|
| 1 | +"""Reusable functions for the cookbook.""" |
| 2 | + |
| 3 | +import sqlite3 |
| 4 | +import networkx as nx |
| 5 | +from typing import Any |
| 6 | +from datasets import load_dataset |
| 7 | + |
| 8 | +from db_interface import get_all_triplets |
| 9 | + |
| 10 | + |
| 11 | +def load_db_from_hf(db_path: str = "temporal_graph.db", hf_dataset_name: str = "TomoroAI/temporal_cookbook_db") -> sqlite3.Connection: |
| 12 | + """Load the pre-processed database from HuggingFace.""" |
| 13 | + conn = sqlite3.connect(db_path) |
| 14 | + table_names = [ |
| 15 | + "transcripts", |
| 16 | + "chunks", |
| 17 | + "events", |
| 18 | + "triplets", |
| 19 | + "entities", |
| 20 | + ] |
| 21 | + |
| 22 | + for table in table_names: |
| 23 | + print(f"Loading {table}...") |
| 24 | + ds = load_dataset(hf_dataset_name, name=table, split="train") |
| 25 | + df = ds.to_pandas() |
| 26 | + df.to_sql(table, conn, if_exists="replace", index=False) |
| 27 | + |
| 28 | + conn.commit() |
| 29 | + print("✅ All tables written to SQLite.") |
| 30 | + |
| 31 | + return conn |
| 32 | + |
| 33 | +def build_graph( |
| 34 | + conn: sqlite3.Connection, |
| 35 | + *, |
| 36 | + nodes_as_names: bool = False |
| 37 | + ) -> nx.MultiDiGraph: |
| 38 | + """Build graph using canonical entity IDs and names.""" |
| 39 | + graph = nx.MultiDiGraph() |
| 40 | + |
| 41 | + # Always load canonical mappings |
| 42 | + entity_to_canonical, canonical_names = _load_entity_maps(conn) |
| 43 | + event_temporal_map = _load_event_temporal(conn) |
| 44 | + |
| 45 | + for t in get_all_triplets(conn): |
| 46 | + if not t["subject_id"]: |
| 47 | + continue |
| 48 | + |
| 49 | + event_attrs = event_temporal_map.get(t["event_id"]) |
| 50 | + _add_triplet_edge( |
| 51 | + graph, |
| 52 | + t, |
| 53 | + entity_to_canonical, |
| 54 | + canonical_names, |
| 55 | + event_attrs, |
| 56 | + nodes_as_names, |
| 57 | + ) |
| 58 | + |
| 59 | + return graph |
| 60 | + |
| 61 | +def _load_entity_maps(conn: sqlite3.Connection) -> tuple[dict[bytes, bytes], dict[bytes, str]]: |
| 62 | + """ |
| 63 | + Return mappings for canonical entities: |
| 64 | + • entity_to_canonical: maps entity ID → canonical ID (using resolved_id) |
| 65 | + • canonical_names: maps canonical ID → canonical name. |
| 66 | + """ |
| 67 | + cur = conn.cursor() |
| 68 | + |
| 69 | + # Get all entities with their resolved IDs |
| 70 | + cur.execute(""" |
| 71 | + SELECT id, name, resolved_id |
| 72 | + FROM entities |
| 73 | + """) |
| 74 | + |
| 75 | + entity_to_canonical: dict[bytes, bytes] = {} |
| 76 | + canonical_names: dict[bytes, str] = {} |
| 77 | + |
| 78 | + for row in cur.fetchall(): |
| 79 | + entity_id = row[0] |
| 80 | + name = row[1] |
| 81 | + resolved_id = row[2] |
| 82 | + |
| 83 | + if resolved_id: |
| 84 | + # If entity has a resolved_id, map to that |
| 85 | + entity_to_canonical[entity_id] = resolved_id |
| 86 | + # Store name of the canonical entity |
| 87 | + canonical_names[resolved_id] = name |
| 88 | + else: |
| 89 | + # If no resolved_id, entity is its own canonical version |
| 90 | + entity_to_canonical[entity_id] = entity_id |
| 91 | + canonical_names[entity_id] = name |
| 92 | + |
| 93 | + return entity_to_canonical, canonical_names |
| 94 | + |
| 95 | +def _load_event_temporal(conn: sqlite3.Connection) -> dict[bytes, dict[str, Any]]: |
| 96 | + """ |
| 97 | + Read the `events` table once and build a mapping |
| 98 | + event_id (bytes) → dict of temporal / descriptive attributes. |
| 99 | + Only the columns that are useful on the graph edges are pulled; |
| 100 | + extend this list freely if you need more. |
| 101 | + """ |
| 102 | + cur = conn.cursor() |
| 103 | + cur.execute(""" |
| 104 | + SELECT id, |
| 105 | + statement, |
| 106 | + statement_type, |
| 107 | + temporal_type, |
| 108 | + created_at, |
| 109 | + valid_at, |
| 110 | + expired_at, |
| 111 | + invalid_at, |
| 112 | + invalidated_by |
| 113 | + FROM events |
| 114 | + """) |
| 115 | + event_map: dict[bytes, dict[str, Any]] = {} |
| 116 | + for ( |
| 117 | + eid, |
| 118 | + statement, |
| 119 | + statement_type, |
| 120 | + temporal_type, |
| 121 | + created_at, |
| 122 | + valid_at, |
| 123 | + expired_at, |
| 124 | + invalid_at, |
| 125 | + invalidated_by, |
| 126 | + ) in cur.fetchall(): |
| 127 | + event_map[eid] = { |
| 128 | + "statement": statement, |
| 129 | + "statement_type": statement_type, |
| 130 | + "temporal_type": temporal_type, |
| 131 | + "created_at": created_at, |
| 132 | + "valid_at": valid_at, |
| 133 | + "expired_at": expired_at, |
| 134 | + "invalid_at": invalid_at, |
| 135 | + "invalidated_by": invalidated_by, |
| 136 | + } |
| 137 | + return event_map |
| 138 | + |
| 139 | + |
| 140 | +def _add_triplet_edge( |
| 141 | + graph: nx.MultiDiGraph, t: dict, |
| 142 | + entity_to_canonical: dict[bytes, bytes], |
| 143 | + canonical_names: dict[bytes, str], |
| 144 | + event_attrs: dict[str, Any] | None = None, |
| 145 | + use_names: bool = False, |
| 146 | + ) -> None: |
| 147 | + """Add one edge using canonical IDs and names.""" |
| 148 | + subj_id = t["subject_id"] |
| 149 | + obj_id = t["object_id"] |
| 150 | + |
| 151 | + if subj_id is None: |
| 152 | + return |
| 153 | + |
| 154 | + # Get canonical IDs |
| 155 | + canonical_subj = entity_to_canonical.get(subj_id, subj_id) |
| 156 | + canonical_obj = entity_to_canonical.get(obj_id, obj_id) if obj_id else None |
| 157 | + |
| 158 | + # Get canonical names |
| 159 | + subj_name = canonical_names.get(canonical_subj, t["subject_name"]) if canonical_subj is not None else t["subject_name"] |
| 160 | + obj_name = canonical_names.get(canonical_obj, t["object_name"]) if canonical_obj is not None else t["object_name"] |
| 161 | + |
| 162 | + subj_node = subj_name if use_names else canonical_subj |
| 163 | + obj_node = obj_name if use_names else canonical_obj |
| 164 | + |
| 165 | + # Add nodes with canonical names |
| 166 | + graph.add_node( |
| 167 | + subj_node, |
| 168 | + canonical_id=canonical_subj, |
| 169 | + name=subj_name, |
| 170 | + ) |
| 171 | + |
| 172 | + # Core edge attributes (triplet-specific) |
| 173 | + edge_attrs: dict[str, Any] = { |
| 174 | + "predicate": t["predicate"], |
| 175 | + "triplet_id": t["id"], |
| 176 | + "event_id": t["event_id"], |
| 177 | + "value": t["value"], |
| 178 | + "canonical_subject_name": subj_name, |
| 179 | + "canonical_object_name": obj_name, |
| 180 | + } |
| 181 | + |
| 182 | + # Merge in temporal data, if we have it |
| 183 | + if event_attrs: |
| 184 | + edge_attrs.update(event_attrs) |
| 185 | + |
| 186 | + if canonical_obj is None: |
| 187 | + # Handle self-loops for null objects |
| 188 | + graph.add_edge( |
| 189 | + subj_node, subj_node, |
| 190 | + key=t["predicate"], |
| 191 | + **edge_attrs, |
| 192 | + literal_object=t["object_name"], |
| 193 | + ) |
| 194 | + else: |
| 195 | + graph.add_node( |
| 196 | + obj_node, |
| 197 | + canonical_id=canonical_obj, |
| 198 | + name=obj_name, |
| 199 | + ) |
| 200 | + graph.add_edge( |
| 201 | + subj_node, obj_node, |
| 202 | + key=t["predicate"], |
| 203 | + **edge_attrs, |
| 204 | + ) |
0 commit comments