(h, i)
return a
}
/**
* A neat trick for pre-order traversals: starting from the root,
* go around the tree counterclockwise. Print each node when you
* pass its left side.
*/
fun <T> traversalPreOrder(node: Node<T>?, list: MutableList<T>) {
if (node != null) {
list.add(node.value)
traversalPreOrder(node.leftNode, list)
traversalPreOrder(node.rightNode, list)
}
}
/**
* A neat trick for in-order traversals: starting from the root,
* go around the tree counterclockwise. Print each node when you
* pass its bottom side.
*/
fun <T> traversalInOrder(node: Node<T>?, list: MutableList<T>) {
if (node != null) {
traversalInOrder(node.leftNode, list)
list.add(node.value)
traversalInOrder(node.rightNode, list)
}
}
/**
* A neat trick for post-order traversals: starting from the root,
* go around the tree counterclockwise. Print each node when you
* pass its right side.
*/
fun <T> traversalPostOrder(node: Node<T>?, list: MutableList<T>) {
if (node != null) {
traversalPostOrder(node.leftNode, list)
traversalPostOrder(node.rightNode, list)
list.add(node.value)
}
}
fun <T> depthFirstTraversal(root: Node<T>): MutableList<Node<T>> {
val visitedMap = mutableMapOf<Node<T>, Boolean>()
val stack = LinkedList<Node<T>>()
val traversalList = mutableListOf<Node<T>>()
// Add first node
stack.push(root)
// Use stack to create breadth first traversal
while (stack.isNotEmpty()) {
val currentNode = stack.pop()
val depth = currentNode.depth
// If the currentNode key can't be found in the map, then insert it
visitedMap[currentNode] = visitedMap[currentNode] ?: false
if (!visitedMap[currentNode]!!) {
// Push right child to stack FIRST (so this will be processed LAST)
if (currentNode.rightNode != null)
stack.push(currentNode.rightNode!!.depth(depth + 1))
// Push left child to stack LAST (so this will be processed FIRST)
if (currentNode.leftNode != null)
stack.push(currentNode.leftNode!!.depth(depth + 1))
// Mark the current node visited and add to traversal list
visitedMap[currentNode] = true
traversalList.add(currentNode)
}
}
return traversalList
}
- The trick in the
while
loop is to leverage the LIFO nature of stack, in order to push the children on the right on top of the stack first, before the children on the left. Since the algorithm pops these items off the top of the stack, whatever was pushed last will get processed sooner (that what was pushed first). And this is what results in a depth first search. - A
depth
field in theNode
class is what keeps track of the number of branches from the root to thisNode
. - The
Deque
interface supports both Stack and Queue ADTs (abstract data types).
/**
* Traverses the binary tree nodes in a sorted order.
*/
fun <T> breadthFirstTraversal(root: Node<T>): MutableList<Node<T>> {
val visitedMap = mutableMapOf<Node<T>, Boolean>()
val queue = LinkedList<Node<T>>()
val traversalList = mutableListOf<Node<T>>()
// Add first node
queue.add(root)
// Use stack to create breadth first traversal
while (queue.isNotEmpty()) {
val currentNode = queue.poll()
val depth = currentNode.depth
// If the currentNode key can't be found in the map, then insert it
visitedMap[currentNode] = visitedMap[currentNode] ?: false
if (!visitedMap[currentNode]!!) {
// Add left node first
if (currentNode.leftNode != null)
queue.add(currentNode.leftNode!!.depth(depth + 1))
// Add right node next
if (currentNode.rightNode != null)
queue.add(currentNode.rightNode!!.depth(depth + 1))
// Mark the current node visited and add to traversal list
visitedMap[currentNode] = true
traversalList.add(currentNode)
}
}
return traversalList
}
- BFS traversal of a binary tree results in a the nodes being visited in their sorted order.
- The trick in the
while
loop is leveraging the FIFO nature of the queue and allow the traversal of the tree from left node to right node, which results in a breadth first traversal. - A
depth
field in theNode
class is what keeps track of the number of branches from the root to thisNode
. - The
Deque
interface supports both Stack and Queue ADTs (abstract data types).